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Kroner's energy expression is used in this theoretical calculation. The helical dislocation is assumed to
have a uniform shape with the Burgers vector along its axis. The axial length of the helix is large compared
to its radius and the radius is large compared to the dislocation "cross section, " which is of the order of a
Burgers vector. For a helix of many turns and arbitrary pitch an expansion in a Fourier cosine series is used.
The self energy is found in terms of elementary functions and Kapteyn series of Bessel functions. In the
limiting cases of a tightly wound helix (small pitch) and a nearly straight helix (large pitch) simple expres-
sions result, which have a plausible physical explanation. For a tightly wound helix the dominant term
represents the contribution from the cylindrical part of the helix, the first-order terms represent the influence
of the size of the dislocation cross section and the second order terms represent the e6ect of the axial com-
ponent of the helix. For the nearly straight helix the dominant terms represent the contribution from the
straight screw part and the second-order terms are taken to give the interaction between the turns of the
helix. Finally the correction in the self-energy when a return loop is present is considered.

I. INTRODUCTION

HE theoretical possibility of a spiral prismatic
dislocation growing from a screw dislocation was

first suggested by Seitz. ' Helical dislocations were first
observed in synthetic calcium Quoride crystals by
Bontinck and Amelinckx, ' who pointed out that they
were one species of the spiral prismatic dislocations.
Amelinckx, Bontinck, Dekeyser, and Seitz' discussed a
possible interpretation of the developments of these
helices. They have since been observed by various
methods in various substances by various investi-
gators. 4 A number of results emerge consistently from
most of these observations: (1) the axis of the helix is
always in the direction of a possible Burgers vector,
(2) the helix is usually very uniform, (3) the radius a
and the pitch p (I'ig. 1) of the helix are of the order of
microns and (4) the pitch of various helices varies over
a considerable range (almost from zero to infinity).

These results have been utilized in the subsequent
calculation. The general uniformity is taken as a starting
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point, i.e., the dislocation is considered to be wrapped
with a constant pitch around a right circular cylinder.
Also this uniformity gives us some justification for the
use of an isotropic theory. The third result above
together with the knowledge that the Burgers vector
fz is of the order of angstrom units shows that b«a or p.
This allows us to ignore the atomic structure of the
crystal and treat the medium as an elastic continuum
in the present calculation.

%eertman' gave a theoretical contribution to the
field of helical dislocations. He showed that the equi-
librium form of a dislocation is a helix, when it is acted
upon by an ordinary stress and a chemical stress pro-
duced by a deviation of the vacancy concentration from
the equilibrium value. In his calculation he used for the
line tension or the energy per unit length of the dis-
location the simple and constant expression ~pb'. The
present paper attempts to present a more reined
expression for this quantity.

II. KRONER'S THEORY

A general expression for the interaction energy
between two dislocations in an elastically isotropic
infinite continuum has been derived by Kroner. ' His
expression consists of a double line integral along the
two dislocation lines C and C', where the integrand is a
function of the radius vector between the two line
elements. It has been argued that the self-energy of a
dislocation can be obtained by taking the curves C and
C' separated by a distance ro, corresponding roughly to
the half-width of the dislocation, and inserting a factor
—in Kroner's expression. A good estimate based on the
Peierls model is that ro~-,'b. A more accurate evaluation
of the self energy will depend on a good theory of the
dislocation core. However, since the final expressions

' J. Weertman, Phys. Rev. 107, 1259 (1957).' E. Kroner, Ergeb. angew. Math 5, (1958).See especially p. 78.
Roland de Wit, in Solzd-State Physics, edited by F. Seitz and

D. Turnbull (Academic Press, Inc. , New York, 1959), Vol. 10, p.
249.
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of this paper depend only logarithmically on ro, the
uncertainty in this quantity is not very important.

For the present problem it is convenient to use a
cylindrical coordinate system (p, P, s) with the Burgers
vector along the s direction. It has been shown that
Kroner's expression then reduces to'

Gb2 m+1
E.= A,ds+

8x c m —1

Fxo. 1. The helical
dislocation.
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Here G is the modulus of rigidity and nz is the reciprocal
of Poisson's ratio. A, is called the s component of the
magnetic vector potential and the 8's are called the
dislocation potentials. It will be noticed that the above
integrals are all closed. In the subsequent application
to a finite length of helix, however, this condition is
violated since the helix then has a beginning and an end.
The result is therefore incomplete, but it can be com-
pleted by closing the dislocation with a return loop. This
will be done at the end of this paper.

III. THE HELICAL GEOMETRY

The integrals (9) and (10) are difficult to perform
because -the variable of integration g' appears in the
integrand under the radical R both as an algebraic
function in C' and as the argument of a trigonometric
function in cosC. For their evaluation a hint is taken
from the work of Snow' who calculated the inductance
of a tightly wound helical wire by using the trick of
writing the reciprocal radius R ' in his integrals as an
integral over a Fourier-Bessel series. For our purposes
it is sufficient to look at his expansion as a Fourier
series.

The basic idea is that since R in (4) is an even function
of 4, its reciprocal can be expanded in a Fourier cosine
series. The Fourier coefficients, which are given in
terms of integrals over R ' by Fourier theory, can be
inserted in this series, so that we obtain

For the calculation we consider two helices of the
same pitch wound on two concentric cylinders of radii
a and (a+r2) whose axes are along the s axis (Fig. 1).
The equations of these two curves are given by

1 2 ~ r dP cos22$ cosr2C
n

R 2r =» 2 (p'+ p"—2pp' cosP+Z2) '

s/ py/p =a=const,
where 22

——-', and 2„=1 for 22~& 1.Finally the relations (6)
can be inserted giving us

6
p= a+r2= const, s= p@.

From (5) this also gives Z= pC. For each turn of the
helix we move in the s-direction by a distance 22rP. If
there are S turns, its total length L along the s-direction
is

1 2 ~
t

dP cos22$ cos22C—=—P 2„)

Q2 —P2+ p2@2

(13)
I = 22rp.V.

' See reference 7, Appendix.

P2=a2+p2 —2ap cosP.
9 C. Snow, Bur. Standards Sci. Papers 21, 431 (1926—27); Bur.

Standards J. Research 9, 419 (1932).
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It is seen that this expansion removes from under the
radical the trigonometric function of C and leaves only
an algebraic function, which makes the integrations in
(9) and (10) much simpler. This is done, however, at
the expense of an additional sum and integral.

integrating and making the appropriate substitutions,
using (13) and the relation a(s+ro= p, that

dP cosnzPKo(~zP/p) = I„(«/p)K (mp/p)

IV. EVALUATION OF THE POTENTIAL FUNCTIONS

A. The Vector Potential
So we finally obtain for A„after making use of (6)

and (7) in the first term,

If we substitute (12) in (9) and make a slight change
of variable we have

2p p&+ ~ d4 cosa%
A. =—P e„dPcoseP

g—xiV

fg 7l

A, =—
~ ~o

df(ln[(L+2s) (I 2s)]——ln(P') )

+4 Q I„(«/p)K„(np/p)
n=l

lV&)1. (14)

We now introduce the first approximation, tha, t there
are many turns:

= ln[(L+2z) (I—2s)]—2 lnp+4S,

where we ha, ve de6ned

(16)

The case where the helix has less than one turn can be
treated as a perturbation of a straight line. Under the
above approximation it will be seen that the cosine in
the denominator of the last integrand will go through
many oscillations while the numerator decreases
steadily with increasing C. Therefore it will be per-
missible to let the limits of integration go to infinity,
except for the first term in the sum which lacks a cosine
term. If this is done and the integrals performed we have

A, =— dP ln(PC+Q)

S= Q I„(«/p)K„(np/p)
n=l

(17)

B. The Dislocation Potentials

8 (1~ p'4'

ap Ez) z''

With the help of the magnetic vector potential 3,
found above, it is now relatively easy to evaluate the
dislocation potentials 8, by a simple trick. Since from
(11) we can write

7rX

it follows from (9) and (10) that we have between 8,
+—p ~ dp cosnpKO(zzP/p), and A, the relation

~ -=1 ~0

where Eo is the modish. ed Bessel function of the second
kind and of order zero.

We now introduce the second approximation, that
the length of the cylinder on which the helix is wound
is much larger than its radius:

or by (7) and (13) that 2' pX))P. This allows us to
evaluate the first integral in A, above in an approxi-
mate way, for the integrand then reduces to

in[(2gr pÃ+2pp) (2~plV —2pp)] —ln(Pz)

8,=2A, PBA,—/Bp

If we use (16) in this expression, taking into account
the dependence of the first term on p through (6) and

. (7), we obtain

8,= 2 ln[(L+2s) (L 2z)]—4 inp+S—S—2

—4pBS/Bp. (18)

It is possible to evaluate the dislocation potential
8& in (10) by an entirely analogous procedure. The
result is

To evaluate the series of integrals we use Gegen-
bauer's addition theorem, "which states that

Ko[(s'+Z' —2sZ cosp)']= 2 P e„I„(s)K„(Z)cos~,

if s&Z, where the sum extends from zero to infinity.
I„and E„are the modified Bessel functions of the first
and second kind. It follows from this expression by

2a' p' 8S a BT
8p= +4— —8 T+4a-

Pp p ~p P ~p

~= Z I-'(«/P)K-'(~p/P).
n=l

(19)

(20)

Erdelyi, IIigher y'ranscendenta) plnctions (McGraw-Hill he I„' and E„' represent the derivatives of the Bessel
Book Company, Inc. , New York, 1953), Vol. II, p. 44. functions with respect to their arguments.
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V. THE SELF-ENERGY OF THE HELIX

A. General Expression

If we substitute (16), (18), and (19) in (8) the
integration is elementary and we have the result

Gb' m -a' 8 pTy
Ji,=L —+2 pp—I

—I-1
4ir m —1 P' aP (P')

2L
+ln —1+2S . (21)

P

This is the self-energy of a helical dislocation. In this
expression S and T are given by (17) and (20) and
p=a+ro, p is the pitch of the helix as illustrated in
Fig. 1, a and L are the radius and length of the cylinder
on which it is wound, and G and m are the modulus of
rigidity and the reciprocal of Poisson's ratio. The
approximations used are that there are many turns
(1V))1) and that the cylinder is long (I))a).

B. The Tightly Wound Helix

If we set p«a, then the helix is tightly wound, in
other words the turns are close together. It is then
possible to evaluate 5 and T more explicitly by using
the following asymptotic expansions of the Bessel
functions as x —+ ~:

I„(x)—& (2irx) —:e*,

E„(x)-+ (2m 'x) le *.

If we substitute these in (17) we have to first order in

p/a, using ro p a, ———
S~P ',p(ap) ie -'e """'"=—-,'p(ap) & ln(1 —e "'~").

A further simplification in this expression can be made.
Since ro represents the half-width of the dislocation and
2irp the separation between two consecutive turns
along the axial direction, it is reasonable to expect that
r, &2~p Actually, . as we saw at the beginning of this
paper, we have in many cases that

r~ ', b«p, -
i.e., the turns are separated by a distance much larger
than the dislocation cross section. Therefore we can
write

S —-,'p(ap) —' ln(ro/p).

If we are calculating E, in (21) only to second order,
i.e., only to terms of order a'/p', a/p, and 1, then S is
negligible since it is of order p/a.

However, the contribution of T is significant. We
find, similarly, from (20) that T ~ —S. If we use this
result in (21), we have to second order in p/a

Gb m a (ap)'* t' ro

4~m 1p' p & p
2L

+ln —1 . (22)

Gb' 2L 2m —1
+L In — . (23)

4w p m —1

This expression allows us to make a plausible physical
interpretation of the result. The dominant term repre-
sents the contribution to the helix of a cylindrical
dislocation, i.e., a stack of closely packed circular
dislocations. " It can also be argued that the 6rst-order
term containing ro represents the inAuence of the size
of the dislocation cross section; this is the term that
can be improved by a better core calculation. Finally,
the second order terms give the eGect of the axial
component of the helix. The. self-energy of a straight
screw dislocation is given by"

Gb' 2L 2m —1
f&', '= L ln

4x ro m —1
(24)

We see that the second-order terms in (23) represent a
screw of half-width p a rather than ro.

C. The Nearly Straight Helix

If we set a«p, then the helix will be stretched out,
in other words it will be almost straight. It is now
possible to evaluate 5 and T more explicitly by using
the expansions of the Bessel functions for small argu-
ments. We 6nd that

S~ —2»(ro/p)+4app '[v+»(ro/2p) —2j
T ~ —-', p'(ap) ' In(ro/p)+4[y+In(ro/2p)+-, '+a/p j,

where y=0.577 is Euler's constant. If we use these
results in (21), we have to second order in a/p

Gb' 2L 2m —1 upI",=L—ln
4m ro m —1 4p'

m+1
t roy 5m —1

X 2
~

y+ln —~+ . (25)
m —1L 2p) m —1

We see that here the dominant terms represent the
contribution to the helix of the straight screw dis-
location, Eq. (24). The second order terms can be said

"Reference 7, Eq. (19.4).
"Reference 7, Eq. (17.4).

More terms can be obtained in this expansion by taking
more terms in the asymptotic expansions of the Bessel
functions.

The energy expression can also be written in terms of
the number of turns per unit length of the helix, which
is defined by v=X/L. From (7) we find the relation
2irpv= 1. If we substitute p from this in (22), we have

m
L,=IGb' {v'ira' —', v (a—p)'*Dn(2~vr0)+1] )

m —1
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to give the e6'ect of the interaction between turns of the
helix.

Here E," is the self-energy of the helix found above in
Eq. (21). If the return loop is a straight line of length
L running parallel to the helix from z=-,'L to z= ——,'L,
then E,~ is the self energy of a straight screw given by
(24). The quantity ErAB is the interaction energy
between the helix A and the return loop B. It is found
by setting

p'= a= const, s'= pQ',

p=h=const, &=0,

where h is the distance between the return loop and the
center of the helix. These relations can be substituted
in the expressions (1), (2), (3), (4), and (5) and the
calculation carried out, remembering that the result
must be multiplied by the factor 2 for the interaction
energy. We assume that L»h&~a, so that the return
loop is close to the helix but not inside it. If we also use
the previous approximations that N»1 and L»a we
find that

Gb' 2L 2m —1zl»= —L In
2x h m —1

Finally, if we substitute these results in the above
expression for the total energy we have

Gb' m a' a pT~E.=L —+2app —
(
—

[

4m m —1 p' . pjp (p')
h'

+ln +25 . (26)
Pfp

For the case where h~&a, i.e., when the return loop is
inside the cylinder, we obtain the same expression with
h replaced by a.

For p«a the above expression reduces in second
order to

VI. CORRECTION FOR A RETURN LOOP

As mentioned before the above expressions for the
self energy are incomplete since the helix is not a closed
line. The addition of a return loop will remedy the
situation (Fig. 2). It can be shown that the total energy
for the helix and its return loop can be written

p A++ B+g AB

The dominant term in the last expression,

Gb' h
L ln—,

27l Fo

gives the self and interaction energies of two straight
screw dislocations separated by a distance h.

VII. CONCLUSION

If we let a and N be constant but vary p, which is
proportional to I. by (7), then we keep the projected
area ~a'N of the helix constant, while its length varies;
in other words we let the helix change its shape by glide
but not by climb. It is then seen from the above ex-
pressions that the total self energy E, for the case p«a
will decrease with increasing p, while for the case g«p
it will increase with increasing p. That is a, tightly wound
helix will try to extend itself while a nearly stra, ight
helix will try to compress itself. An equilibrium position
must exist for some intermediate value of p, found by
minimizing E,. This position will readily be assumed
when glide is easy.

Now consider the case where we let L and 7f-a'N be
constant but vary cV, and consequently also a and p;
in other words we are considering a dislocation segment
between two points separated by a distance L, at which
a certain number of va.cancies (proportional to m.a'1V)
have condensed or evaporated. The Anal result can be
a helix with few turns of large radius or with many
turns of small radius. A rough calculation using the

-above expressions shows that the total self energy E,
increases with increasing N. On energy grounds then
we would expect helices of few and large turns. However,
helices of many turns seem to be the experimental rule;
this could be the result if vacancy redistribution along
the dislocation is slower than in the lattice.

It is seen in this paper that a rather general expression
can be derived for the self-energy of a helical dislocation
without too much difficulty. The result, Eq. (21),
involves the little known functions 5 and T, Eqs. (17)
and (20). However, these functions can be evaluated
to arbitrary precision in terms of elementary functions
in the two limiting cases of small and large pitch. We
find that this leads to physically meaningful results for
the self-energy. The dislocation core is treated roughly
and taken into account by the single parameter ro.
This is a consequence of using continuum theory and
of our ignorance of the core structure. Two further

Gb' m a' (ap)*'( rp q h'
Z.=l.

4pr m —1 p' p ( p ) prp

and for u«p to
FIG. 2. The helix with a

return loop.

Gb' h' ap m+1 ( rp ) Sm —1
Z.=L,— ln—— 2

~
p+in—~g

rpP 4PP m —1 ( 2P] m —1
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limitations on the result of this paper are that we use
isotropic theory and an infinite medium, The mathe-
matical complexities of the theory would be multiplied
considerably if both these simplifications were not made.
Finally, since the general formulas require closed dis-

location loops, we close the helix with a return loop.
1his eliminates spurious and possibly misleading terms.
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The absorption spectra of single crystal homogeneous InSb
were measured in the spectral range 5 to 10 microns at tempera-
tures of 78 K and 298 K. Primary emphasis was placed on the
precise determination of absorption coefficients less than 400 cm '.
Absorption spectra were measured in many samples over the
following range of impurity concentrations. Net impurity concen-
trations, expressed in atoms cm ', ranged from 5X10"to 9.5X10"
in p-type samples, and from 2X10"to 3X10"in n-type samples,
as determined from Hall coefficients measured at 78'K.

In general, the spectral range covered included regions where
the absorption was dominated by either free-carrier absorption or
valence-conduction band transitions. Free-carrier absorption in
p-type InSb indicates a simple valence-band structure about
k=0, consisting of light and heavy hole bands. Free carrier cross

sections at 298'K are 0„=8.65X10 '6 cm~ per hole and 0.„=0.23
)& 10 "cm' per electron (at 9 ts). Whereas the free hole absorption
coefFrcient is roughly independent of wavelength, the free electron
absorption 0 varies as X~ and agrees well with the classical Zener-
Drude model.

The main absorption edge at both temperatures may be
extended to lower absorption coefFicients n by subtracting the
extrapolated free carrier absorption coefficients n, . The resultant
band edge 1n(a —a,) values when plotted against the photoenergy
(Ace) fits a straight line. The slopes of these band edges increase
at the lower temperature and decrease (either at 78' or 298'K) as
the acceptor concentration in the optical sample increases. Various
models previously proposed are compared with the experimental
results.

I. INTRODUCTION

HE measurement of infrared absorption is a
standard procedure in studying certain properties

of semiconductors. When applied to InSb, these meas-
urements have yielded a reasonably clear picture of
band structure and effective masses, free carrier
absorption, and lattice vibrations. ' In addition, many
attempts were made to interpret the shape of the band
edge, ' ' and more recent studies have been made on
the interaction of impurities (donors or acceptors) with
the band structure itself.""

The purpose of our measurements was to evaluate
*This research was supported by the U. S. Air Force through

the Ofhce of Scienti6c Research of the Air Research and Develop-
ment Command.
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the edge absorption and the free carrier absorption of
InSb with more than ordinary emphasis upon the
precise evaluation of absorption coe%cients and the
quality control of the semiconductor material. This
detailed data on the absorption edge shape, as well as
the shift in its effective cutoG, will be used to compare
the various band edge interpretations.

Specimen
(see Figs. 3 and 4)

b, B
C

C
d, D
E

Net impurity
concentration+

(cm 3)

2.07X 10'7n
2.95X10"n

2X10"n
2.75X10"p
2.52 X10"p
9.5 X10"p
6.6 X10"p

Mobility
(cm2/volt-sec) b

43 600
38 500

192 000
2900
3060
1650
4550

Total impurity
concentratione

(cm 3)

2.1X10'Tn
3.0X10"n

4X 10"n
2.7X10"p
2.5X 10~6p
9.5X 10'6p

& Concentrations determined from Hall coeKcient measurements at 78 K
and defined as 1/eRII.

b Mobility determined from RsrsJ =JttB at 78'K.
e Reference 12.

II. EXPERIMENTAL DETAILS

A. InSb Samples

A summary of the InSb material used is shown in
Table I. The samples were cut from large single crystals

TABLE I. InSb samples.


