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Triplet Intervals of Helium
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The triplet intervals of the deepest P-state of helium are calculated by making use of the wave function
recently determined by the present authors. The polarization of the s-orbital, the admixture of the singlet,
and the quantum-electrodynamic fourth-order correction are all taken into account. The theoretical values
of the intervals are 3Py—3P;=997.457 11X1073 cm™ and 3P; —3P3;=75.974 45X 1073 cm™.

1. INTRODUCTION

HE quantitative study of the helium triplet is

very important in order to examine whether the
quantum mechanics of the many-electron system
provides us with accurate conclusions not only in its
nonrelativistic form but also in its semirelativistic part.
The triplet intervals were theoretically calculated by
several authors,! but their results were not satisfactory
for this purpose. Recently the wave function was
improved for the deepest P-state of helium by the
present authors.? The purpose of the present paper is
to examine to what extent the new function improves
the theoretical values of the triplet intervals. The
polarization of the s-orbital, the admixture of the
singlet state, and the quantum-electrodynamic fourth-
order correction are all taken into account. The result
is greatly improved as compared with the calculation
by Araki?®* although there is yet some discrepancy
between theory and experiment.

2. DIAGONAL ELEMENTS OF SPIN-
DEPENDENT HAMILTONIAN

We shall first consider the general structure of the
interval formula in a simple way in order to see the
origin of each term. The spin-dependent part of the
Hamiltonian of a He-like atom consists of the spin-
orbit coupling, the spin-spin coupling, and the quantum-
electrodynamic fourth-order correction to them if we
take into account terms up to the order of c=3. We denote
them by Hgo, Hss, 6Hs, and 6Hy, respectively. The
spin-orbit coupling can be divided into the self and
mutual parts which are denoted by Hy® and Hg™,
respectively. If we make use of the conventional
notation the explicit expression of these couplings and
corrections are given by!-4+6

Hoo=2u2Z (r1~38:- Li+7:7%S,- Ly)
—2u%r1573(S1- Lig+Ss- Lay),  (2.1)
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Hyom=—4u?r15%(S1- Lai+S2- Lio), (2.2)
Hoo=427157%S1-So— 371578 (X12-S1) (X12-S9) ], (2.3)
Hyo=H*+H™, (2.4)
6Ho=am (Heo'+3Hs™), (2.5)
6H .= ar—H.. (2.6)

The spin-spin coupling and its correction both include
another term, the contact interaction. They are
entirely omitted here because they have no influence on
the triplet intervals.

The J-dependence of the diagonal elements of these
operators was discussed by Araki.” It was shown that
the diagonal elements of the spin-orbit and spin-spin
couplings in the LSJM scheme are proportional to K
and 3K (K+1)—4L(L+1)S(S+1), respectively, where
K is given by

K=J(J+1)—L(L+1)—S(S+1). 2.7)

Therefore the element vanishes for S=0. The propor-
tion factor is independent of J and M and we can
calculate it in the most convenient case, namely in the
case of J=M=L-+1 and S=1. Thus we have

(LSTM|H,,| LSTM) =K, (2.8)
(LSJM|Hg|LSTM)
={(3K(K+1)—4L(L+1)S(S+1)}n, (2.9)

¢=(20) f f Vit (At AnWrododv, (2.10)

u? 92 1
n_—“——h**—ff‘ll/LLP ~dv1dv2, (211)
2L(2L— 1) 621622 712

where Y1, denotes the triplet orbital for M;=m, and

A, and Ay, are defined by
H50=2S1' A12+ZS2‘ A21. (2.12)

The parameter { is divided into the nuclear and
electronic parts as follows [see (2.1), (2.2), (2.4),
(2.10), and (2.12)7:

—3(ZeY—5),
7 G. Araki, Progr. Theoret. Phys. (Kyoto) 3, 154 (1948).

(2.13)
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g—N = }J.ZLh—lffll/LL* (1’1—3le+7’2_3L2,)§(/LLd'Uld'02, (2 14)

fe=#2L_lffkbLL*rlz_a(14122+L21z)‘//LLd711dv2- (2.15)

The same method can be applied to 6Hs, and 6Hss.
Their diagonal elements are given by (2.8) and (2.9),
respectively, if we replace ¢ and 5 with & and dn,
respectively, where the last two parameters are given by

&= (a/m{FZsN—5°}, (2.16)
én=(a/m). (2.17)

If we neglect the admixture of the singlet, the triplet
intervals are given by

E(®Lry1)—E(*Ly1)

=2(L+1{ C+8)+3(2L—1) (n+0m)}, (2.18)
E(CLL)—E(CLr_1)

=2L{(¢+6¢)—3(2L+3) (n+ém)}, (2.19)
E(PLpy1)—E(CLr-1)

=2QL+1){(¢+65)—3(n+6m)}. - (2.20)

3. ADMIXTURE OF SINGLET

The state of definite L and M involves three kinds
of states. Their J values are given by J=L=1 and
J=L. The first two states belong to the pure triplet.
The latter includes the triplet and the singlet. If we
denote the wave function in the LSJM scheme by
W 1s7m, We have

V= CoXo¥u+CoX 1, yat+CoXowr wy1,  (3.1)
' (3.2)

for J=L where X,, X;, X_; are the spin functions of
the triplet corresponding to M,=0, 1, —1, respectively,
X, is the spin function of the singlet, ¥1., and y¥r.," are
the orbitals of the triplet and singlet states, respectively,
for M =m, and the coefficients are given by

’
Wrorm =X,

Co=—M{L(L+1)}7%, (3.3)(a)
Ci={(L—M+)EAHMPRLLFDY,  (B.3)(0)
Cor=—{ (L= M) LA MAD)PRLEADY. (33)(0)

From (2.12), (3.1), and (3.2) we have

(¥ zosat, Heo¥ L1721r)
= Co (¢LM' I A9.— A1, l 1//LM)
—273C (Yo | Aret— Aot |¥r ar1)

F273C (Y | A — Ao |Wr arg1)  (3.4)
for J=L, where we use the following notation for any
vector A:

At=A,+14,, 3.5)

The matrix elements of Aip.—As1., A1st—Axnt, and

A-=A,—iA,.
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A1g5~— Ao~ with respect to the orbital function are
proportional to Co, Ci, and C_;, respectively.® The
proportion factor is independent of M and we can
calculate it for M = L. Thus we have

(¥ rosar,Hso¥ ragar) = — 2{ L(L+1) } 3¢,
O=32N R

(3.6)
(3.7)

{'N = [.L2L_lff (l,bLLI)* (?’1_314 12— 7’2‘3L22)¢LLdv1dv2, (38)

(o= f f Wi Vori(Lis— LaWirdndes. (3.9)

These parameters are all real as is easily seen.

The nondiagonal matrix element of H, is represented
by a similar expression to (3.4) in which At —A4u™,
etc., are replaced with u?(VitVay,—Vi,Vot)ris™, etc.
This element vanishes because the equation Vi+Vyr15™!
=V, Vatris™}, etc., hold. Therefore we have the follow-
ing secular equation for J=L:

AL(LADY|
E—E,

E—E,
2{L(L+1)}¥’

where E; and E, are the diagonal elements of the
Hamiltonian in the triplet and singlet states, respec-
tively. The two roots of the secular equation are
written in the following form:

0, (3.10)

E®R =E+0F,, (3.11)
E(‘)=Et—6Es¢, (3.12)
where
8Eq={(E,— E)*272+4L(L+1) ()%}
—3(Es—E). (3.13)

This quantity is positive and represents the displace-
ment of the levels caused by mixing of the singlet and
triplet. If |{’| is very small as compared with E,—E;,
the displacement is approximately given by

§Ey=4L(L+1) (") (E,— Ey). (3:14)

In this case E® and E represent the singlet and
triplet levels, respectively.

4. ORBITALS

The orbital eigenfunctions of the deepest triplet and
singlet P states of helium were determined variationally
by the present authors.? They are given in the following
form:

Y= 23 awr, (4.1)
k=0

where all functions are normalized: ||¥|=|jys|=1,

8E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1957), p. 61.
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(k=0, 1, 2, 3). The basic functions are given by

Yo=2"Y1TFP)F (k1 71,72) Zsp(@1,002), (4.2)
Y1=2"YAFP)G (ku1; 7o,11) Zep(wr,000),  (4.3)
Yo=2"Y(1F P)F (k,ua; 71,72) Zsp(w1,02), (4.4)

3= 2 (1FP)G (ks 11,r2) Zpawrws),  (4.5)

where P is the exchange operator, 1— P corresponds to
the triplet and 142 to the singlet. Z;, and Z,; are
the normalized angular functions of the P state corre-
sponding to the sp and pd configurations, respectively:

Zsp(wl,wz) = Yoo(wl)ylm(w2), (4.6)
Z pa(w1,w2)
= (20)72[{2(2—m) (2+m) } 3V 10(w1) Vom (w2)
——{(2-—m)(3—m)}%Y11(w1)Y2 m—1(w2)
—{24m)(3+m)} YV 1 1(01) Y2 mpr(w2)], (4.7)

TasBrLE I. Numerical values of the parameters for the orbitals
and of the energy, in atomic units.

3p 1P
K 1.991 185 792 2.003 024 271
u 0.544 574 887 8 0.482 362 881 4
M1 1.335 750 000 0.807 500 000
u2 1.975 000 000 1.437 000 000
M3 0.921 250 000 1.119 000 000
ao 0.990 273 307 1.000 566 493
a1 0.023 487 573 6 —0.007 028 260 02
a2 0.013 873997 3 —0.000 406 779 024
az —0.016443 103 5 —0.018 107 1439
E, —2.132 897 96 —2.123 495 89
Ecalo —2.132 612 64 —2.123 198 66
Eobs —2.132968 6 (X7)» —2.123 6373 (£7)

a The error in the last figure.

where YVi,(w) is the normalized spherical surface
harmonic corresponding to the azimuthal quantum
number / and the orbital magnetic quantum number ,
and o stands for the spherical surface coordinates 6
and ¢. The normalized radial functions are defined by

(4.8)
(4.9)

F(K,[J,; 71;72) =NF (K;“)r2e_(xn+"r2)y
G (ko5 71,72) = N (K, )7<r9e™ (rrtsrs)

where 7« denotes the smaller one of 7; and 75, and N p (k,u)
and Ng(ku) are the normalization constants. We can
consider ¥3; as representing the polarization of the
s orbital instead of the configuration mixing.® The
parameters are determined by the variation method?®
and their numerical values are shown in Table I.
The expectation values of energy are compared with
experiment in the same table, where E,, and Ecaic denote

9 G. Araki, Kgl. Norske Videnskab. Selskabs, Forh. 30, 158
(1%57); Festskrift Til Egil Hylleraas P4 Sekstidrsdagen, May 15,
1958.
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Tasre II. Numerical values of the parameters for the triplet
intervals, in mK.

el 204.819 461 skl —143.70
¢ 202.528 576 ¢'e —105.14
¢ —98.973 403 ¢ —196.27
n 26.583976 9

TasiE IIIL. Triplet intervals, in mK (3P; denotes the energy level).
1 mK=10"3cm™.

Th:z/(;xi(leltgcal Observed value Qé'llzgttxl.lor?-

(including Brochard et al.» dynamic

corrections) Wieder and Lambb  Moore®  correction
3Pg—3P, 997.457 11 988.0 +40.4= 996 1.841 84
P—3P,  75.97445 {;g-%i%;zb 78 —0.76228
3Py—3P, 1073.43156 1064.8 +0.4= 1074 1.079 56

a ;5}'37150Chard' Chabbal, Chantrel, and Jacquinot, J. Phys. radium 18, 596
b1, Wieder and W. E. Lamb, Phys. Rev. 107, 125 (1957).
© Atomic Energy Levels, edited by C. E. Moore, National Bureau of

Standards Circular No. 467 (U. S. Government Printing Office, Washington,
D. C., 1949), Vol. 1.

the energy expectation value corresponding to the
rest and moving nucleus, respectively.? The number
of figures in agreement may give an indication of the
accuracy of the wave functions although it may have
no precise significance.

5. NUMERICAL VALUES OF TRIPLET INTERVALS

The parameters {, {’, their nuclear and electronic
parts, and 5 can be evaluated by the standard method.?
Their numerical values in mK (10—3 cm™!) are shown in
Table II. In order to convert energy (in atomic units)
into wave number we adopt 4u?=11.687 1112 cm™.
The theoretical values of the triplet intervals are
compared with experiment in Table ITI. The contribu-
tion from 6H, and 0H, (quantum-electrodynamic
correction) is shown in the last column of the same
table. The correction arising from the admixture of the
singlet amounts to 0.149 16 mK. The intervals shown
in Table III include all these corrections.

The theoretical values are certainly improved as
compared with the result of the previous calculation,?+
but yet there remains a distinct discrepancy between
theory and experiment. If we estimate the accuracy of
the wave function from the energy eigenvalue, the
theoretical values are correct within 1 mK. However,
this estimation may have no reliable basis because the
accuracy of the wave function may be different for
different physical quantities. We see that there is a
discrepancy between the experimental values measured
by different authors. In order to clarify the reason for
the discrepancy, it is necessary to perform both the
calculation and the measurement with improved
accuracy.



