
P H YS ICAL REVI EW VOLUME 116, NUM HER 3 NOVEM HER 1, 1959

Ca]culation of Order Parameters in a Binary Alloy by the Monte Carlo Method*

LLOYD D. FOSDICK

Digital Computer Laboratory, Urtiversity of Illiygois, Urbarga, Illirtois

(Received May 4, 1959)

A Monte Carlo sampling scheme similar to that used by Metropolis, Wood, and others in equations of
state computations for gases has been used to investigate order-disorder phenomena in a face-centered cubic
AIB alloy. The model of the alloy assumes that the structure of the lattice is fixed and that interactions
exist between first neighbors and second neighbors only. In most of the calculations detailed consideration
is given to an array consisting of five unit cells on an edge (five hundred sites) with periodic boundary con-
ditions. The long-range order and short-range order for first and second neighbors has been computed above
and below the critical temperature. Using the energy parameter, v„=[iVzz&" &+V»»&".&)/2j V—gt&&" &, afor

nth neighbors it is found that vg/vi ———0.25 and vi ——816 cal/mole gives the best agreement with experiments
on CugAu. The critical temperature appears to vary linearly with the ratio vg/vi.

I. INTRODUCTION

)P &TH the high epeed aod large memory capacity
available in modern computing machines there

has been considerable interest in using them as a tool
to attack certain problems in statistical mechanics by a
rather direct Monte Carlo approach. This approach
consists of generating a sample ensemble by Monte
Carlo techniques in which the distribution of the
systems approximates the correct statistical me-
chanical ensemble. The sample ensemble is then used
to compute mean values of the desired thermodynamic
functions.

Several years ago Metropolis and others' used this
kind of a method to treat the two-dimensional hard
sphere gas. Rosenbluth and Rosenbluth' extended these
calculations to the three-dimensional system and
obtained some results for a two-dimensional system of
molecules with a Lennard-Jones interaction. Wood and
Parker' continued these calculations to three-dimen-
sional systems of molecules interacting with a Lennard-
Jones potential. Wood and Jacobson' have also repen, ted
some of the earlier work on the hard sphere system.
This same method has also been applied to the lattice-
gas model' and the two-dimensional Ising model. ' In
the latter two cases, where the exact results7 are
available for comparison, the Monte Carlo method
gives estimates of the configuration energy which are
accurate to 1% or better, except in the immediate
neighborhood of the phase transition, in a reasonable
amount of computing time.

This paper discusses an investigation of order-
disorder phenomena in a binary alloy, A38, with face-
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centered cubic structure, using a Monte Carlo sampling
technique similar to that used in the work mentioned
above. The calculations were performed on an IBM 704
computer using a program known as Monte Crysto.

II. GENERAL DESCRIPTION OF THE METHOD

We consider a system of E atoms, A and 8 in the
ratio 3:1, and assume them to be situated on the sites
of a rigid, face-centered cubic lattice. The allowed
states of this assembly of atoms correspond to the
different arrangements of atoms on the sites, a specific
state, say i, of the system being represented by the S
component vector p;. The components tt, (0), tt, (1),
t&, (1V—1), are the two valued occupation numbers for
the X sites. For the purpose of the discussion in the
next section it will be assumed that &u, (k) equals +1
or —1 corresponding to the kth site in the ith con-
figuration state being occupied by an A or 8 atom,
respectively. The energy, E.;, of the ith con6guration
is assumed to be due to the interactions between first
neighbors and second neighbors only:

E,= (Ega&'&) Vag&'&+ (Xnt&&'&), Vnt&&'&

+ (Vga "&),Vg» "&+(Ezg&'&) Vgg&'&

+ (f&/BB'")'VBB"'+ (f&/AB"') Vy&B"' (1)

where the V's are the interaction energies for a pair of
atoms indicated by the subscript AA, 88, or AB
which are first neighbors, indicated by the superscript
1, or second neighbors, indicated by the superscript 2;
the E's are the total numbers of pairs of atoms of the
type indicated by the subscript and superscript in the
ith configuration. For this system it is desired to com-
pute the mean equilibrium values of the long- and
short-range order parameters, which describe the
interatomic correlations over large and small distances,
as functions of temperature and the interaction energies.

The computation proceeds by generating a Markov
chain of configurations po, p;, p ~ p„using the
one-step transition probabilities p;y, which give the
probability that the state i will be immediately followed
by the state j. These probabilities are the elements of
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and for m steps we clearly have

Provided that the elements of P satisfy the usual
normalization condition

(4)

and that the states of the chain are ergodic it can be
shown' "that a limit for P" exists. In particular

and the vector %', having as components the limit
probabilities n, , is an eigenvector of P with eigenvalue
1, hence

(6)

This equation and the normalization condition

all j
uniquely determine %'.

The essence of the computational procedure lies in
selecting P such that the elements of %' are just the
Boltzmann weight factors

I . g Z//kT/ Q g E//—kT—
all j

(8)

With this choice of P, the existence of the limit of P"
implies that after a sufficiently long time" the states
of the chain po, p, , p,' p„ form an ensemble
approximating the distribution defined by Eq. (8).
The average value (F) of some function F, of the system
parameters

can then be approximated by

(10)

For simplicity we will ignore here the restrictions imposed by
the 3:1 composition.

'This discussion follows closely that of Wood and Parker,
reference 3.

'0 W. Feller, Probability Theory aed Its Applicatiorfs (John
Wiley Bz Sons, Inc. , New York, 1950), Chap. 15.

the stochastic matrix P which operates on the 2~
component' probability vector iIIk. The components of
Qk are just the probabilities for each of the 2~ states of
the system at the start of the kth step in the chain. The
transformation Qk —+ Qk~i, resulting from one step, is
described by the equation

Qk+ /k+1

where F(/) is the value of F for the system at the /th

step in the chain. The error in (F),»„-will t:end to zero
as 5 and 3f tend to infinity but the practicality of this
method, of course, rests on the possibility that the
error can be made small enough without an excessive
amount of computing.

It is clear from the conditions expressed by Eqs. (6),
(7), and (8) that F is not uniquely defined. Ideally the
freedom remaining in the choice of P should be con-
strained by a condition expressing the desire for rapid
convergence of the approximations of the average
values. From the standpoint of over-all computing time
rapid convergence implies that both 6, denoting the
point in the chain at which the averaging process
started, and M, denoting the number of samples over
which the average is performed, are small. The choice
of 6 depends on the rate of convergence of P which in
turn depends primarily on the second largest eigenvalue
of P. This is immediately evident if one expresses the
probability vector Qo for the initial state of the chain
(which contains 1 for one of its elements and zero for
all the rest) as a linear combination of the eigenvectors
of P. The problem of picking P such that the magnitude
of the second largest eigenvalue and hence 6 is mini-
mized has not been solved. It should be pointed out
that minimization of 5 does not necessarily imply
minimization of the computing time since the corn-
puting process thus defined might be so complicated as
to require more over-all time than a simpler method
requiring a larger 6. Nevertheless, the solution to the
above problem would be of considerable interest. In
its absence the choice of P is determined largely by the
desire for simplicity and hence speed in carrying out the
calculations which correspond to making a single step
in the chain. %ithout knowledge of the second largest
eigenvalue a good criterion for picking 6 is lacking.
Previous applications of this method have generally
resolved this problem by directly considering the chain
of sample values of some parameter of the system and
setting 5 at that point where the results for this parame-
ter appear to become "steady. " Experience has shown
that this is not always a safe practice since the system
may become partially trapped in a metastable state,
exhibiting a steady behavior, and only after a long (on
the computational time scale) time does it leave the
metastable state. The system may become trapped for
such a long time that states which should make a
significant contribution to the ensemble average are
completely omitted; this happened in the early hard
sphere equation of state calculations. 4 The present
computation scheme uses a quite different criterion for
fixing 8 which considerably reduces the chance that a
metastable situation will be overlooked. This procedure
involves the simultaneous generation of two or more
independent chains with different initial states with
the requirement that the mean values of certain system
parameters agree among the different chains to within
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a preset margin of error. Details are given in the next
section.

Referring again to Eq. (10), the number of terms,
M, used for computing (F),»„, depends in detail on
the physical system and the accuracy desired. When a
relatively large volume of configuration space makes a
significant contribution to the ensemble averages, as
near a phase transition, it is necessary to take corre-
spondingly more terms for a given accuracy. In the
present computations the standard deviations of the
averages are computed to verify that M is large enough
for the desired accuracy. If 3f is held fixed, large
variations in the standard deviations may be used to
indicate the possible presence of a phase transition.

III. DETAILS OF THE COMPUTATION

A. The Model

1 0

0 l g 3 4 5 6 7 8 9 0 I 2 3 4 5 6 7 8 9

5-

9

The size of the system is a parameter of the 3/Ionte

Crysto program which permits systems of up to fifteen
unit cells on an edge, however, almost all of the com-
putations were done with a system containing five unit
cells on an edge, and consequently five hundred lattice
sites. Indices i, j, k are used to label the sites as illus-
trated in Fig. 1(a) and Fig. 1(b) for the 5X5X5 model.
To simulate a lattice of infinite extent periodic boundary
conditions are imposed, hence in the 5)&5)&5 model the
indices are interpreted modulo 10.

Every site of the model is occupied by either an A or
8 atom. The ratio of A atoms to 8 atoms, 3:1, is held
fixed throughout the calculation, new configuration
states being generated by the interchange of pairs of
atoms. A configuration state of the model is conven-
iently realized in a binary computer since a single
binary digit can be used to represent each site; the
digit is one if the site is occupied by an A atom, while
it is zero if the site is occupied by a 8 atom.

Although one can distinguish the six coupling
energies, Vgg&'&, V~~('), Vg~~') for first neighbors and
V»"', V»"', V»"' for second neighbors, only the
two energy parameters

(11)

(12)

arise explicitly in the computation. The computation
is concerned with the change in the energy, 5E, cor-
responding to an interchange of a pair of first neighbor
atoms and it is easily seen that if a pair of such atoms,
A and 8, located on sites 5 and 5', respectively, are
interchanged, then

AR= 2 (Xs &'& —'V~"' —1)or+2 (iVo "&—V~ &"')e, , (13)

where T~"' and T~(')' are the numbers of first neighbor
8 atoms of 5 and 5', respectively, before the inter-
change and 1V~&'), E~")' are like quantities for second
neighbors. It is to be noticed that positive v~ tends to
make the ordered state have lower energy, while nega-
tive e& would energetically favor a complete separation
of A and 8 atoms. Since second neighbors tend to be
alike in the ordered state, a negative e2 enhances the
tendency to order produced by a positive v&. For the
later discussion we introduce a parameter X, the ratio
of e~ to v~,

'V2= gled.

B. Generation of the Chain of
Sample Configurations

As mentioned above, new configurations are gener-
ated by interchanging pairs of first neighbor atoms.
This process will be described first and then it will be
shown that it satisfies the convergence conditions. Let
us fix attention on a particular site of the lattice which
is to be called the central site. The manner in which
this site is selected will be described shortly. One of the
twelve first neighbors of the central site is selected at
random" and if the atom on this first neighbor site is
unlike the atom on the central site, then the change in

energy AE, which would result from an interchange of
their positions is computed. If DE&0, the positions of
the two atoms are interchanged and the resultant
configuration is taken to be the new configuration of
the system. On the other hand if AE&0 then the
positions of the two atoms are interchanged with
probability e ~~'~; that is, a random number, EX,
taken from a uniform distribution on the interval (0,1)
is generated and if R.V(e ~~'~, then the interchange
is made, otherwise it is not made. In either case the
resultant configuration is taken to be the new con-
figuration of the system. If the first neighbor site and
the central site are occupied by like atoms, the new
configuration is the same as the present configuration.
With the completion of these considerations relative to
a particular central site a new central site is selected
and the process described above is repeated.

The face-centered cubic lattice can be pictured as
being composed of the interpenetration of four simple
cubic sublattices. Referring to Figs. 1(a) and 1(b),

(a) (b)

Fxo. 1. The model showing coordinates of the sites. Layers
shown in (a) and (b) alternate; (a) corresponds to even k, and
(b) corresponds to odd k,

"Random numbers are generated by the multiplicative
congruent method: see Synzpos& sm oe Momte Carlo Methods,
edited by H. A, Meyer (John Wiley R Sons, Inc. , New York,
1956)7 p. 17.
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(b) /=i:
LP(k)j =—' 2-L1— "=")/"'3+—.'. , (k),

where the summation over m is a sum over all states
for which

LP(k)). —i e (Em Ei)/LT

and e, (k) is the number of first neighbor sites of k, in
the jth configuration, which are occupied by the same
type of atom as site k.

Consider the vector + given by

eP(k) =e, (16)

where the elements of %' are given in Eq. (8). The jth
element of W,

(K =E' I'LP(k)3', (17)

will consist of a sum of terms of the following three
types:

~
—E)/kT

(i) X e
—/E/ Ef)/kT-

P, e E;/kT— 12 Q. e Ei/kT—
e—Ei/kT

g
—EmlkT j.

(ii) X—,
P, e E""T 12

&
—E;/kT

(iii) X (Q—(1 e /E—E/)/kT—)+e, (k))
e E;/kT—

(e E//kT e E—m/kT) T/ (k)e E//kT-
+

Q, e E,/kT P—. e 'E~/kT— '12

wliere the types (i) and (ii) arise from the off-diagonal
matrix elements. In particular, the type (i) terms arise
from transitions into the configuration j which result
in an increase in configuration energy and the type (ii)
terms arise from transitions into the configuration j
which result in a decrease in configuration energy. The
type (iii) term arises from the diagonal matrix element.
It should be observed that there will be precisely
12-T/;(k) terms of type (i) and (ii) altogether, since
there will be one such term for every unlike first
neighbor of the atom on site k. For each term of type
(ii) there is a term of equal magnitude and opposite
sign in (iii), resulting in a cancellation. Combining the
terms which remain, it will be found that one obtains

P=P(0)P(1) . .P(7V 1)—(15)

is the stochastic matrix for one iteration of the calcu-
lation, where the S sites have been numbered in the
order in which they are considered as central sites. The
elements of P(k) are defined precisely as follows:

(a) i':
LP(k)3'~= '.e "' """, (&—,&K)

(&/&&') L~l.—e E//kT/P, e E;/kT——~. —
(18)

sublattice I is composed of sites with i, j, and k even;
sublattice II is composed of sites with i and j odd and
k even; sublattice III is composed of sites with i odd,
j even and k odd; sublattice IV is composed of sites
with i even, j and k odd. The central sites are picked
methodically, first picking all sites in sublattice I, next
all sites in sublattice II, and so forth. In sublattice I
the site (0, 0, 0) is chosen first as a central site and new
central sites are selected by advancing the i coordinate
in steps of 2 until all sites in sublattice I, row (i, 0, 0)
are selected; next, sites in row (i, 2, 0) of sublattice I
are similarly selected, this continues until all sites in
this sublattice with k=0 are selected; next, the sites
in plane k=2 are similarly selected, etc. , until finally
all of the sites of sublattice I have been processed as
central sites. Following this the sites in sublattices II,
III, and IV are similarly selected. One iteration of the
calculation consists of one pass through the entire
lattice, processing each site as just described.

It is now to be shown that this process does produce
a chain of states which, in the limit of a long chain, tend
to be distributed according to the Boltzmann proba-
bilities. That the ergodicity condition is satisfied
follows immediately from the following observations.
There is a nonzero probability for interchanging any
pair of unlike first neighbor atoms. Any two configu-
ration states differing only by the interchange of a pair
of unlike atoms may be linked by many different chains
corresponding to successive interchanges of first
neighbor pairs. Finally, since there is nonzero proba-
bility for the interchange of any such pair of atoms
there is a nonzero e-step transition probability linking
any two configuration states.

Next, we will verify that the stochastic matrix, I',
for this process does satisfy Eq. (6), where the elements
of %' are given by Eq. (8). Let P(k) be the stochastic
matrix associated with consideration of the kth site as
the central site. The product matrix

if and only if

/k, (k)+/k, (k) =0,

/ '(k')+/ (k') =o,
/i, (m)+/k, (m) = a2,

Therefore, we have the result

kI/' =%'P (k)

and since this is true for all k, we have

where k and k' are first neighbor sites and the third
condition is true for all m except m=k or m=k'. If
these conditions are not satisfied then this matrix
element is zero.

%'=%'P (0)P (1) P (E 1)=%'P. —(20)

It has thus been shown that I' does satisfy the con-
ditions for the existence of the limit, Eq. (5), and that
the limit elements are the desired ones. Furthermore it
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is to be observed from Eq. (19) that the result %'=%'P
is independent of the order in which the central sites
are chosen.

~(1VAB )LT,32 (»AB )HT, 82~

(ey,
(1V AB )LT, 82+(1VAB )HT, 82

(21)

~

(1V AB )LT,32 (1l AB )HT, 82 I

(e2,
(~ AB )LT, 82+(1VAB )HT, 82

(22)

where e~ and e2 are small positive numbers.
The third phase of the computations begins as soon

as the convergence test is passed. In this phase the
results for the eight lattices are no longer distinguished
and they are combined into a grand average. Thirty-two
additional iterations are performed on each lattice to
provide a total of five hundred and twelve samples for
the calculation of the final averages. At the beginning
of the third phase the sites of the lattice are classified

C. Estimation of Convergence

The Monte Crysto program treats eight independent
lattices simultaneously. , generating from them eight
statistically independent chains of sample configu-
rations. Four of the lattices are given an initial con-
figuration of perfect order; these lattices will be
referred to as the low-temperature (LT) lattices since
they begin from the equilibrium configuration at
absolute zero. In the remaining four lattices the A and
8 atoms are distributed on the sites at random in the
initial configuration and these lattices are corre-
spondingly called the high-temperature (HT) lattices.

At the end of each iteration the current values of six
configuration parameters for each of the eight lattices
are recorded: 1V(A/I], 1V/A/II], 1VLA/III], 1VLA/IVj,
the number of A atoms on each sublattice; N~~&'), the
number of first neighbor AB pairs of atoms; N~~(2', the
number of second neighbor AB pairs of atoms. All four
numbers 1VLA/I7, 1VLA/II/, 1V(A/III j, and 1VLA/IV]
are recorded for checking purposes. Storage space in
the computer is provided for recording thirty-two
values of each parameter for each lattice. The first
phase of the computation consists of performing thirty-
two iterations on the eight lattices, thus hlling up this
space.

Following this the second phase begins, during which
a "convergence" test is made at the end of each itera-
tion. In this phase each new set of conhguration
parameters replaces the oldest set (32 iterations old)
held in the storage. Let (1VAB"&)LT 82 be the average
value of Ng~&'&, where the average is taken over the
last thirty-two iterations for all four low-temperature
lattices and let (1VAB'")HT 82 be the same average over
the high-temperature lattices. Likewise (1VAB&'~)LT, 32

and (1VAB&2&)HT 82 are defined for second neighbors. The
convergence test is passed when the following two con-
ditions are both satisfied:

as n or P in the eight systems; in each system the sites
of the sublattice currently having a minority of A atoms
are called the P sites and the sites of the other three
sublattices are then called n sites. This is necessary in
order to properly combine the results of the eight
systems for the estimation of the long-range order.
Aside from the bias inherent to the initial configuration
(presumably there is none for the high-temperature
lattices) the four alternate patterns of long-range order
are equally likely since nothing in the program preju-
dices a particular sublattice to be a P sublattice.

S=1—P(A/P)
(24)

where P(A/P) is the probability of finding an A atom

"J.M. Cowley, Phys. Rev. 77, 669 (1950).

IV. RESULTS

The primary limiting factor on the size of the model
was the computing time, which for the 5)&5&5 model
amounted to 7.5 seconds per iteration per lattice. The
computing time is essentially proportional to the
number of lattice sites. In two cases the computations
were repeated on a model having ten unit cells on
an edge.

Computations were performed for a variety of values
of kT/ni, representing points above and below the
critical temperature. Three diGerent values of the
second neighbor interaction parameter ) =0, —~, —

2

were used. The convergence test constants e~ and e~,

were each equal to 0.01.
A summary of the results is presented in Table I.

The quantities n& and n2 are Cowley's'~ short-range
order parameters. The Cowley order parameter n;,
describing the order among atoms separated by a
distance r, (i.e. , 2th neighbors) is defined by

n, = 1 PAB (r,)/2XAXB, — (23)

where PAB(r, ) is the probability of finding a pair of
atoms AB separated by a distance r, , X& is the fraction
of A atoms in the system, and Xz is the fraction of 8
atoms in the system. In the estimates obtained here for
E2E and n2' the probabilities PAB(ri) and PAB(r2) have
been replaced by

(1V AB&'&)/61V and (1VAB~'~)/31V,

respectively, where the averages have been taken over
the ensemble of five hundred and twelve configurations
obtained as described above. The indicated errors are
the standard deviations. It is to be noted that a perfectly
ordered face-centered cubic lattice, with X~= ~, X~——

~
yields n& = ——'„n2= 1, and a completely random
arrangement of atoms yields ni ——0, n&=0. The quantity
S in the third column of results in Table I is the usual
long-range order parameter de6ned by
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TABLE I. Summary of results.

0.95'
1.0
1.25
1.25»
1.5
1,75
2.0

10.0
10.0b
0.8'
1.25.
1.5
1.6~
1.75
2.0
2.25
0.8'
1.25
1.75
2,0
2.25
2.4
2.5
3 ' 2

10.0

0
0
0
0
0
0
0
0
0—0.25—0.25—0.25—0.25—0.25—0.25—0.25—0.5—0.5—0.5—0.5—0.5—0.5—0.5—0.5—0.5

0.230 &0.001
0.188 ~0.001
0.156 +0.001
0.1547&0.0002
0.138 &0.001
0.125 &0.001
0.114 %0.0001

0.034 &0.001
0.0325&0.0003
0.3080+0,0004
0.295 &0.001
0.240 &0.001
0.194 &0.001
0.145 &0.001
0.129 &0.001
0.117 &0.001
0.3062&0.0004
0.2982&0.0004
0.284 +0.001
0.245 ~0.001
0.146 %0.001
0.134 %0.001
0.126 %0.001
0.096 &0.001
0.036 %0.001

0,411 &0,006
0.230 %0.003
0.136 ~0.002
0.1354%0.0005
0.104 ~0.002
0.085 &0.002
0.069 &0.002
0.004 %0.001
0.0043%0.0004
0.913 &0.002
0.867 &0.002
0.640 %0.004
0.409 a0,007
0.182 &0.002
0.140 &0.002
0.119 ~0.002
0.909 &0.002
0.883 &0.002
0.835 %0.003
0.688 ~0.003
0.251 ~0.004
0.210 ~0.004
0.182 ~0.002
0.108 &0.002
0.024 &0.001

0.370 &0.010
0.078 +0.005
0.017 +0.003
0.0108&0.0013
0.004 &0.004
0.015 ~0.004
0.000 &0.003
0.000 &0.002
0.0013+0.0008
0.955 +0.001
0.928 a0.001
0.771 &0.004
0.445 &0.013
0.022 +0.005
0.009 &0.004
0.002 &0.004
0.953 ~0.001
0.940 &0.001
0.907 &0.003
0.812 &0,002
0.185 +0.010
0.037 &0.008—0.0019&0.005
0.011 &0.004—0.003 &0.003

Iterations
to converge

178
125
82
83
35
33
32
32
46
56
51

131
82
68
40
37
57

136
274
99

220
50
46
35
32

a Initial conditions modified to partially order HT lattices.
b Model with ten unit cells on an edge.

on a P site. In the estimates obtained here for S the
probability I'(A/P) has been replaced by

4(&(~/0))/»
where again the average has been taken over the
ensemble of five hundred and twelve configurations. In
the fourth column of results the number of iterations
performed before the convergence condition was
satisfied is given.

The number of iterations that had to be performed
before the convergence condition was satisfied varied
considerably. Above the critical temperature the
convergence condition was satisfied relativ'ely fast;
usually fifty iterations were sufhcient. Below the critical
temperature the number of iterations was sometimes
very large. The X=O case presented the most difhculty
in this respect and the lack of data for that case is due
to the fact that in a number of the runs which were

attempted the convergence condition was never satis-
fied; usually after five hundred iterations without
convergence the run would be terminated. The long
times to convergence were not as common in the runs
corresponding to nonzero ).The source of this difhculty
was found to be due to the absence of a consistent
pattern of long-range order in some of the high-tem-
perature lattices. These lattices would reach fairly
rapidly configurations of order consistent with the
specified values of kT/~i and X, except that in one

plane, or sometimes two planes, the order would be out
of phase. In the out of phase plane the positions of the
A and 8 atoms are interchanged with respect to the

pattern of order established elsewhere in the lattice.

Figure 2 illustrates an out of phase plane in an otherwise
perfectly ordered lattice. The low-temperature lattices,
that is the ones starting from a configuration of perfect
order, did not develop the out of phase planes. As a
result the first condition, Eq. (21), relating to the
short-range order of first neighbors would be satisfied
but the second convergence condition, Eq. (22),
relating to the short-range order of second neighbors
would not be satisfied. It was observed that these out
of phase planes were very stable and only rarely did
one disappear, even after hundreds of iterations.

This behavior is easily explained. " Consider a
perfectly ordered lattice, Fig. 2, and notice that the
introduction of an out of phase plane does not change
the number of 6rst neighbor AB pairs. Consequently
when 'A =0, and therefore only first neighbor interactions

08 08 08 08 08

Q Qa Qa QA Qa

Qe Q Qe Qa Qe

QA QA QA Qa Qa

OA QA OA OA QA

QA 0 QA OA00080808
Qa Qa Qe Qe QaQQ0 QO

"This phenomenon is also supported by experimental evidence.
Chipman has inferred from his observations that out of phase
regions, one layer thick, with about nine atoms per layer, were
present; see D. R. Chipman, J. Appl. Phys. 27, 739 (1956).

(b)

FIG. 2. A perfectly ordered lattice consists of successive planes
of atoms alternating between the pattern shown in (a) and that
shown in (b). A plane of atoms arranged as shown in (c) sub-
stituted for one of the planes of type (a) constitutes an out-of-
phase plane.
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' D. T. Keating and B. E. Warren, J. Appl. y .l Ph s. 22 286
(1951).

"K.A. Owen and Y. H. Liu, Phil. Mag. 38, 342 ( 9 ).

kT,/ot 1.01, 1——.61, and 2.25, respectively. The vari-
ation of kT,/nt with ) is essentially linear. In Fig.
these results are compared with the experimenta
measurements of long-range order in C 3Cu Au made b
Keating and Warren. " This alloy is chosen for the
comparison since the lattice structure remains face-
centered cubic both above and below the critica
temperature, and the lattice parameter changes only
very slightly; the lattice parameter changes from
3.7478 A at j.8 C to 3.7940 A at 620'C with a dis-
continuity of about 0.0044 A at 385'C."The experi-
mental results show a higher degree of order at low
temperatures and a more abrupt drop of the long-range
order at the critical temperature than the calculated
results. The discrepancy cannot be explained by an

l tion of the critical temperature from aulty
likelextrapolation of the curves in Fig. 3. It seems i e y

that the small size of the model is responsible. T is is
inferred from computations on the Ising model where
it has been found that the more accurate computation
schemes produce a more abrupt vanishing of long-range
order. In this figure no significant difference is apparent
between results for ) = —0.25 and 'A= —0. .5.

The short-range order parameters are plotted as

unctions of kT/vt in Figs. 5 and 6. They are p o «
as functions of T/T, in Figs. 7 and 8. Cowley's meas-
urements" of n~ and n2 in Cu3Au are shown in the
latter hgures. Since the present calculations can be
expec e ot d to give the most accurate results at higher

= —0.25temperatures, it appears from Fig. 7 that ) =-
gives the best agreement with the experimental results.
In Fig. 8 the curves for o.2 all fall so close together that
an attempt to fit the experimental data by a choice o

doesn't seem to be too meaningful. Furthermore,
since the measurement of 0,2 is less accurate than that
of n~ there is a good chance that the discrepancy in i-
cated by the results in Fig. 8 may be due to experi-
mental error.

The value ) = —0.25 lies between that given by
Cowley, " 'A = —0.1, and that given by Fournet, '
X= —0.5. The value of v~ can be estimated, taking for
kT,/nt the value 1.61 which was obtained for X= —0.25
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Fro. 8. Short-range order parameter n2 rs T/ ~ X=O.
Q X= —0 25' ~ ) = —0.5; X, experimental results of Cowley'6
for Cu3Au.

and T,=394'C, measured by Cowley; this gives

nt ——816 cal/mole,

which is to be compared with

tt t = 711 cal/mole (Cowley),
r t ——802 cal/mole (Fournet).

Fournet's result applies to a "best fit" to experimental
short-range order data; a lower value, 604 cal/mole,
must be used for a best fit to experimental long-range
order data. "

The results appear to indicate the presence of a phase
change but they are not accurate enough for one to
conclude with any dehniteness whether the phase
change is 6rst or second order. If any success is to be
had in resolving this point with some degree of certainty
by the present method, it is clear that an amount of

' J. M. Cowley, J. Appl. Phys. 21, 24 (1950).
"Lester Guttman, Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press, Inc. , New York, 1956), Vol. 3,
p. 145.
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computation is required which is beyond the practical
limitations of presenting computing equipment. The
system studied here represents about the upper limit
in size and complexity that can be reasonably handled
with present computing equipment.
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Exciton Spectrum of Cadmium Sulfide
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The reflectance and fluorescent spectra of hexagonal CdS crystals have been measured at 77' and 4.2'K
using polarized light in the region of 5000 A. Structure not previously reported has been found in the re-
Qectivity curves which leads to the identification of three exciton series. These can be understood in terms
of the splitting of the valence band into three levels at %=0.The observation of excited exciton states and
the polarization properties of the excitons make possible: (1) The determination of two of the three exciton
binding energies, (2) the determination of the energy splittings of the three valence bands, (3) the verification
of the symmetry assignments of the valence and conduction bands, and (4) correlation of the work of others
with the present work, showing that the definite intrinsic effects are consistent both with our observations
and our interpretations. The fluorescent experiments strongly suggest that the radiative decay of excitons
occurs not directly, but from localized impurity exciton states in agreement with theory.

I. INTRODUCTION

HERE exists in the literature much evidence of
one structure in various optical eGects displayed

by CdS at wavelengths near the onset of intrinsic
absorption. In spite of these detailed studies the de-
scription of the band structure and exciton energy
levels in CdS has remained in a state of confusion. The
present work represents an attempt to correct this
situation and was suggested by the refl.ectivity measure-
ments of Dutton. ' From theoretical considerations,
together with observations made on ZnO, it was ex-

pected that there should occur in the refl.ectance spec-
trum two strong peaks in addition to the three already
reported. We have therefore remeasured the reflectance
at 77'K over a wider range of wavelengths, and have
extended the observations to 4.2'K. In order to corre-
late the various eGects, the fluorescence spectrum was
also measured at both nitrogen and helium tem-
peratures.

Gross and collaborators, ' and others' have studied
the absorption spectra of thin crystals at 4.2'K. Gross

' D. Dutton, Phys. Rev. 112, 785 (1958).
2 E, F. Gross, Suppl. Nuovo cimento 3, 672 (1956).
' Gross, Razbirin, and Iakobson, J. Tech. Phys. U.S.S.R. 2?,

1149 (1957) Ltranslation: Soviet Phys. (Tech. Phys. ) 2, 1043
(1957)j.'E. F. Gross and B. S. Razbirin, J. Tech. Phys. U.S.S.R. 27,
2173 (1957) Ltranslation: Soviet Phys. (Tech. Phys. ) 2, 2014
(1957)j.

~ L. R. Furlong and C. F. Ravilious, Phys. Rev. 98, 954 (1955).

has pointed out that for wavelengths shorter than
4860A the absorption lines observed are strong and
are an intrinsic property of the crystal, and so are to
be ascribed to exciton states. At longer wavelengths the
lines are rather weak and vary from one crystal to
another. Some lines are independent of the thickness of
the crystal and so are connected with surface effects.
The weak lines are associated with imperfections,
although they cannot be attributed to excited impurity
states in the sense that this term is normally under-
stood. They apparently correspond to the formation
of excitons in the field of an imperfection which has
the eGect of slightly lowering the exciton energy. These
states may be called impurity excitons. Although Gross
has described one set of lines active in light polarized
perpendicular to the hexagonal c axis (hereafter de-
noted by EJ c) between 4855 and 4806 A as being due
to the m=3, 4, 5, 6 states of a hydrogen-like exciton
series with the m= 1 and 2 states missing, this descrip-
tion is not entirely satisfactory as there are other lines
unaccounted for.

The uv-stimulated fluorescent spectra at 4.2'K may
be divided into two regions. At wavelengths longer than
about 5100 A there is a series of regularly spaced peaks
having half-widths of about 10 A, with an energy
diGerence between peaks equal to that of the longi-
tudinal optical phonon. ' ' This is referred to as the

6 Lambe, Klick, and Dexter, Phys. Rev. 103, 1715 (1956).


