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the Debye-Hiickel screening length and ~I'~ is inde- the terms f, p, 4, and 6 were defined as
pendent of k and k'. The results will differ from Dumke's
nomenclature only in the interchange of o., and e, to 1—n./n, .
consider hole instead of electron transitions because of
the many more states in the valence band.
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In Fig. 11, the computed shape of n (in relative units)
vs the photon energy Ace is shown for the two cases
b '=2X—10' cm ' for (vs+ p,) =4X10" cm ' and
cr„/cr, =0.1 and for the case ~Hil, ~'= ~P't/(e ~ —1).
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Nordheim's theory is extended to account for (1) ionic potentials that extend outside the unit cell, and
i2) order of any range. It is shown that the original theory is less approximate than is generally asserted.
As an incidental result, it is also shown that Flinn's electronic theory of order can be extended appreciably.

INTRODUCTION
' I is generally recognized that Nordheim's theory' of
~ - the resistivity of binary alloys that form continuous
solid solutions has only a qualitative significance.
Nevertheless there still seems to be an interest' ' in this
theory, probably because no acceptable theory has
been published except for dilute solutions. It therefore
should be of interest to prove, as is done in this note,
that the usual form of the theory, say Jones', ' is less
approximate than is usually asserted [Jones' equation
(25.6) is exact). The theory is also easily extended:
(1) to account for ionic potentials that extend outside
the unit cell, and (2) to account for order of any range.

In order to prove these facts, the order parameter of
Cowley4 is introduced using essentially Flinn's notation
from his article' on the electronic theory of local order.
(It is also incidentally proved that three of Flinn's
approximations exactly cancel. )

THEORY: AN EXTENSION OF NORDHEIM'S THEORY
OF THE RESISTIVITY OF BINARY ALLOYS

We imagine a disordered lattice of A- and B-atoms.
Let the rigid potential associated with an A-atom be

' L. Nordheim, Ann. Physik 9, 607 (1931).
'N. V. Grum-Grzhimailo, Fiz. Metal. i Metalloved. Ahead.

Nauk S.S.S.R. Ural. Filial 5, 23—29 (1957).' H. Jones, Qandbuch der I'hysik edited by S. Flugge (Springer-
Verlag, Berlin, 1956), Vol. 19, p. 269.

4 J. M. Cowley, Phys. Rev. 77, 669 (1950).
5 P. A. Flinn, Phys. Rev. 104, 350 (1956).

U~(r) and that associated with a 8-atom be Un(r),
where both U~(r) and Ue(r) do not necessarily vanish
outside the unit cell. Then the total potential U(r) is
given by

U(r)= Z U~(r —~)+ 2 Un(r ~) (1)
A-atoms B-atoms

which is periodic, and a "diGerence potential"

U, (r) =P C,(U&(r —~) —Ue(r —g)}

=P C,AU(r —~), (3)

which is disordered. Clearly, we have that

U(r) = Ui(r)+ Us(r)

We next imagine we have the exact Bloch functions
for the average potential (2) and then perturb these

In order to decompose this into a more workable form,
we introduce a function C, defined at the lattice points
as follows:

C,=m~, if an A-atom is at ~
= —mg, if a 8-atom is at ~,

where m, is the concentration of the ith component.
Further, we define an average potential

Ui(r) =P(m~U~(r —~)+meUs(r ~)), (2)—
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4'(x) =—ul, *(x)AU(x)ul, (x). (6)

8 loch functions with the difference potential (3). The
matrix element for the k' to k scattering is

which is equivalent to Jones' equation (25.5). The 8,
is an order parameter differing from that used by Flinn
only by a normalizing constant Ãm&es&. AVe refer to
Flinn for a discussion of it, but we need to point out
Flinn's article contains a small error which is important
to us here. He states that for random solutions, a, is
zero for all ~; we correct it to read "for random solu-
tions, o., is zero for all nonzero ~." This is simply
verified. Thus, we have for random solutions,

Since we apply periodic boundary conditions to the
perturbed as well as to the unperturbed problem, 4 (x)
is periodic with the period of total crystal. Thus we

have,

i
(k'

f
U, (r) ik) i'= . 8,oI(k', k,o),

(ZQ)'

0,'p =Xmgm~,

(12)

(13)
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&( ~ e'~"' dry ~ 4 (z—n+y —~)4'*(x—n)dz
vol vol

1
Q 0,, e'~~'Q(r —~)dr (8)
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where

Q(r) =)" 4 (x+r)4*(x)dx,
vol

(9)

0,,—=Q C C.+,.

[It will be noted that Q(r) is an autocorrelation
function which has a particularly simple interpretation
in the free electron case where ul, (r)=1.] We denote
the integral in (8) by I(k',k, ~), so that

~

(k'~ Uz(r)~k) ~'= P P C,C, ' e'~" ' *&

(gQ)z s n J

X4 (r —s)4*(x—n)drdz. (7)

I.etting y=r —x and s=n+~, we find that (7)
reduces to

which proves that the second sum in Jones' equation
(Z5.5) is iderzticully sero for rurzdom solutiozzs everz if the

rigid atozzzzc poterztiuls eootend over more thun one cel/. It
is further seen from (11) how order of any range enters
to modify Nordheim's theory. Contrary to what one
might gather from Seitz's statement, ' short-range. order
can. invalidate Eq. (12); i.e., Seitz's Eq. (9) or Jones'
Eq. (25.6).

Note that if (11) is used in an energy calculation, it
yields only pair interactions with 8, giving the number
of pairs separated by a distance ~, where A —2, A —8,
and 8—8 have the weighting determined by the
definition of C, . Thus we see that Cp corresponds to a
self-energy. In the case of random solutions, pair
interactions (or double scattering) are accounted for,
but the negative weighting of the A —8 and 8—A pairs
just cancel the contribution of the 3—3 and 8—8 pairs
except for v=0.

Finally, it should be pointed out that Flinn' un-
necessarily restricts himself to potentials that go to
zero at the cell boundaries, and then arrives at an
integral over the unit cell [his Eq. (36)). He then
inserts potentials which are not zero outside the cell
and replaces the integration over the unit cell by an
integration over all space. From the development above,
it is clear that these three approximations exactly
cancel.
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' F. Seitz, The 3.todern Theory of Soltds (McGraw-Hi11 Book
Company, Inc., New York, 1940), p. 543.


