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The band structure of aluminum is reconsidered in a combined experimental and theoretical approach
very similar to that originally used by Heine. A more careful analysis of the de Haas-van Alphen data of
Gunnersen has indicated a considerable flexibility in models consistent with it and has allowed the proposal
of a Fermi surface which is much closer to that expected on theoretical grounds than the model suggested
by Heine. It is found here that the first Brillouin zone is completely filled; that the second zone contains
a single closed surface surrounding a region of holes; and that the third zone contains a multiply-connected
surface which gives rise to all of the observed de Haas-van Alphen oscillations. .

L. INTRODUCTION

EINE! has proposed a model for the shape of the
Fermi surface in aluminum. His work was based
largely upon studies of the de Haas-van Alphen effect
in aluminum by Gunnersen? and upon experimental
studies of the anomalous skin effect® and low-tempera-
ture specific heat.* This experimental information was
supplemented by band calculations which he performed.5
Since the determination of the Fermi surface from such
information is not a unique, straightforward procedure,
it appeared desirable to re-examine this problem.

The approach here differs from that of Heine only in
emphasis; the same experimental and theoretical in-
formation is used, but a very much different conclusion
is reached. Heine has suggested that pockets of holes
exist at the corners of first Brillouin zone; pockets of
electrons (centered on each zone face) exist in the second
zone, and very small pockets of electrons exist along
the edges of the third zone. Here it is proposed that the
first zone is completely full, that the second zone con-
tains a single closed surface enclosing about one hole
per atom, and that a multiply connected region exists
in the third zone again lying along the edges of the zone
but connected at the zone corners.

The procedure followed here involves first the con-
struction of the Fermi surface in detail using a free-
electron model. Particular distortions of the surface are
then suggested on the basis of Heine’s band calculations.
The de Haas—van Alphen effect is considered by re-
examining the high-frequency data of Gunnersen. It is
found that the pockets proposed by Gunnersen are in no
sense uniquely given by the data, but that the data are,
in fact, completely consistent with the free-electron
model as modified slightly in either of two different
ways. Consideration of the anomalous skin-effect meas-
urements eliminates one of these possibilities. The result-
ing model is found to be consistent with specific heat

1V. Heine, Proc. Roy. Soc. (London) A240, 340 (1957).

2 E. M. Gunnersen, Phil. Trans. Roy. Soc. (London) A249, 299
1957).
( 3T, E. Faber and A. B. Pippard, Proc. Roy. Soc. (London)
A231, 336 (1955).

4 Howling, Mendoza, and Zimmerman, Proc. Roy. Soc. (L.on-
don) A229, 86 (1955).

5V. Heine, Proc. Roy. Soc. (London) A240, 354 and 361 (1957).

data and still contains sufficient flexibility to accom-
modate the low-frequency data of Gunnersen.

The resulting picture, then, fits all of the data con-
sidered and is very close to the picture originally pro-
posed using the free-electron model. The small devia-
tions from the free-electron model are in all cases in the
direction suggested by the band calculations and of a
magnitude consistent with them. The proposed model is
felt to contain a much higher degree of consistency with
the theoretical considerations than that originally pro-
posed by Heine.

II. FREE-ELECTRON MODEL

As a first approximation, the free-electron Fermi sur-
face is constructed. This was done by Heine,! but is
repeated here for completeness and in order to give a
more detailed geometric description.

In this approximation it is assumed that the Fermi
surface is a free-electron sphere in wave-number space,
large enough to contain three electrons per atom. Por-
tions of this sphere lie in the second, third, and fourth
Brillouin zones, the first zone lying completely within
the sphere. The portions in the higher zones might be
rearranged into the first zone by translating various
sections by a reciprocal lattice vector. This then is the
reduced zone scheme used by Heine. It, however, leads
to many isolated portions which intersect the zone faces.
It is much easier to picture the surface if these are again
rearranged to obtain closed or multiply-connected re-
gions with as little intersection with the zone face as
possible. Here these steps are replaced by a single
equivalent construction which is much easier to perform.

The reciprocal lattice is constructed and a free-elec-
tron sphere is drawn around eack reciprocal lattice point.
Then any point in wave-number space which lies within
one of the spheres corresponds to an occupied electron
state with an energy determined by the distance from
that point to the center of the corresponding sphere.
Points which lie within two spheres are occupied in two
zones, etc. Thus several sets of Fermi volumes are ob-
tained, each of which repeats throughout wave-number
space with the periodicity of the reciprocal lattice, with
points differing by a reciprocal lattice vector being
equivalent. Then to find the Fermi surface in the second
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Fic. 1. Schematic determination of the free-electron Fermi
“surface” in a two-dimensional square lattice. The diagram above
indicates free-electron “‘spheres” drawn around each reciprocal
lattice point; the dashed squares (a) and (b) represent two choices
of Brillouin zones used in the drawings below. The cross-hatched
areas below correspond to regions occupied by electrons.

zone, for example, a single Brillouin zoue is drawn
around some convenient point and the surface bounding
the doubly-occupied volume in that zone is drawn. Such
a procedure is carried out schematically for a two-
dimensional square lattice in Fig. 1. The corresponding
surfaces obtained for aluminum are shown in Fig. 2.
Various symmetry points are indicated. It is noted, of
course, that the symmetry of a point is determined by its
position in the reciprocal lattice rather than its position
with respect to the zone surface. Furthermore, the figure
drawn has the same symmetry as the point at the center
of the selected zone, which may not be full cubic sym-
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F16. 2. Free-electron Fermi surface in aluminum, constructed
in a manner analogous to that indicated in Fig. 1. Various sym-
metry points are specified in each zone; points K and U are
equivalent. The dotted curve (a) corresponds to an electron orbit
in wave-number space corresponding to a particular orientation
of magnetic field discussed in the text.
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metry. The third zone has been centered on X and the
fourth on L.

This approximation to the Fermi surface is not as
crude as might at first be thought. Heine’s band calcula-
tions indicate that the free electron energies are quite
close to those he obtained except within 0.05 atomic
unit of the zone face in the first and second zones. (The
distance I'—X is 0.822 for comparison.) This feature
can probably be extended to the higher zones, where
deviations are expected only near various symmetry
planes. However, much of the surface in the third zone,
and all of the surface in the fourth zone lies close to such
symmetry planes and some distortions may be expected.
The nature of the distortions of the surfaces in Fig. 2
may be guessed by considering the results of band calcu-
lations performed by Heine.

III. CONSIDERATION OF BAND CALCULATIONS

Heine has calculated the energy of points of high
symmetry in the various zones. He has pointed out that

TasLE 1. Energies of high-symmetry points (Heine). Energies
are in rydbergs relative to the band minimum. The values in
parentheses represent rougher calculations than the others.

Free Band
electron calculation A(E —EF)
Fermi level 1.11 1.09 0.00
First zone r 0.00 0.00 +0.02
X 0.89 0.81 —0.06
K, U 0.99 0.93 —0.04
w 1.09 1.01 —0.06
Second zone L 0.69 (0.72) (40.05)
X 0.89 0.93 +0.06
K, U 0.99 0.97 0.00
w 1.09 1.01 —0.06
Third zone L (2.40) (2.24) (—0.14)
K, U 0.99 (1.08) (+0.11)
X (1.74) (1.74) (+0.02)
w 1.09 1.06 —0.01
Fourth zone w 1.09 1.18 +0.11

such calculations are of limited reliability; thus we will
use them only to indicate qualitatively how the free-
electron surfaces may be modified. Table I gives the
free-electron energies® and those obtained from band
calculations for the relevant symmetry points. The shift
of each state with respect to the Fermi energy is also
listed. These will be considered, band by band, to see
what modifications of the surfaces shown in Fig. 2 are
to be expected.

For the free-electron model, the first zone was full.
The presence of the lattice potential lowers the energy

8 The free-electron energies were calculated using the Bohm-
Pines model [D. Pines, Solid State Plysics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc., New York, 1955), Vol. 1,
p. 4087, by Heine. Energies of states above the Fermi energy are
out of the range of the expression given by Pines and were de-
termined from E= (k%/kr® Ep.
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of the highest-energy state (W) in this zone and sub-
stantiates the conclusion that the zone is full.

The band calculations indicate that in the second
zone the symmetry points near the edges and corners of
the free-electron Fermi surface are lowered, while those
near the faces are raised. This tends to smooth off the
surface and make it more nearly a sphere. This con-
siderably strengthens the free-electron conclusion that
there is no contact between the second-zone Fermi
surface and the zone boundary.

In the third zone, the energy of the points W, corre-
sponding to the intersections of the arms of the surface,
are slightly lowered, tending to fatten up the surface
around these intersections. Points at the centers of the
arms, on the other hand, are raised near to the Fermi
energy, suggesting that the arms are narrowed down
and possibly pinched off.

The energy corresponding to W in the fourth zone is
raised considerably above the Fermi energy, and these
pockets are expected to be emptied.

Thus the Fermi surface suggested by the band calcu-
lations is that of a large, fairly smooth surface in the
second zone, and six pockets in the third zone which
may or may not have connecting arms.

If such pockets in the third zone were the size and
shape of the pillows proposed by Gunnersen on the basis
of de Haas—van Alphen data, their total area would be
small. Thus the total area of the Fermi surface would be
approximately equal to that of the surface in the second
zone, which is somewhat less than the area determined
from anomalous skin-effect data. This led Heine to
propose the distortions of the second-zone surface into
the zone faces and consequent distortions of the third-
zone surface, as well as pockets of holes, in the first zone.
In view of the crucial consequences of Gunnersen’s
proposed surfaces, it seems advisable to re-examine the
de Haas—van Alphen data.

IV. DE HAAS-VAN ALPHEN EFFECT

The de Haas-van Alphen effect gives a measure of the
maximum or minimum cross-sectional area of a piece
of the Fermi surface, where the cross section is taken
perpendicular to the magnetic field. Thus measurements
with various field directions give a kind of mapping of
the Fermi surface. It is only possible to deduce the shape
of the Fermi surface, however, if the surface is relatively
simple and contains a center of symmetry. Since this
would not appear to be the case in the third zone, the
best that can be done is to propose a surface and adjust
it until it fits all of the data. This is, of course, where the
theoretical considerations which have been made are of
great value.

Two possibilities are suggested in the previous section
for the Fermi surface in the third zone; isolated pockets
at points W, or a multiply connected surface, such as
that shown in Fig. 2, suitably modified. These two
possibilities will be considered in order.

r

1

Fic. 3. Tetrahedral pockets having the symmetry of a point W
in the reciprocal lattice. The dimensions ¢ and / are adjustable.

1. Isolated Pockets

Since the pockets have the symmetry of a tetrahe-
dron, it is appropriate, as a first approximation, to try
a tetrahedron having the appropriate symmetry. Such a
surface is shown in Fig. 3, with the two adjustable pa-
rameters @ and /. Six such figures would appear in the
third zone, two of which lie at zone corners for the zone
centered on X in Fig. 2. They would be located at the
position of the fourth-zone pockets for the zone centered
on L. The possibility that these surfaces are joined at
the corners is neglected for the moment.

Assuming six such surfaces with appropriate orienta-
tions, it is possible for any orientation of field to consider
cross sections perpendicular to the field and shift these
back and forth along the field to obtain a maximum
area. This involves a somewhat tedious geometric calcu-
lation, but it has been done for all fields perpendicular to
a [[1007] direction or to a [1107] direction. This includes
enough directions to give a quite complete description
of the effect. From these areas, the period of the de
Haas-van Alphen oscillations for all such field directions
can be calculated in terms of @ and /, using the relation

A(1/H)=dn%/hcA,

where A(1/H) is the period and A is the area in wave-
number space.

It turns out that the smallest area obtained for a field
in [110] direction is al/(2V2). If this is associated with
the small period oscillation found by Gunnersen, it is
found that al equals 0.0214 atomic unit. For comparison,
note that the area of a square face of the Brillouin zone
is 0.338 atomic unit. The ratio a/I is abritrarily set at
0.425 and the results plotted in Figs. 4 and 5 along with
Gunnersen’s data. The effect of changing the ratio a/7 is
simply to shift the dashed portions of the curves in
proportions to /! without changing the solid portions.
This, of course, also shifts the cusps where the dashed
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FiG. 4. de Haas-van Alphen periods as measured by Gunnersen,?
along with theoretical curves. The magnetic field lies in the (001)
plane; ¢ is the angle the field makes with the [100] direction. The
solid and dashed curves combine to give the results deduced from
tetrahedra located at symmetry points . The solid and dotted
curves combine to give the results deduced from infinite prisms
lying along [110] directions.

portions join the solid ones. All of the curves shown are
found to be simple sine curves.

The fit is remarkable and is achieved with only a
single adjustable parameter, so long as /! remains small.
Correspondingly, Gunnersen’s pillow-shaped pockets
(which correspond to symmetrized combinations of the
above tetrahedra) may be made arbitrarily large and
thin so long as the area looking at them edge-on is fixed.
-The particular shape he proposed depends directly on
his particular extrapolation to low periods, where no
data exist (corresponding to the dashed portions of our
curves).

One might ask what modifications in the proposed
shape would be required to improve the fit to the data
at the cusps in the [100] and [110] directions. It is
found that in almost all cases the maximum cross-
sectional area of a tetrahedron does not include a corner
of the tetrahedron. It does, however, include a corner
at each cusp and each cross-over point in Figs. 4 and 5
with the exception of that in the [111] direction. In
addition, the areas corresponding to the entire solid
curves A in Fig. 4, include a corner. Rounding off the
corners of the tetrahedra would lower the area and in-
crease the period in these regions without affecting the
rest of the curves. Thus the required improvement in fit
can be obtained by simply rounding off the corners.

It should be noted that the only solid curves of Figs.
4 and 5 which fail to appear in the data are the curves A.
This could be associated with the fact that these are
the only curves for which the maximum cross-sectional
areas run into the corners and therefore have a lower
density of states (that is, the area changes more rapidly
with displacement parallel to the field for these curves).
Since the dashed curves are not found experimentally,
though they correspond to areas which do not traverse
the corners, it is concluded that these portions of the
data lie below the threshold of observable periods. This
implies that @/l must be less than about 0.35; thus /
would be greater than 0.25 atomic unit while ¢ would
be less than 0.087 atomic unit.

HARRISON

It is seen that these tetrahedra give a very natural
explanation of the de Haas—van Alphen data.

2. Multiply Connected Region

If the Fermi surface in the third zone resembles that
shown in Fig. 2, it is reasonable to expect de Haas—
van Alphen oscillations associated with the arms. The
band calculations have indicated that these arms may.
be reduced in size at the centers and expanded at the
intersections, thus reducing the taper. A reasonable
starting model, then, consists of untapered arms of
cross-sectional area Ao, If A, is associated with the
largest observed period in the [1107] direction, the solid
and dotted curves of Figs. 4 and 5 are obtained. Again
all curves are sinusoidal.

Improvement of the agreement with experiment at
lower periods can be obtained by introducing a taper
in the arms such that the cross-sectional area is smaller
at the intersections. The curves beyond the [1007] cusp
correspond to areas such as that indicated by (a) in
Fig. 2. Such contributions would disappear if the arms
were distorted slightly so that the maximum cross sec-
tions ran into the intersections of the arms. Thus if the
arms were bent [the arm (a) being bent in the plane of
the paper], such highly inclined orbits would tend to
increase monotonically from one end of the arm to the
other, and no maximum would occur. This would tend
also to eliminate the curves A of Fig. 4.

A fit to the data has been obtained without specifying
the shape of the cross section of the arms 4. The data
require that the magnitude of the area be about 0.0075
atomic unit, while the free-electron model gives 0.015
atomic unit, thus a modification in the linear dimensions
of the arms of only 309 is required.

This model also gives a quite natural explanation of
the data but requires some patching to explain the dis-
appearance of the data in some regions of orientation.

3. Comparison of Models

The fact that the multiply connected surface lies very
close to that of the free-electron model (modified in the
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Fi6. 5. de Haas-van Alphen periods as measured by Gunnersen,?
along with theoretical curves. The magnetic field lies in a (110)
plane; ¢ is measured from the [001] direction. The solid and
dashed curves combine to give the results deduced from tetrahedra
located at symmetry points W. The solid and dotted curves com-
bine to give the results deduced from infinite prisms lying along
[110] directions.
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direction indicated by the band calculations) gives
strong support for this model. The pocket model would
require rather large deviations from the free-electron
model; on the other hand, though these also could be in
the direction suggested by the band calculations. When
the anomalous skin effect is considered in the following
section, it will be seen that the pocket model becomes
untenable.

V. OTHER INFORMATION

Heine has pointed out that the anomalous skin effect
data indicates that the total area of Fermi surface is
very close to the free-electron value. In the free-electron
model, some 809, of the Fermi surface lies in the second
zone, 209, in the third, and less than 19 in the fourth.
The major modification of second zone Fermi surface
suggested by the band calculations is the suppression of
the points near symmetry points W. This tends to re-
duce the area in the second zone, but not drastically
since most of that surface is quite far removed from the
zone faces. The disappearance of the pockets in the
fourth zone has negligible effect, so the surface in the
third zone must certainly hold its own and probably
increase in area.

In order for tetrahedral pockets to give the required
area, a/l would have to be reduced to about 0.06 so that
1=0.6 atomic unit. But this extends the Fermi surface
deep into regions where the free-electron approximation
should be good and where the free-electron energy is
much higher than the Fermi energy. Also, Heine’s calcu-
lations for points near W in the third zone do not indi-
cate such flat energy surfaces. Thus the pocket model
must be discarded. '

In order to fit the de Haas—van Alphen data with the
multiply-connected Fermi surface, it was necessary to
reduce the cross-sectional area of the arms below the
free-electron value by 509,. This, of course, tends to
reduce the area of Fermi surface, but it was pointed out
that the shape of the cross section is not determined by
the de Haas—van Alphen data. If the cross section is
elongated as it is reduced in area, the total Fermi-surface
area may be kept the same or increased. Such an elonga-
tion only requires shifts in the energies of states which
lie close to a symmetry plane, where such corrections to
the free-electron model are to be expected.

The proposed model can be seen to be consistent with
specific heat measurements at low temperatures. Heine
has used these measurements to make a rough calcula-
tion of the length of line along which the Fermi surface
cuts zone boundaries, which he found to be 92 atomic
units. Such a calculation is quite crude, as he has indi-
cated. Furthermore, similar effects might be expected
whenever the surface intersects any other symmetry
plane (except those including I'). In the model proposed
here the length of intersection with the zone boundary
(using the reduced zone scheme as done by Heine) is
about twice the total length of the zone edges or 40
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atomic units; this being entirely in the third zone. There
is an equal length of intersection with symmetry planes
in the second zone, corresponding to ‘“‘edges” of the
Fermi surface, which brings the total to 80 atomic units.
These numbers are not to be taken very seriously; it is
simply noted that a high electronic specific heat is ex-
pected to arise from the large amount of Fermi surface
which lies close to symmetry planes in wave-number
space.

Finally, the low-frequency de Haas—van Alphen oscil-
lations, which Gunnersen observed in aluminum, will
be considered. These correspond to a cross-sectional
area of about 0.0008 atomic unit and are fairly isotropic.
Alloying data indicate that they arise from electrons
rather than holes. The only place where these fit con-
veniently into the proposed structure is at the inter-
sections of the arms. Reasonably isotropic oscillations
would result from minimum cross-sectional areas of the
arms, since there are arms lying along each of the [110]
directions. The cross-sectional area of the arms at the
intersections is about 0.0008 according to the free-elec-
tron model. Thus in this instance, no modification is
required. This is consistent with the high-frequency
oscillations which indicated that the arms are tapered
toward the ends. It is interesting to find that, though
the intersections and the ends of the arms are tiny, the
arms are not pinched off.

VI. FINAL PICTURE AND DISCUSSION

The structure of the Fermi surface which is consistent
with the data considered and with Heine’s band calcula-
tions is actually very close to that deduced from the
free-electron model and illustrated in Fig. 2. The first
zone, as before, is full. The second zone contains a closed
surface, filled with holes, which resembles that of Fig. 2,
but with the corners rounded off. The fourth zone is
empty. The third-zone surface is similar to the free-
electron figure, but the arms are to be flattened slightly
and their cross-sectional area reduced by 509,. The
cross-sectional areas of the arms near the intersections
are essentially unchanged. The bowing of the arms
suggested by the disappearance of de Haas—van Alphen

“oscillations associated with the most elongated orbits

should probably not be taken seriously; the amount
required, in any case, would depend upon the variation
of the cross section along the arm. Neglecting this last
aspect of the distortion, the third-zone Fermi surface is
redrawn in Fig. 6.* The shapes of the arms are somewhat
schematic, but their positions are fixed by symmetry
and their maximum and minimum areas are fixed
experimentally.

Certainly the most striking aspect of these results is
how closely they are predicted by the free-electron

* Note added in proof.—Further band calculations by the author
(to be published) indicate that the arms are probably not flattened
as indicated here, but resemble the free-electron shape more
closely. Thus it seems preferable to abandon agreement with the
somewhat meager anomalous skin effect data.
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F16. 6. The proposed Fermi surface in the third Brillouin zone
for aluminum. A cross section of one of the arms is given and
compared with the free-electron cross section; the detailed shape
is somewhat schematic. Some further bowing of the arms is possi-
ble and suggested by the data.

model. They are, in fact, even more closely predicted
than might be guessed by looking at the results of
Heine’s calculations. Because of this validity of the
free-electron model, the anomalous skin-effect result
that the total area of the Fermi surface is equal to the
free-electron area need no longer be regarded as
accidental.

Another striking point is that a wide variety of models
give the same sinusoidal variation of the de Haas—van
Alphen period. Thus, only if measurements are made
to smaller periods, where deviations occur for some
models, can reliable conclusions about the shape of the
Fermi surface be made. On the other hand, once a
particular surface has been proposed, these measure-
ments are extremely valuable in giving particular di-
mensions of the surface. The experience with aluminum
here would suggest that the free-electron model is some-
times sufficient for proposing a surface without the use
of band calculations, though such calculations are cer-
tainly of help.

The rather marked resemblance of the proposed
Fermi surface for aluminum and that proposed by Gold”
for lead is also interesting, and, of course, not coinci-
dental. Lead also is face-centered cubic, but has four
rather than three conduction electrons per atom. This
increases the free-electron Fermi-surface radius by 109%,.

7A. V. Gold, Proceedings of the Fifth International Conference

on Low-Temperature Physics and Chemistry, edited by J. R. Dil-
linger (University of Wisconsin Press, Madison, Wisconsin, 1957),

p. 454.
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Thus it tends to shrink the second zone Fermi surface
somewhat, fatten up the arms in the third zone, and
enlarge the pockets in the fourth. Gold, in fact, finds
that the pockets in the fourth zone in lead are not
emptied as they presumably are in aluminum.

It should be pointed out that Heine’s model, as well
as the model proposed here and the alternative model
discussed involving pockets at W in the third zone, fits
all of the data. The major support for the one proposed
here is its extremely close agreement with the free-
electrons picture as modified by the results of the band
calculations.

One point in support of the alternative model dis-
cussed here is its natural explanation of failure of the
curves A and the dotted curves to appear in the de Haas—
van Alphen data. Also, this model, as well as the other
two, can accommodate the existence of low-frequency
de Haas—van Alphen oscillations, which could be associ-
ated with small members connecting the tetrahedra at
the corners. These features have not been considered
sufficient to outweigh the very large deviations from
the expected picture which would be required. It would
seem unwarranted to put a great deal of weight upon
the failure of certain periods to appear in the de Haas—
van Alphen data.

Finally possible ways of definitely deciding between
models should be considered. Certainly more extensive
de Haas—van Alphen data or band calculations near the
points K and U in the third zone would be a help.
However, since considerable flexibility is allowed in the
detailed shapes for any of these models, these would
still leave ambiguity. Knowledge as to whether the
de Haas-van Alphen data were coming from electrons
or holes would be definitive, but Gunnersen was unable
to determine this by alloying; in any case, the interpre-
tation of such an experiment rests on the theory of
alloys and is open to some question.

A decision might be made as to whether the de Haas—
van Alphen data come from pockets of holes in the first
zone or pockets of electrons in the third if it were known
whether the second-zone surface intersects the zone
boundary. If this surface does not intersect the zone
boundary, then the states at W are certainly occupied
in the second zone and must also be occupied in the
first zone. This would eliminate the possibility of the
pockets proposed by Heine. If, on the other hand, the
surface does intersect the zone boundary, then the states
at W are certainly unoccupied in the second zone and
must be also unoccupied in the third and fourth zone.
This would eliminate the pocket model discussed here
and would require that the arms be pinched off in the
model which was proposed. Then in order to explain the
low-frequency oscillations, holes would again need to be
postulated in the first zone. This leads again to Heine’s
model, only with the holes in the first zone and the
electrons in the third zone changing their roles.?

8 Still another model exists which will explain all of the data. It
consists of very flat surfaces at the square zone faces in the second



FERMI SURFACE

Ultrasonic attenuation measurements in the presence
of a magnetic field should provide the answer to this
question. Geometric resonances in these experiments
give a measure of maximum and minimum diameters of
the Fermi surface® and tend to see the grosser aspects of

zone which contain electrons and which give rise to the high-
frequency de Haas—van Alphen oscillations. Remaining portions of
surface could be distorted to explain the remaining data. Heine
discarded this possibility on the basis that theoretically one would
expect these surfaces to be flatter than the de Haas-van Alphen
data allow. It was seen in Sec. IV, however, that this is not true,
so they cannot be discarded on such grounds. This possibility is
not considered here because it requires rather major deviations
from what is expected theoretically (deviations comparable with
those required by Heine’s model). If it were to turn out that the
second-zone Fermi surface does intersect the zone face, and that
major deviations are, in fact, required this possibility should be
reconsidered.

9 Such effects were originally proposed by A. B. Pippard [Phil.
Mag. 2, 1147 (1957)] and have been observed in copper by R. W.
Morse and J. D. Gavenda [Phys. Rev. Letters 2, 250 (1959)7].
They have been treated for a free-electron gas by T. Kjeldaas
and T. Holstein [Phys. Rev. Letters 2, 340 (1959)7] and some-
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the Fermi surface rather than small pockets. Thus
resonances associated with the second-zone surface
should be seen. If this surface intersects the zone bound-
ary, then the resonances should become profoundly
modified when the field orientation is such that the
diameter in question leads to the region of intersection.
Such modifications have been seen by Morse and
Gavendal® in the resonances in copper. If the surface
does not intersect the zone, the simple resonance should
be seen for all orientations. Very possibly the results
of such a measurement would not be simple and some
interpretation would be necessary, but they should shed
light on the question. Attempts are being made at this
laboratory to observe the geometric resonances in
aluminum.

what more extensively by Cohen, Harrison, and Harrison (to be
published).
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Paramagnetic Resonance Spectra of Chromium and Manganese
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The paramagnetic resonance spectrum of Cr** was measured on the single crystal of ruby spinel MgAl,O4
at the wavelengths of 3 cm, 1.2 cm, and 8.6 mm. The spectrum confirms that Cr®* is at a B site and can
be described with an axial spin Hamiltonian S=$%, 2D=0.99040.005 cm™, g;=1.98640.001, g1 =1.989

+0.002.

The paramagnetic resonance spectrum of Mn?* was measured on the single crystal of ZnAly,O, at 3 cm.
The spectrum consists of six nearly isotropic lines with 4 =74.94+0.5X10"* cm™, g=2.000,3-0.001. The
cubic or axial splitting was less than 8X10™* cm™. The spectrum is indicative that Mn?* is located at an

A site.

I. INTRODUCTION

HE mineral spinel, MgAl,O4, and other crystals
isomorphous with it, are of the general composi-
tion M Ry041in which M and R are divalent and trivalent
ions, respectively. The system forms a close-packed
structure. The lattice can be considered to consist of
two sublattices. One type of cation is surrounded by
six oxygen ions arranged approximately at the corners
of an octahedron and this is in general referred to as
the B site. In the A4 site the cation is surrounded by
four tetrahedrally situated nearest-oxygen neighbors.!
Spinel-type compounds containing ions belonging to
the first transition group have become recently import-
ant. They are nonconducting and antiferromagnetic or
ferrimagnetic. The magnetic properties of these
* Supported in part by the U. S. Air Force, Office of Scientific
Research European Office of the Air Research Development
Command.
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Inc., New York, 1957).

materials are determined to a large extent by their
relative distribution of the ions M and R at the octa-
hedral or tetrahedral sites.?—®

The distribution of the various ions among 4 and B
sites has been investigated by x-ray and neutron
diffraction.”™ ™ Recently a simple theoretical explanation
of the cation distribution has been given by McClure
and by Dunitz and Orgel'? using crystal-field and
symmetry considerations.
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