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except that the bands are two dimensional in nature and
separated in space. The electron-band or surface states
are perturbed out of the conduction band to form a
surface-state band which overlaps the valence band in
energy.

The filling of these surface states with electrons out
of the valence band gives rise to the observed p-type
surface conductivity. The states perturbed out of the
conduction band are most likely associated with the
unfilled orbitals of the germanium surface atoms. These
same types of unfilled orbitals are found in the dis-
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locations associated with grain boundaries, and the
similarity in conduction properties between the clean
surface and medium-angle grain boundaries is shown.

The data are still very crude and it is hoped that
greater accuracy will be obtained in the future.
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The parameters for the Feynman model of a polaron are evaluated numerically for various values of the
electron lattice interaction «, in the usual idealization of the problem of a slow electron in a polar crystal.
The self-energy and effective mass thus obtained are compared with earlier polaron theories, indicating
the superiority of the Feynman model for a wide range of . The polaron size and the effect of the continuum
approximation are estimated, and it is concluded that the alkali halides, at least, may be in the border
region for the validity of this approximation. The problem of calculating polaron mobility as determined
by scattering with longitudinal optical mode phonons is analyzed and previous theories are critically re-
viewed. A new theory based on the Feynman model is developed in which the Boltzmann equation is used
with resonance scattering considered as the fundamental scattering process. A comparison with previous
theories shows some improvements and stresses still doubtful points. A comparison with various experiments
suggests the possible inadequacy of the usual idealization. -

I. INTRODUCTION

E consider the behavior of a slow electron in

the conduction band of a polar crystal in which
the interaction between the electron and the longi-
tudinal optical modes of lattice vibration is too strong
to be treated by perturbation theory, i.e., we consider
the single entity of an electron and its associated cloud
of virtual phonons, the polaron. We idealize the problem
in the usual way by (1) neglecting all but the longi-
tudinal modes, (2) treating the latter as a vibrating
continuum, (3) assuming that the lattice frequencies
all equal the same constant w, (4) assuming that the
electrons in all filled bands follow the electron in the
conduction band inertialessly, and (5) by replacing the

*This paper is based principally on a doctoral dissertation
submitted to the Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, August, 1956, available as Technical
Report No. 9 of the Solid-State and Molecular Theory Group of
the Massachusetts Institute of Technology and hereinafter
referred to as A. The original work was performed at M. I. T.
while the author was a Predoctoral Fellow of the National Science
Foundation; it was supported in part also by the Office of Naval
Research. Some additions and modifications were made while the
author was a Postdoctoral Fellow of the National Science Foun-
dation at Birmingham University.

t Present address: Department of Physics, University of
Illinois, Urbana, Illinois.

periodic potential by an effective mass s, which we
call the dare electron mass (to be distinguished from
m,, the mass of an electron in free space). Thus, we
assume the system to have the Hamiltonian

H= p2/2m—}—zk eok(Tkeik-r+kae—ik-r)+Zk hwrkT'rk,

where
V= hw(dra/ V) (/) 2me)k1=0/k,

a=(%/2hw) 2mw/h) (e, —ei?).

The problem of fundamental theoretical interest is to
find a theory capable of giving the very low-lying states
of this system (those of a slow polaron without free
phonons) or at least capable of determining the proper-
ties of a free, slowly moving polaron characterized by
these states: the polaron self-energy, effective mass,
charge distribution, etc. A problem of more direct
experimental interest is to apply such a theory to the
behavior of the polaron in interaction with external
fields and thermal phonons, e.g., to calculate the
polaron mobility or the cyclotron resonance response.

Calculations of the second kind share all the diffi-
culties found in self-energy and effective mass calcu-
lations, so that a theory which is incapable of reasonably
accurate results for the properties of a slow, freely

(1.1)
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moving polaron should not be considered reliable in
calculations of .mobility and cyclotron resonance re-
sponse. Calculations of the second kind also have their
own characteristic difficulties, so that a satisfactory
theory of the self-energy, for example, may still not
yield a reliable value for the mobility. Even if both
kinds of obstacles are overcome for an electron-lattice
system idealized in the usual way, the predictions of
the theory may be of dubious value to the experi-
mentalist because of the questionable validity of the
idealization.

It is our purpose first to see to what extent existing
polaron theories solve the first problem, second to
adapt the most successful of these theories to the
calculation of polaron mobility, and third to analyze
experiments in terms of this theory. In Sec. II, we
present numerical results for the polaron self-energy,
mass and size evaluated from the theory due to Feyn-
man and compare these results with those of earlier
theories. The comparison shows the inadequacy of the
earlier theories for intermediate values of the interaction
strength, of interest in several real crystals, and so
demonstrates a need for a mobility theory based at
least on Feynman’s description or something better.

In Sec. ITI, we analyze the problems arising when
one attempts to calculate electron mobility assuming
the Boltzmann equation. This leads us to a discussion
of resonance scattering, to be considered the funda-
mental scattering mechanism, and to the identification
of resonance momentum, velocity, width, and coupling
renormalization as the critical factors along with. the
polaron mass determining mobility.

In Sec. IV, we review previous theories and conclude
that for an important range of intermediate values of
the coupling strength they are not really satisfactory,
not only because they are based on descriptions of a
very slow electron that are not sufficiently accurate in
this range, but also because in the scattering analysis
they contain further assumptions that seem unjustified
or lead to apparently inconsistent results.

In Sec. V, a theory of resonance scattering is devel-
oped based on Feynman’s theory for the very slow

polaron. The resonance scattering rate is then evaluated

for the usual idealization making certain reasonable
approximations.

In Sec. VI, the critical factors determining mobility
are analyzed both for their behavior with increasing
coupling strength and for their sensitivity to the
approximations made in the usual idealization. It is
concluded that the usual model may be inadequate for
the calculation of mobility even though it is sufficient
for calculating the polaron mass. We suggest that a
breakdown of the usual model may complicate the
temperature dependence of the optical mode mobility,
but make no calculations.

In Sec. VII, some remarks are made concerning the
experimental situation. In particular, it is observed that
experiments are not yet sufficient either to confirm or
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reject any polaron theory, and that they may not
even be sufficiently unambiguous to determine the
parameters of any theory. Finally, it is emphasized
that several assumptions which are fundamental to
the usual idealization may not be satisfied.

II. SELF-ENERGY, MASS, AND SIZE OF
A FEYNMAN POLARON

Of all the various published theories of self-energy
and effective mass of a slow polaron' only that of
Feynman? gives essentially the correct behavior in both
weak- and strong-coupling limits and a smooth unam-
biguous interpolation between them.? Since calculations
of the slow-polaron mobility have been based on various
of these theories, it seems wise to find out precisely how
good (or bad) they are in the intermediate-coupling
region by comparing them with the self-energy and
effective mass numerically evaluated from expressions
given by Feynman. It is also interesting to see what
the Feynman theory says about polaron size and the
validity of the continuum approximation for the lattice
vibrations.

Feynman found as an upper bound for the self-energy
of a polaron

;<3 (v—w)—A—B, (2.1)
where

A =a7r"%w('v/'LU)f dre"[rj(r) 14,

B=3(®—w?)/4v,
) =1 (s/w) (1=t~ A (1= e19),

and where w and v are variable parameters having the
dimensions of (seconds)™. We set %=1 throughout.
As we shall discuss in more detail in Sec. V, Feynman’s
theory leads naturally to a zeroth-order effective mass

(2.2)

mo= (v/w)*m.

1 For reviews of various aspects of polaron theory see A; S. I.
Pekar, Untersuchungen iiber die Elekironentheorie der Kristalle
(Akademie-Verlag, Berlin, 1954), a translation of Issledovania po
Elektronnoi Teorii Kristallov (Gostekhizdat, 1951); H. Frohlich,
in Advances in Physics, edited by N. F. Mott (Taylor and Francis,
Ltd., London, 1954), Vol. 3, p. 325; H. Haken, in Halbleiter-
probleme, edited by W. Schottky (F. Vieweg und Sohn, Braun-
schweig, 1955), Vol. 2, p. 5 fi.; G. R. Allcock, in Advances in
Physics, edited by N. F. Mott (Taylor and Francis, Ltd., London,
1956), Vol. 5, p. 412.

2 R. P. Feynman, Phys. Rev. 97, 660 (1955).

8T, D. Lee and D. Pines, Phys. Rev. 92, 883 (1953), developed
a theory that is exact for weak coupling and gives the correct
asymptotic behavior for strong coupling, but the latter only if a
cutoft is introduced in the lattice field. It will be seen in Table I
that it is not satisfactory for intermediate coupling. S. V. Tyabli-
kov, Zhur. Eksptl. i Teoret. Fiz. 25, 688 (1953); and G. Héhler,
Z. Physik 140, 192 (1955), have both formulated theories capable
of yielding both the weak- and strong-coupling limits, but they
seem to offer no straightforward way of finding the intermediate-
coupling behavior. E. P. Gross (to be published) has formulated
a theory capable of giving both limiting behaviors but there is
still some question about the smoothness of approach to the
weak-coupling limit and about the numerical values in the
intermediate-coupling region.
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TaBLE I. Parameters of Feynman theory, and self-energies and
effective masses of several theories for various coupling strengths;

@ 3 5 7 9 11
v/w 3.44 4.02 5.81 9.85 15.5
w/w 2.55 2.13 1.60 1.28 1.15
Es/w —3.1333 —54401 —8.1127 —11.486 —15.710
Eup/e —3.0000 —5.0000 —7.0000 — 9.000
Ep/w -3.10 —5.30 —7.58 — 9.95 —1241
E,Jo  —309 —524  —743  — 965 —11.88
Eppt/w —6.83 —10.31 —14.7
mo/m 1.78 3.56 13.2 59.2 181
mylm 1.89 3.89 144 62.8 185
Mup/m 1.50 1.83 2.17 2.50
Mmyp/m 1.61 2.15 2.82 3.58 4.4
Mpbe/ M 14.5 55.7 152 340

Feynman has given a somewhat ad koc expression for an
effective mass expected to be a little more accurate
than mo, viz.,

mf=m|:1+%a7r“""(v/w)3f e”rifj(r)jédr]. (2.3)

Using the Whirlwind Digital Computer, we have
minimized the upper bound in (1.1) with respect to
both v and w for =3, 5, 7, 9, and 11. The best values
of v and w, the resulting self-energy, and the masses m,
and my are tabulated in Table I. For comparison, we
have also included tabulations of the self-energy and
effective mass as computed according to the theories of
Lee, Low, and Pines,® Lee and Pines,® and Gross,®
which are exact in the weak coupling limit, and accord-
ing to asymptotic formulas of Pekar,® Bogolubov,” and
Tyablikov?® valid in the strong-coupling limit.

The self-energies in Table I, with the exception of
that of the strong-coupling theory E,u;, are all derived
from variational principles. The superiority of the
Feynman theory is evident over the whole range of
interest. Also evident is the smooth interpolation
afforded by the Feynman theory for the effective mass
and the fact that in the intermediate-coupling region
the discrepancies with both groups of theories are not
insignificant. We note that only small differences occur
between m; and mo. In Appendix A we have computed
first-order corrections to m, in a systematic way based
on the formalism developed in Sec. V. It is shown there
that the improved mass m; lies between m, and m; for
all « and that the percentage correction (#2,—mg)/mo
is only two percent for a=3 and 5. The accuracy of mq

4Lee, Low, and Pines, Phys. Rev. 90, 297 (1953). Also M.
Gurari, Phil. Mag. 44, 329 (1953).

5E. P. Gross, Phys. Rev. 100, 1571 (1955). We have used
Gross’s principal axis transformation in combination with the
special choice of the shift function fi given by Lee, Low, and
Pines. No effective-mass calculation has been performed.

6 See Pekar, reference 1. We have used the asymptotic form
Eppe=— (0.1088a2+3%)w.

78. I. Bogolubov, Ukrain. Mat. Zhur. 2, 3 (1950).

8S. V. Tyablikov, Zhur. Eksptl. i Teoret. Fiz. 21, 377 (1951).
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is encouraging, since it is mo which it is most convenient
to use in the mobility theory developed-in Sec. V.

To see the validity of the continuum approximation
it is useful to have an estimate of the polaron size. The
Feynman approximation is essentially to replace the
lattice by a second particle connected to the electron
by a spring, as discussed in Sec. V. It is therefore
possible to estimate the size of the Feynman polaron
by calculating the root mean square distance between
the electron and the second particle. The frequency of
the harmonic oscillator composed of the electron and
the second fictitious particle is ». The reduced mass of
their relative motion is

u=m(mo—m)/mo=m(v*—w?) /1%

The ground harmonic oscillator wave function for the
relative coordinate g is therefore

eo(p)= (uv/m)* exp (—uvp?/2),
which defines a Feynman polaron radius:
7= ((0*)}= (3/2u)*. (24)

Using the weak- and strong-coupling expansions given
by Feynman for w and v, we find

s~ (3/0.44a)! (2me) Y, (2.52)
rs ~ 3(m/2)la(2mw)t. (2.5b)

We have computed 7y for various a and found the
following:

a 3 5 7 9 11

rr Qme)} 1.42 1.00 0.748 0.557 0.443

Although this definition of the polaron radius is
somewhat arbitrary, it is still interesting to compare
the values of 7, with the dimensions of a unit cell to
get an idea about the validity of the continuum approxi-
mation. In Table II we have listed the lattice constant a
and ratio 7;/a (assuming m=m,) for some typical polar
crystals. We have also tabulated the characteristic

TasLE II. Lattice constant, Feynman polaron radius, character-

-istic length, and cutoff k.=2x/a for various crystals, assuming

M=Me.
Crystal a, A rr/a (B/2mw)}, A ko= (27/a) (5/2mw)t
LiF 4.02 1.57 6.84 10.6
NaF 4.62 1.57 8.68 11.8
NaCl 5.63 1.81 10.88 12.1
NaBr 5.96 2.08 12.15 12.8
Nal 6.46 2.12 13.18 12.8
KCl1 6.28 1.72 12.09 12.1
KBr 6.58 1.88 13.76 13.1
KI 7.05 2.31 18.99 16.9
RbCl 6.54 1.65 13.02 12.5
RbBr 6.85 1.77 15.47 14.2
RbI 7.33 2.07 16.9 14.5
Cu0 2.46 5.93 8.83 22.5
AgCl 5.54 8.43 12.5 14.2
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length (%/2mw)* and the cutoff 2,=2mr/a, the latter in
units of (2mw/%)}. Here, k. is the cutoff in the (100)
direction for the NaCl type lattice and is very near the
Debye cutoff [= (3/7)%, for NaCl type]. k. is usually
assumed infinite.

Table IT shows that even assuming m=m. the polaron
may not be much larger than a unit cell. If m>m,,
the continuum approximation becomes rapidly worse.
For example, we have computed 7,/a for NaCl assuming
m=2m, and m=%m, and have found r;/a=0.856
and 3.30, respectively, demonstrating that 7; is a
sensitive function of m/m..

To get a more quantitative idea of the error made in
the continuum approximation, we can introduce a
Debye cutoff into the Feynman expressions for self-
energy and effective mass. One readily verifies that
(2.1) is replaced by

E;(ko)=%(—w)— Aro— B, (2.6)

where
Are=amrw (v/w)f dre[rj(r)]
Xerf{ko(w/v)[77(r)/2mew]}}.

For ko— o, the error function goes to unity and
Ako— A. If ko is finite but large, the error function
goes rapidly to unity with increasing 7, so that the only
change in 4 comes from the region of small 7 during
which we may replace exp(—7) by unity and j(r) by
v?*/w?. The change in 4 is approximately

Ako—A&onr_%wf dr = #{erf[ ko(7/2mw)*]—1}
0

= —a(2w/m) (2mw)i/ke.  (2.7)

Thus for large but finite cutoff the ground-state energy
of the polaron is higher by a(2w/7) (2mw)*/ ko, which is
independent of » and w. This means that m, is
unchanged to first order in 1/ko. The introduction of a
finite ko can easily be shown to replace the Feynman
mass expression (2.3) by

mf<ko>=m| 14Jam = (v/w)? f dr e rG(n) ]
X [erf(ko(w/v) (77/2mw)*)

—2r% exp(— (ko?/ 2mw) (w/v)*rj(7))] 1. (2.8)

For large ko similar approximations as for (2.7) give
my (ko)’l’l’ﬂf‘* (40[/37!’) (me/koz)%m. (29)

To see quantitatively just what effect an intermediate
cutoff has on the description of a slow polaron, we have
considered the case a=35 for several different values of
ko, the smallest being ko=nV3/r; or r,~0.9a, where 7
is defined by (2.4), the polaron radius without cutoff.
The results are given in Table III. We see that the
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TasLE III. Effect of cutoff, a=3.

Cutoff ke 9 mo/m E/Hw my/m
® 4.02 2.13 3.56 —5.44 3.89
V3 /1y ~/a 3.95 2.15 3.38 —4.83 3.73

effective mass is changed by about 49, and the self-
energy by about 119,. Also we observe that there is
now a slightly greater discrepancy between mo and m;
suggesting that the Feynman approximation may not
be quite so good as it is in the continuum.

We conclude that for 7,>a, the continuum approxi-
mation leads to only small errors in the simplest
properties of a slow polaron. If m>m. in the alkali
halides, however, r; may be so small as to make the
approximation bad. The alkali halides are thus near
the doubtful region.

We may remark that the Feynman approximation
gives the exact results in two classical limits, viz., (1)
when ko— 0 for fixed « so that the quantum fluctu-
ations in the electron motion become unimportant and
(2) when o — o« for fixed k¢ so that the quantum
fluctuations in the lattice vibrations become unim-
portant. Expanding the error function in a power series
in its argument, one can minimize (2.6) in these limits.
In both cases, E~ —2awr™t(ke?/2mw)?. In the first case
v — w, so that mo— m; in the second case, v/w~ (8a/
Om)(ke?/2mw)? and w/w— 1, so that me~m(8a/97)
X (ko*/2mw)?. These are just the classical results, since
ma=m[ 1+ (8a/97) (ko’/ 2mw)* ].

III. NATURE OF THE MOBILITY PROBLEM

The mobility of the polaron will be limited by
scatterings from imperfections and from acoustic and
optical modes of vibrations. We shall assume suffici-
ently pure substances and sufficiently high temperatures
so that imperfection scattering can be ignored. We
shall also assume sufficiently high temperatures so that
there are enough optical mode phonons with their
much higher interaction to dominate as the principal
scatterers over the more numerous but less strongly
coupled acoustic phonons. One hopes that this minimum
temperature is still below the maximum temperature
permitted by subsequent approximations. Since po-
larons interact much more strongly with the longi-
tudinal optical modes than with the transverse optical
modes, we may neglect the latter in scattering processes
just as is done in the virtual phonon cloud. We thus
assume the validity of the Hamiltonian of (1.1) for the
mobility problem as well as for the calculation of self-
energy and effective mass. It should be emphasized
that this is an additional assumption whose validity is
not implied by the validity of the earlier assumption.

The fundamental difference between the calculation
of polaron mobility and bare electron mobility is due to
the much more complicated nature of the polaron, its
energy-momentum relation, the way it reacts to incident
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phonons and external forces, and the lack of a good
theory for freely propagating polarons except for very
slow ones at very low temperatures. Of course, all
conduction electrons in polar crystals are really po-
larons. The distinction between polaron and electron
is simply whether or not virtual as well as real phonon
processes are considered, i.e., whether or not we go to
higher than the lowest order in the coupling constant «.
To approximate a polaron by a bare electron may or
may not be a good approximation depending on the
crystal and the process under investigation ; for mobility
in polar crystals such as the alkali halides, at least, it is
a bad approximation.

In calculating polaron mobility we shall be forced to
use the Boltzmann equation for want of a better
approach.’ Implicit in the derivation of the Boltzmann
equation is a physical picture of charge carriers propa-
gating as relatively simple well-defined particles under-
going a succession of scatterings which are also reason-
ably well defined. This picture requires,'® for example,
that the collision time between successive scatterings
should be sufficiently long that the energy of the
particle between scatterings be sharp compared with
the characteristic energy of the problem, in our case £7':

B/ r<<kT. (3.1)

For sufficiently strong interactions,! this inequality
may be satisfied only at quite low temperatures when
is large but when other approximations made previously
are not valid. We shall nevertheless assume that (3.1)
is satisfied, realizing that this assumption seriously
limits the applicability of this theory (and of all previous
polaron mobility theories as well) to the actual experi-
mental situation, as will be clear in Sec. VII.

One must also be careful that in computing = the
initial and final states actually used are well defined.
Thus, although the state of a very slow polaron at
T=0°K can be well defined through an adiabatic
switching-on procedure leading to real particle states,
such a procedure may not be valid for a faster polaron
that has sufficient energy to emit a phonon spontane-
ously (something which cannot occur in relativistic
field theories where most of the concern with real
particle states occurs).

Ideally, one would like to make a canonical transfor-

9In recent times some progress has been made with direct
treatment of the density matrix and its equation of motion by
D. A. Greenwood, Proc. Phys. Soc. 71, 585 (1958) ; R. Kubo, Can.
J. Phys. 34, 1274 (1956); M. Lax, Phys. Rev. 109, 1921 (1958);
and others. In principle this would be a better way to compute
polaron mobility as well, since one could by-pass several difficult
questions. It has so far not been possible to adapt these methods
to the problem of polaron mobility where virtual and real pro-
cesses are equally important and where, as a result, the corre-
lations between phonons are essential.

1 See, for example, R. E. Peierls, Quantum Theory of Solids
(Oxford University Press, London, 1955), Chap. 6, for a discussion
of the validity of the Boltzmann equation.

11 For very strong interactions there are theoretical reasons for
believing that = might begin to increase so that (3.1) might again

be satisfied. See Sec. VI C.
2 M. Gell-Mann and M. Goldberger, Phys. Rev. 91, 398 (1953).
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mation on the Hamiltonian to a new set of variables in
terms of which the Hamiltonian would naturally
separate into parts representing the polaron, the modi-
fied phonon field, and the residual interaction. Even in
those polaron theories where this has been possible in
some sense, it is certainly not clear that the same
transformation which describes slow polarons will
equally well describe faster ones, ones moving fast
enough to emit real phonons spontaneously. It is not
clear, for example, that the energy-momentum relation
valid for polarons almost at rest can be extrapolated in
any simple way to these faster polarons even if it does
have meaning to speak of polarons with such energies
as well-defined entities.

The difficulties attaching to the notion of the polaron
as a well-defined entity, are related to difficulties in
defining the fundamental scattering processes. Several
authors® have taken them to be simple absorptions and
emissions of phonons. Aside from the minor calcula-
tional difficulty due to the very inelastic nature of these
collisions, which can be overcome,* there are a few
more basic difficulties with this approach. (1) The
lifetime of a fast polaron (one that has absorbed a
phonon) before it emits a phonon almost certainly
violates (3.1), assumed in the derivation of the Boltz-
mann equation. (2) The matrix elements of the transi-
tions that must be calculated require knowledge of the
polaron wave function for polarons moving fast enough
to emit real phonons spontaneously. (3) Energy and
momentum conservation laws must be satisfied and,
in phonon absorption, the density of final states is
needed (hence polaron velocity), both requiring
knowledge of the dispersion law for faster polarons.

The first objection has been overcome by arguing
that since the phonon emission probability (~7+1) is
much greater than the absorption probability (~7),
one may assume each absorption is immediately fol-
lowed by an emission, that the transition probability
for the two successive processes is insignificantly
different from that for the absorption alone, and that
for slow polarons the double process is isotropic. This
has the additional advantage that the double process
now considered as fundamental is elastic (since all
phonons are assumed to have the same frequency).

If the possibility of two successive phonon absorp-
tions, and hence of emissions, is neglected, which
certainly seems reasonable at not too high temperatures,
then a more rigorously correct procedure is to calculate
the quantum mechanical transition probability of the
double process directly'® and not to rely on the intuitive

13 Frohlich, Pelzer, and Zienau, Phil. Mag. 41, 221 (1950);
Pekar, reference 1, especially Sec. 17-20; A. Morita, Science
Repts. Research Inst. Tohoku Univ. 38, 1 (1954); and 39, 73
(1955) ; Morita, Horie, and Hasegawa, Science Repts. Research
Inst. Tohoku Univ. 38, 158 (1954).

“D. J. Howarth and E. H. Sondheimer, Proc. Roy. Soc.
(London) A219, 53 (1953). )

15 Such a calculation was first made by F. E. Low and D.
Pines, Phys. Rev. 98, 414 (1955).
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argument that this rate is essentially the same as the
simple absorption rate. Such a.calculation has the
additional advantage that both the initial and final
polaron states are now slow polaron states which can
be reasonably well defined, in principle. The matrix
element of the transition actually receives contributions
from the two Compton scattering diagrams of Fig. 1.
Because real phonon absorption is possible, (a) is
actually a form of resonance scattering, analogous to
resonance fluorescence when photons are incident on
atoms. The sharpness of the intermediate states is high
for very slow final (and hence initial) polarons, since
then the volume of phase space into which the inter-
mediate state can decay by phonon emission is very
small.

A simple analysis of a model polaron-phonon Hamil-
tonian along the lines of the classical resonance fluores-
cence calculations'® is instructive in showing the
relationship between the simplest form of resonance
scattering and the intuitive arguments advanced to
make the simple absorption scattering tractable. It
will also be of heuristic value when we analyze direct
calculations of the second-order scattering process. and
try to interpret the process as a simple resonance
© scattering process. Let us suppose it is possible to
describe the polaron-phonon system by a Hamiltonian
of the form

K=EP)+2i ZeVp(rie™ rilem 043 fwriire
=3p+Iins+3Cs, (3.2)

in which the residual interaction can be treated by
perturbation theory. Here P is the polaron momentum
operator, 74 and 74" are modified phonon annihilation
and creation operators, and Z; is an effective screening
factor introduced. because of the difference between
bare electrons and polarons. For low temperatures
when the rate of phonon absorption is very small, a
resonance scattering calculation gives for the transition
rate per unit time for a polaron from momentum P, to
a final momentum in a solid angle dQ, about P,

2
W (P, Po)dQp=— AV f dQdP; P2
ko (2wh)?
[ (1] 3Cins | 2) | 2| (2| 3Cins| O] 2
[ (1] 3Cine )] | (7] 3Cins |  33)
(Eo— E)*+184
where

pn=V (2nh)3P,2/ (dE/dP)p=rn,.

Here |4) is the intermediate state in which the polaron
has momentum P; and a phonon of wave vector
(P,—Py)/% has been absorbed, and |n) is the final
state in which a phonon (P;— P,)/% has been absorbed
and a phonon (P;—P,)/% has been emitted. E;+318;
is the complex energy of this intermediate state. §3; is
just the transition rate per unit time for the decay of

16V, Weisskopf, Ann. Physik 9, 23 (1931).
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Fic. 1. Second-order dia- N v
grams contributing to po- I}" LLL\
laron-phonon  scattering. [t

Solid lines represent po-

larons; wavy lines, phonons. (a) (b)

a polaron of momentum P; through phonon emission,
and is thus given by

Bi=2mli f 2 ool (nl5Cs| ]2 (3.4)
Implicit is the requirement that
E(P.)=E(P,). (3.5)

For very slow initial and hence final polarons, 8;— 0
and all quantities become isotropic, so (3.3) becomes

[V(Pn,Po)dQn= 2wkt l (r l ICint [ 0> I 2p7d9n
X812 pn | (1| 3Cins | 7) |2/ B

Here |7) and P, refer to the resonance state for which
E(P.)=E(Po)+ho. (3.7

Because of (3.4), the fractional factor on the right of
(3.6) is just unity and (3.6) reduces to the simple
phonon absorption rate. The relevant physical quanti-
ties characterizing the transition rate are the resonance
momentum P,, defined by (3.7), the resonance velocity
entering in p, defined by #,= (dE/dP)r=r,, and the
coupling renormalization factor for the resonance
phonon, Z,. The mass m* of a slow polaron does not
itself appear in the scattering amplitude.

Actually, it is too much to expect that the original
electron-lattice Hamiltonian can be transformed into a
form such as (3.2) that would be valid throughout the
scattering process. For this reason, the second-order
scattering probability may not have the simple struc-
ture of (3.3), although if it should, one might then
expect the width B8, to be related to the basic matrix
elements occurring in the numerator of (3.3) according
to the relation (3.4). The intuitive equivalence of the
simple absorption and resonance scattering rates would
then be justified.

The problem of determining the transition rate of
the double process and, if it has the structure of (3.3)
of determining the quantities P,, #%,, and Z, must still
be solved. Let us consider what has been done in this
direction.

(3.6)

IV. REVIEW OF POLARON MOBILITY THEORIES

According to Sec. II, the polaron theories of Frohlich,
Pelzer, and Zienau,'” of Lee, Low, and Pines* and of
Pekar upon which calculations of polaron mobility

17 See Frohlick, Pelzer, and Zienau, reference 13. This early
self-energy calculation, the first attempt to go beyond second-
order perturbation theory in the region of small «, is distinctly
inferior to the later theory of reference 4.



532 T. D.

have been based, are unsuitable for calculating even
the self-energy and effective mass over an important
range of values for a. These theories are, then, hardly
reliable in describing the more complicated features
affecting mobility. Even if they were, however, there
would be additional reasons for doubting their validity,
which we now discuss.

Both the weak coupling theory of Fréhlich, Pelzer,
and Zienau and the strong coupling theory of Pekar
are based on a calculation of the simple absorption rate.
Both theories assume the polaron mass to be inde-
pendent of P, i.e., they approximate £(P) by a para-
bola, in determining P, and #,, which we believe to be
unjustified. Furthermore, as we have seen, to justify
a mobility calculation based on the simple absorption
rate one wants to have a double scattering rate with
the resonance structure of (4), which would follow from
a Hamiltonian such as (3). Although a Hamiltonian of
approximately this form is derived by Pekar in which
E(P) is parabolic, the validity of this Hamiltonian even
for very strong coupling is doubtful except for polarons
essentially at rest.!®

Morita et al.®® in three elaborate papers have at-
tempted to calculate the simple absorption and emission
rates by solving an integral equation for an R-matrix
derived in a manner patterned after Gell-Mann and
Goldberger.? They have then used the Howarth and
Sondheimer™ method to solve the Boltzmann equation.
There are basic theoretical objections to the defi-
nitions of the initial and final states, however,® and
several additional approximations must be made in
solving the resulting equations, so that the procedure
appears to be invalid.

Low and Pines'® have made a direct calculation of
the resonance scattering rate, using as initial and final
states slow polaron states calculated by Lee, Low, and
Pines, or equivalently working with the Lee, Low, and
Pines transformed Hamiltonian. In principle, this is
most advantageous because, as we have discussed, it

) Fi1c. 2. Resonance momen-

tum P,/(2m#Aw)t vs coupling
constant «. (a) From Low and
Pines scattering theory; (b)
from Lee, Low, and Pines
energy spectrum Eg;,(P); (c)
from parabola approximation
with Lee, Low, and Pines
1.0 effective mass.

b)
(O]

P, /(2mha)?
=

18 See, for example, Y. Yafet, Technical Report No. 2, University
of Illinois, Urbana, 1954 (unpublished).

9 Although taking account of the self-energy effects of the
electron lattice interaction (albeit, within the parabola approxi-
mation), Morita et al. have not taken proper account of the change
in polaron wave function due to the interaction [as has been
discussed, for example, for the meson-nucleon case by G. C. Wick,
Revs. Modern Phys. 27, 339 (1955)7]. This is particularly bad for
the final state in phonon absorption where the real state, being
capable of spontaneous emission, is entirely different from a fast
bare electron state.
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avoids treating intermediate states, which are difficult
to describe, and only assumed the Lee, Low, and
Pines description to be valid for slow polaron states.
To evaluate the resonance scattering matrix in practice,
however, one is forced into a one-quantum approxi-
mation. This rests on the implicit assumption that the
Lee, Low, and Pines description gives higher states in
good approximation as well. Or equivalently, it implies
definite assumptions about the nature of the phonon
cloud around the polaron in the intermediate state,?
thus partly canceling the advantage mentioned above.
It is still interesting to compare the results of Low and
Pines with the simple resonance picture sketched above,
because the discrepancies, indicating a true breakdown
in the simple resonance picture or reflecting the inade-
quacies of the Lee, Low, and Pines description in
combination with the one-quantum approximation, will
suggest criteria for interpreting the mobility theory
developed in Sec. V.

For Py— 0 the structure of the transition rate
calculated by Low and Pines is just that of (3.3) with

E(P)=E(P —0)
+hw?[1—aF (2) T14aF ()], (4.1a)

= f(a) (2fw/m)}, (4.1b)
[(1]3Cins| 7)]?=Vk/?, (4.1¢)
and

B=8m i (m/m*)*pn| (n|Hine| 7|2 (4.1d)

Here F(x) and f(a) are functions given by Low and
Pines, x=P/(2mhw)?, and =, is the solution of

1=x1—aF (x,) [14aF (x,) T
We wish to make four remarks:

(1) According to (4.1d), B is not given by (3.4) as
would be expected in a simple resonance structure. This
could be a fault of the one-quantum approximation or
a result of a true breakdown of the simple resonance
picture, suggested by (3.2), for the intermediate state,
although in the latter event, one would expect 8 to be
modified by a factor relating to the intermediate state
rather than by (m/m*)?, which relates to the slow
polaron state.

(2) According to (4.1a) there is no renormalization
of the coupling constant. This is certainly #of the case
for intermediate or strong coupling,” so that one might
expect corrections to first order in a just as for the
other important physical quantities.

(3) The resonance momentum P, has been computed
for various values of « from (4.1e). In Fig. 2 it is
compared with the resonance momentum obtained with
the parabola approximation and the Lee-Low-Pines
effective mass, i.e., P,= (2my,fiw)?, and with the reso-
nance momentum obtained from FEy,(P,)=FEy,(0)

(4.1e)

2 A detailed discussion of this point is given in A, Chap. S,
Secs. E, F, and G.
% See, for example, Pekar, reference 1, Sec. 17.
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+hw, where Ey,(P) is the slow polaron spectrum
computed by Lee, Low, and Pines. It is remarkable
that the resonance momentum from the scattering
theory is significantly larger than the other two, sug-
gesting either that the parabola approximation in this
and other theories is bad, or that the residual interaction
in the Lee-Low-Pines Hamiltonian has a much larger
effect than permitted by the one-quantum approxi-
mation, or both.

(4) For small « the resonance velocity #, is not
changed to first order in «, as is the resonance momen-
tum and as other quantities would be expected to be.
More significant perhaps is that the resonance velocity
is an increasing function of e, rather than a decreasing
function as it would be with the parabola approximation
where it is (27iw/m*)3.

In conclusion we suggest that even if the Lee-Low-
Pines theory gave the mass m* accurately, certain
features of the mobility calculation would still cast
some doubts on its applicability to this calculation. It
is not even clear that it gives the right first-order
corrections to the Frohlich-Mott mobility formula
(obtained by perturbation theory). For intermediate
values of a it, as other theories, seems inapplicable.
For these reasons we proceed to a calculation of
mobility based on Feynman’s description.

V. RESONANCE SCATTERING OF A
FEYNMAN POLARON

A. Formulation of Theory

A mobility calculation based on Feynman’s polaron
theory will have two advantages: the parameters of
the free polaron as they affect the mobility will be
given by the more accurate Feynman theory, and most
of the objections previously encountered in making the
parabola approximation or in using the Low scattering
formalism?? will be overcome. The curious behavior for
the resonance velocity found by Low and Pines re-
mains, however, and is even stronger, a difficulty still
unresolved. There remain some necessary approxi-
mations mainly to do with transients, which have not
been rigorously justified but which, it seems, should
not seriously affect the quantitative results. '

The essential features of Feynman’s approach to the
polaron are the replacement of the particle-field prob-
lem by a two-particle problem and the formulation of
the two problems in such a way that they can be
directly compared. The parameters of the two-particle
problem are chosen by a variational principle to
optimize the degree to which the second system
approximates the first, insofar as the dynamics of the
first particle are concerned. To use the two-particle
approximation to the polaron ground state in calculat-
ing the polaron mobility, we must formally satisfy two
requirements. First, we should like an exact formu-
lation of polaron-phonon scattering in which the

2 F. E. Low, Phys. Rev. 97, 1392 (1955).
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properties of a free polaron are in some way separated
from the intricate details involved in the scattering
process. Second, we should like, if possible, to replace
the polaron as it appears in such a formulation by the
two-particle approximating system introduced by
Feynman.

The first requirement has been met in Feynman’s
formulation of quantum electrodynamics.® There it is
shown that the transformation function from a state
with an electron at ' and the field in the bare vacuum
state at time ¢ to the state with the electron at r’’ and
the field again in the bare vacuum state at time ¢’ is
given by the path integral?

(r"t”|r’t'>=f§0r(l) exp[if

where L,=%m(d%/di?)? is the particle Lagrangian and

&

L,,dt]Goo[r(t)], (5.1)

Goo[r(t)]=Hk’ f f AXAXY Gt (X bo(X Y

XfiDX,;(t) exp[ift,

Here ®(X;'t') is the ground harmonic oscillator wave
function with a phase factor exp(—3iwt); L;® and L*
are the Lagrangians of the kth mode of the field and
its interaction with the electron, respectively. Thus
Goolr(t)] is the vacuum-to-vacuum transformation
function for the field, assuming the electron to move on
a path r(f). For the electron-lattice Lagrangian one finds

Goo[r(t)]=eXp[i(%m2(2mw)—% f ft ,w{r(t)

—r(s)l*le*fw“-sfdtds)]

I

(Lfk‘Jr‘L[k)dt] } . (5.2)

(5.3)2

Similarly, if initially a phonon k' is present and finally
a phonon k” is present, Feynman obtained the trans-
formation function

(l‘"kl't” [ r,k/t,>

=exp(s9).

_ f Dr() exp[i f wL,,dt]Gkukr[r(l)]. (5.4)

For the electron-lattice problem one finds

tll
Gk"k'[r(t)] = — eUk'cokllff dtldize_i“’(h—”)
o

X f Dr () exp[—i f f”f(z)-r(t)dt]coo[r(z)], (5.5)

2 R. P. Feynman, Phys. Rev. 76, 769 (1949).
2 For convenience we usually set =1 here and in what follows.
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where

1()=—Ko(@t—t:)+k"s(t—1), (5.6)

and the term f(f)-r(f) in the action represents the
effect of the two phonon collisions on the path of the
polaron. v
Expression (5.5) has the two features we have
required. First, as it stands it allows an exact formu-
lation of the scattering problem. One has only to sum
over all particle paths r(f) consistent with the con-
straints of the problem. Thus if one wishes the proba-
bility amplitude that a polaron be scattered from
velocity u’ to u” by a phonon going from k to k”, one
must use the kernel Gy /i/[r(£)] and sum over all paths
that get through a pair of shuttered collimating slits
set to select particles of velocity u’ shortly after time
¢ and that also get through a similar filter selecting
velocity uw’ shortly before #/. One must in addition
make two corrections. One must correct for the decrease
in particle flux effected by the initial filter by renormal-
izing the incident flux so that unit particle flux emerges
from the first filter. Also one must realize that at the
final time ¢” the polaron may be almost anywhere in
space depending on the times at which k’ was emitted
and k” absorbed. Thus the determination of final
velocity must be done with a continuous set of velocity
filters distributed over space and the path integral over
paths through the filter at a particular point in space
must be multiplied by a definite but somewhat ad koc
phase factor appropriate to that point, reflecting the
correlation of velocity measurements at different points.
Although the particle is initially and finally a bare
electron rather than a polaron, this should not affect
the final scattering probability, since when the velocity
filters are introduced it is the average velocity of the
particle over a period of time that is selected. During
most of this time the interaction can be considered
turned on and the particle will have its cloud of virtual
phonons.?
The second advantage of Feynman’s formulation is
_that the properties of the free polaron are contained
explicitly in the propagation kernel Goo[r(¢)], which

25 Here we have implicitly assumed that the phonon-polaron
collisions take place after the particle has gone through the initial
velocity filter and before its final velocity is determined; i.e., we
have assumed that the virtual phonon cloud has been acquired
on turning on the field before the first phonon-polaron collision
(absorption or emission) and that the second collision (emission
or absorption) occurs before the interaction is turned off and the
phonon cloud is lost. This assumption is rigorously valid in the
limit of a very long time between the two filters; the probability
of the collisions occurring in any particular finite time interval
will become negligible in this limit, so that one can, with negligible
error, neglect contributions to the transformation function arising
from collision times near the end points. Somewhat simpler is the
case of free propagation treated in Appendix A in which the
vacuum-to-vacuum transition itself is of interest. There again
one must look at the propagation only over long time intervals
so that the times, in these intervals, during which the electron is
acquiring and losing its virtual cloud constitute a very small part
of the total interval. Then the behavior of the electron during
these times has negligible effect on the average behavior over the
whole interval.
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refers only to the coordinate of the electron and can
therefore be replaced approximately by the kernel
describing the propagation of the electron in the two-
particle problem, imposing some appropriate initial
and final conditions on the second particle. Writing
Goo=exp(iS), Feynman’s approximation was to replace
S by So, where

So=—1iC f f (r())—£(s))%e~iv1=1duds
,
tl’
+ f (A+B)dt, (5.7)
.

w and C are certain parameters, and 4 and B are
related constants.

It is useful to see the precise relation of Sy to a system
composed of an electron of mass # connected to a
fictitious particle of mass M by a zero-length spring of
spring constant 2 and with potential energy of the
unextended spring defined to be U,. If the electron m
is fixed at the point r, it is convenient to introduce time
independent harmonic oscillator states ¢.(x—r) around
r for the second particle corresponding to a frequency
(k/M):. Then the transformation function from the
state at ¢’ in which the electron is at r’ and the second
particle is in @o(x—1’) to the state at ¢/ in which the
electron is at 1" and the second particle is in @o(x—1"")-
can be shown to be?

(rll ()(X”"“r,,)tu I rl¢0(xl_r,)ll>

tll
_ f Dr(f) exp[i f L,,dt—I-So]
v
tll
Xexp[~in {(x () —1")2eiwt=t)
"

+(r(t>—r”)%““”“"‘”}]’ (5.8)
if27
Uy=— (A+B+3w), k=2Cw, and M=2Cw3. (5.9)

A study of (5.8) indicates that the dynamical effects
of the electron arising from the motion of the second
particle are principally contained in .Sy and that the -
additional terms in the effective action represent the
transient effects due to the specific choice of initial and
final states of the second particle. Strictly speaking,
the effects of a particular initial and final state are not

26 This is a straightforward calculation, since the action is
quadratic in the coordinates. See reference 23; A, p. 155; or K.
Yamazaki, Progr. Theoret. Phys. (Kyoto) 15, 508 (1956).

27 The extra term 3w is due to the fact that the state ¢o(x—1r)
is taken to be time independent, whereas in (5.2) it was assumed
to have the phase factor appropriate to the zero-point energy of
the phonon field.
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transients, since in the two-body system under con-
sideration no possibility of decay has been introduced.
This can be remedied in part if we ascribe to w, when-
ever it appears in So or the transient terms of the
action, a small negative imaginary part so that w — w
—ie and exp[—iw(t—1¢')]— 0 as t — o, etc. In calcu-
lating path integrals using the approximate action So
instead of the exact action .S, the velocity filters then
reduce the emergent flux both because only one velocity
is selected and because of the enforced decay of higher
internal states of the two-particle system resulting
from the imaginary part of .28

It would now seem that if .Sy is a good approximation
to .S, a good approximation to the scattering amplitude
can be obtained from (5.4) by replacing S by Sy and
making the appropriate renormalizations described
above. One real failure of this approximation is that
the Feynman polaron’s energy levels being the energies
of the two-particle system are all real. The width of the
intermediate state using So in (5.4) would therefore be
zero and the integration over all intermediate states
(characterized for example by k' or k” for given v’
and u”’) would not be finite. For this reason we must
introduce corrections to the description of propagation
in the intermediate state.

We may consider the replacement of S by So as the
zeroth-order approximation in the exact expansion

exp (2S) =exp (4.50) exp[7(S—.So)]

=exp(iSo)[1+4(S—So)+---], (5.10)

so that the scattering amplitude is

W'k | WK y=—VpVpr f f dbidis
.
xexp[—io(b=t)] [ DIOLI+i(S—S)++]

Xexp[ift (%m(dr/dt)Q-—f-r)dt—HSo]. (5.11)

Any of the path integrations appearing in these expres-
sions can now be reduced to the evaluation of ordinary
Riemann integrals because of the quadratic structure
of So. For example, since

r|—1~~7r fdsk k2eiker

and

2= [:Vk2eik.r:|k:0= dekeik.rVk25 (k)’

28 For a more complete discussion, see A, p. 155 ff. and Appendix
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then

e V
f Dr(D) (S—So) exp[i( f %m(dzr/dt2)+So)]
.
t'l
=7iV(21r)—3fd3kUk2ff dtldtz e—iwlt—tz|

% f N0 exp[ f (m(@r/de) — 1§, r)dt-l—zSo]

ind3KV 25(K)ff dlfldtze iw| t1—ta|

% f or(i) exp[i f 't”(-zl—m(d%/dt?)—fK-r)dt—I—iSO]
—(A+B)T f or()

t/l
Xexp[if %m(dzr/dﬁ)dt—l-iso], (5.12)

t

fr=—k[6(t—t)—8(@—12)].

Similar expressions can be derived for higher powers of
(S—So). The structure of the correction terms as
exhibited in (5.11) suggests that, as in quantum
electrodynamics, they can be represented by higher-
order Feynman diagrams in which the bubbles now
stand for what we shall call “quasi-phonons.” By a
quasi-phonon bubble diagram we shall mean the
diagram representing the three correction terms
exhibited in (5.12) taken together.

We propose to include corrections in the form of
virtual quasi-phonons only for the propagation of the
Feynman polaron between the absorption of k’ and the
emission of k”. Since, as in ordinary perturbation
theory, no finite order corrections can yield a finite
width for the intermediate state, we must sum over an
infinite set of diagrams. To make calculations easier
it is desirable to work in a Hamiltonian operator
formalism rather than in the path integral formalism.
We wish to set up an extended Hamiltonian K which,
if treated by path integrals, would lead to an expansion
such as (5.11). From our discussion of .Sy it is clear that
a Hamiltonian leading to an action Sy is

Kpart= (P2/2m0) +Hp+ UU
= (P%/2mo)+ (=*/2u) +Fuve®
—(A+B+3w). (5.13)
Here P is the momentum operator canonically conju-
gate to the center-of-mass coordinate R= (mr+Mx)/
(m~+M); = is canonically conjugate to the interparticle

separation p=r—x; mo=m-+M is the polaron mass m*
in zeroth approximation; u=mM/my; and v=+/(k/u)

where
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is the frequency of the two-particle oscillator. In
calculating all transformation functions, we must re-
member that the initial and final states should be the
ground harmonic oscillator state in their dependence
on .

Contributions to the virtual quasi-phonon diagrams
like the first terms of (5.12) are exactly obtained by
including the original Hamiltonian (setting the zero-
point energy equal to zero) in the unperturbed part K,
of K and the interaction part of the original Hamil-
tonian in the perturbed part Ki. Contributions to the
virtual quasi-phonon diagrams like the second term of
(5.12) have a similar structure except that the factor
VrV/2(2m)% is replaced by the very singular factor
—3CV25(x). To account for such a factor one must
include in the interaction part K; a term with similar
structure to the original electron-lattice interaction
term but with the coupling constant U, replaced by
the constant 4i[47*CV25(x)/V ]}, and one must in-
clude in the noninteracting part Ko a field with all
modes having the same frequency w and with zero-point
energy equal to zero.

The third term in (5.12) is obtained simply by
including the additive constant 44 B in K;. Actually
whether it is considered part of K¢ or K; should not
make any difference, if we sum over all quasi-phonon
diagrams. However, considering it part of K; will in
general make first-order corrections to the self-energy
vanish for a polaron at rest. This has the advantage
that inclusion of K; in something like a one-quantum
approximation will not change the polaron self-energy
from what it would be if K; were neglected. The
one-quasi-phonon terms will therefore relate solely to
the scattering.

We are thus led to consider the extended Hamiltonian
K =K 0+K 1 Wlth

Ko= (P*/2mo)+ (=%/2u) +3ur’e*— (4 + B+3w)
+Zk wTkTTk—i—ZK wb,ﬁb,,
K1=3%"1 Or(ree®*+rpte 1) —(4n3C/V)?
X (V.28(%))3[be exp(ix-1)+c.c.],

and with the additional constraints that initially and
finally in any transformation function, the relative
coordinate g and the ., b,' field shall be in their ground
states and the 7., 7,' field shall be in the appropriate
states. The use of this Hamiltonian in a time-dependent
formalism with these initial and final constraints gives
the same results as the evaluation of the corresponding
path integrals of (5.11) when the appropriate renormal-
izations due to transients are performed.?

(5.14)

B. Evaluation of Resonance Scattering Amplitude

We now use the extended Hamiltonian K to make an
approximate calculation of the scattering amplitude.
¥ It is observed that the extended Hamiltonian K is not
Hermitian. This should cause no real concern, since the constraints

will require that the non-Hermitian part always occur multiplied
by its Hermitian conjugate and this product is Hermitian.
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Since we intend introducing quasi-phonon corrections
only in the intermediate state, the velocity filters
selecting paths with average velocities w’ and u’ are
equivalent to the requirement that the initial and final
states of the two-particle system have momenta P’
and P” where P’=mq’ and P”=me'". That we are
justified in neglecting quasi-phonon corrections to the
free propagation of a slow polaron is indicated in Sec.
IT and Appendix A where m, is shown to be a good
approximation to the polaron mass. Thus we seek the
transition amplitude (P”0; k"’0¢'/| P'0; k'0¢'), where the
first zero in a state vector indicates the ground internal
state of the two-particle system and the second zero
indicates the vacuum state of the b,, b, field. Since

e iEC =) (E—K+ie)dE

—0

lim 4(2m)~1
e—0+

— p— 1K (¢''—t")

’

>,

=0, <t

we have

t/l
(P"0; K00 | P'0; KOy = —i f f dbrdts
,

e Ko=) [, 1

X <P/IO , kNO

’I: 0
f dE e—iE(tz—tl)
2w J_,

X (E—K~+i) K e iKotti=t) | P k’0>. (5.15)

Here K" and K are respectively the parts of K;
creating a phonon k' and annihilating a phonon k',
and e — 0 - is understood.

In (5.15) we have explicitly neglected quasi-phonon
corrections except to the propagation of the inter-
mediate state. For large #/—¢, in the usual way,

(P"0; k"0¢" | P'0; K'O/')

=2710(E"— E")Rpiryrr.priy,  (5.16)
where
Rprrior; o =(P"0; K'0| Kot (B — K i€
XK |P0O; K0). (5.17)

Substituting explicitly for Ky and Ky,

Rprrgrs; prie= VgV (P +k"0; 00| exp (— k" - oM /o)
X (E'—K+ie) ™ exp(ik' - oM /mo) | P'+K0; 00). (5.18)

We may introduce the formal expansion

(E'—K+ie?=Gp 2 (KGw)’,

r=0

(5.19)

where Ggpr= (E'—Ko+ie)™L. From (5.12) we see that
nth-order corrections from (4+B) always accompany
2nth-order corrections from K;=K;— (A+B). Also,
only terms in (5.19) with an even power of K; can
contribute to R. Hence we may regroup terms in (5.19):
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_RPl/kI/;Plkl :rokllcok,<P/I+k//O; OO exp(—*ik” . QM/mO)

XGp i [(chE’K1+A +B)GE']”

y=0

Xexp (k' - oM /mo) | P'+Kk'0; OO>. (5.20)

To make further calculation possible we now make
two approximations:

(1) In a diagrammatic analysis of (5.20), we neglect
all diagrams except those in which only one quasi-
phonon is present at a time.

(2) Whenever there are no quasi-phonons present,
we assume the two-particle oscillator is internally in its
ground state. Thus we sum over graphs in Fig. 3.

The first of these approximations is analogous to (but
slightly different from) a one-quantum approximation.
It is made in the belief that in most ways the Feynman
polaron is a good approximation to the intermediate
state and that the decay of this resonance state can be
calculated by summing over the diagrams of Fig. 3.
We shall see that including these quasi-phonon correc-

tions has little effect on the resonance momentum but a

considerable effect on the resonance velocity.

The second approximation is felt to be reasonable on
the following two grounds. First, the matrix element
(0l exp (k- @M /mo) | 0) = exp[ — (¥*/4uv) (M/mo)*], and
the element (O|exp(tk-9M/mo)|n) has an additional
factor (k2/2uv)™2(1M /mo)™(n!)~%. Transitions to excited
internal states will thus be relatively important only for
k~ (2uv)}(mo/ M) = (2mv)}(1—w*2)~% This quantity
tends to e both for « — 0 and @« — o, having a mini-
mum of about (11mw)? at about a=35. For such large
k, all matrix elements are small through the factor
exp[[ — (k¥/4uw) (M /mg)*]. Secondly, for weak coupling
the associated energy denominators will be large due
to the recoil with such a large momentum of the light
two-particle system, and for strong coupling the associ-
ated energy denominators will be large because of the
high excitation energy » of the internal two-particle
oscillator states. The increase in energy denominators
due to internal excitation should be very strong when
there are no virtual quasi-phonons present, since then
the energy denominators would otherwise be close to
zero.® Since it is possible to proceed without assuming
the two-particle system to remain in its ground state
while virtual quasi-phonons are present, we shall do so.
It is then easy to see explicitly that to assume no
internal excitation while quasi-phonons are present
would introduce only small corrections.

Making the above-mentioned assumptions we replace
the operators exp(—ik”-oM/m¢), K.GwK.+A+B,

% They would not be exactly zero, since the momentum of the
phonon absorbed in resonance scattering of a very slow Feynman
polaron will turn out to differ somewhat from (2mw)* for which
the energy denominator would vanish.
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F16. 3. Diagrams summed over in calculating phonon-polaron
scattering with quasi-phonon (wavy lines) corrections. Solid lines
represent the two-particle oscillator propagating in its ground
internal state, and the dotted lines represent propagation in an
arbitrary internal state.

and exp(ik’-oM/m,) by the appropriate diagonal
matrix elements so that

Rprgr, priy =V Vg exp[ — (B2 +%2) (4ou) 1 (M /m0o)*]
XO(E'—E"s(P'+Kk', P"+K')[E'+w—(P0; 00| Ko
+K.GpK1+A+B|P0;00)]1, (5.21)
where

P=P+k'=P"+k",
E'= (P2/2m¢)+w+3(v—w)— (44 B) = total energy,
and
(P0; 00| Ko| PO; 00)
= (P2/2mo)+5 (v—w)— (A+B). (5.22)

This suggests that the coupling constant is modified
with the factor

Zi=exp[ — (k%/4uv) (M /mo)*]. (5.23)

The term (P0;00| K,.Gr K1+ A+B| P0;00)= Vo (Z,P)
is a function of the initial energy E’ and the total
momentum P. It is shown in Appendix B, that in the
limit P’ — 0 and £’ — o,

Voolw,P)/w=ar %(P2/2mw)%f dr e =70=UD (7)1
0

XF ((xr/ D+ A=) { — (3v/4w) (1—w?)
X [V1— (V40w ]— (3w/4w) V242V~
+ (44 B) —iax—P’ exp[ — (P?/2uv) (M /m0)*], (5.24)
where®
x=P2/2mw,
V= (P 2mitw—ow)/w,
7=7(r) =14 (w/w?) (1 —wvr )7 (1—e7/*), (5.25)
Fw=exp(~29) [ exp(i
0
The resonance momentum is obtained by setting the
real part of the denominator of R equal to zero:
w=P.2/2mi+ReVoo(w,P>). (5.26)

The resonance velocity is obtained by differentiating
the right-hand side of (5.26) with respect to P, and

3t F(x) is tabulated by W. L. Miller and A. R. Gordon, J.
Phys. Chem. 35, 2877 (1931).
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using the relation F’(x)= —2aF (x)+1:
v,= (P/mo) —an~*(w/2m)} f dr e==a-1D
0

XL+ @n)™F ((xr/ 7))+ (x75) 4]
+ (1—w22) (w/v) (P,/mo) { (3v/4w) (1 —w?v?)

XY= (YV+ow )2 ]4+-5(w/0) Y33V}, (5.27)

Finally, the resonance width is

1B=qx, 1P exp(—2Mx2/v)
=ax, 1P exp[— (P.2/2uv) (M /m)*], (5.28)

which agrees exactly with the emission rate 8 of a
polaron with a mass at rest of mo and with a coupling
constant renormalization factor given by (5.23).

The resonance scattering rate for very slow polarons
is finally obtained from (3.6) with the occupation
numbers #; replaced by their thermal average 7,
[exp (fw/kT)—171:

1/r= f W (P, Po) = 2waiiZ(20/m)o, . (5.29)

VI. EVALUATION OF RESULTS AND COMPARISON
WITH OTHER THEORIES

From the standard mobility expression u=er/m* and
(5.29), one obtains for the mobility of a slow polaron

e 1 m Uy
p=— — esu.
2me il mo (2he/m)?

(6.1)

Here mo= (v/w)?m is tabulated in Table I. Numerical
evaluations of P,, v, and Z, for =3, 5, and 7 are
compared with their values in the limit of zero coupling
in Table IV.

A. Resonance Momentum

Of particular interest is the value of P, If the
corrections we have made to the zeroth-order Feynman
description are to be meaningful, they must be small.
In particular, we should compare P, with the value
obtained by making the parabola approximation,
P.= (2mww)?. The corrections to the parabola value
are seen to be never more than about 159%,.

We observe also that the resonance momentum can
easily be within a factor of three or four of the maximum

TaBLE IV. Resonance momentum, velocity, and coupling
renormalization of a polaren for various o’s.

a 0 3 5 7
P,/ (2mbw)t 1 1.54 2.13 3.83
v/ (2hw /m)t 1 2.58 3.57 3.92
Z: 1 0.736 . 0.444 0.096
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phonon wave vector k.=2m/a.* The large resonance
momentum can invalidate the assumed forms of both
the free field term and the electron-field interaction
term of the original Hamiltonian, at least for short
wavelengths. Although this may not seriously alter the
value of the self-energy and effective mass, which may
depend mainly on virtual phonons of longer wavelength,
it can affect calculations of mobility in two important
ways. First, the frequencies of the short-wavelength
modes involved in resonance scattering may differ
considerably from the constant w assumed for all longi-
tudinal modes, since the constant frequency assumption
is reasonable only for long wavelengths. The short-
wavelength modes probably have a lower frequency,
nearer to the frequency of the transverse modes, since
there is less polarization charge associated with the
short wavelength modes.® This should first of all change
the value of the resonance momentum, P, (and hence
u, and Z,) because a different phonon frequency will
enter into the resonance condition (5.26). Secondly,
the temperature-dependent factor [exp(fw/kT)—17]"
should show a difference from that involving the usual
frequency w= (€/ €,)¥wrest,”t Which may be observable
and which would be a valuable check on the theory.
For this check, it would be useful to have an inde-
pendent determination of the longitudinal optical spec-
trum by a method such as neutron diffraction. Unfortu-
nately at temperatures high enough to separate the
optical mobility from the effects of acoustic modes and
imperfections, the initial polaron momentum may not
be so near zero. Then phonons of a range of wavelengths
become important in the scattering, a range where the
frequency is not constant. Consequently the density of
phonons effective for scattering would not vary simply
as [exp (hw/kT)—17

A second important possible error in the original
Hamiltonian derived from the continuum approxima-
tion is in the interaction term. The coupling strength
between polaron and resonance phonon can be signifi-

3 For an NaCl type lattice, ¢ is the side of the basic cube,
~5 A, The maximum £ in the [1007, [1107, and [1117] directions
are then respectively 2r/a, (2w/a)V2Z, and (2r/a)V3/2, For the
alkali halides £2,~212(2m.w/h)*. The Debye cutoff is ko= (3/7)3k,.
This raises an additional objection against the mobility theory of
Pekar. Consider NaCl for example. Supposing the electron mass
due to the periodic potential to be 2.78m. as Pekar deduces from
his F-center theory, an unreliable estimate but one which favors
the strong-coupling theory, Pekar finds « to be about 8.8 and the
polaron mass m,=386m,.. Even if the resonance momentum were
as small as given by the parabola approximation, one would find
kr= (2m,/#)¥=21.82X10% cm™ compared with 27/a=1.114X108
cm™, so that the scattering mechanism assumed to be responsible
for mobility could not even occur, for want of any phonons of
such short wavelength. Even assuming m=m, and making the
parabola approximation, Pekar would find a=5.3, m,~218.3m,,
and k,=0.394X10% cm™, too close to the lattice cutoff to allow
the constant-frequency approximation and the continuum
approximation treatment of the resonance phonon mode’s inter-
action. Corrections to the parabola approximation increase %,
and so worsen the approximation.

33 See, for example, M. Born and K. Huang, Dynamical Theory
of Crystal Lattices (Clarendon Press, Oxford, 1954), Chap. 2, Sec. 6.

% Iyddane, Sachs, and Teller, Phys. Rev. 59, 673 (1941); H.
Callen, Phys. Rev. 76, 1394 (1949); Pekar, reference 1, Sec. 30.
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cantly incorrect even before it is renormalized through
the factor Zy. An accurate estimate of this would have
to be made before mobility could be used for an experi-
mental determination of the effective mass of the bare
electron.

B. Resonance Velocity

We notice that the resonance velocity v, is much
greater than would be predicted by the parabola
approximation (which gives a decrease rather than an
increase of resonance velocity with increasing coupling
constant). This behavior is similar to that found by
Low and Pines in their analogous f(a) function and
probably springs from the same source, the use of a
one-quantum approximation in evaluating the R ma-
trix. It is not surprising that the resonance velocity
should differ considerably from the velocity that a
polaron of momentum P, would have if it were acceler-
ated slowly to this value rather than scattered there
suddenly in a phonon collision. In fact, it is the very
nature of the decaying intermediate state that it should
depend on the manner in which it is created. Whether
the resonance velocity is so much higher, even higher
at all, than would be obtained by slow acceleration of
the polaron to P, is still an open question. Neither the
theory of Low and Pines, in which the effect is small,
nor the theory presented here, in which it is corre-
spondingly larger, suggest any reasonable way of
internally checking the validity of this conclusion.

C. Coupling Renormalization

The third important quantity is the renormalization
factor Z,. The presence of this coupling constant
renormalization is to be expected and appeared in the
strong coupling theory of Pekar but not in Low and
Pines’s theory. Both Z, and Pekar’s similar factor go
to zero for large coupling, although Pekar’s goes to
zero for small coupling rather than to unity as does
Z, and as one expects in terms of the physical picture
suggested by Feynman’s polaron.

For small coupling the polaron is a point electron
moving slowly round a second fictitious particle over a
large region of localization. The electron behaves as a
free point charge during the short time the phonon is
being absorbed, so there is no renormalization of the
interaction. In this respect the description is better
than that of Pekar (which is not expected to hold in
the weak-coupling region, although applied by Pekar
to the relatively weak coupling cases of PbO and
Cu;0), since in the various adiabatic approximations,
the electron moves rapidly round a point in the lattice,
which moves with uniform velocity but which does not
vibrate instantaneously against the motions of the
electron. Thus in the various adiabatic theories, the
polaron simply behaves as a more and more diffuse
charge cloud as the coupling becomes smaller, and the
effective coupling constant to phonons of a-given
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wavelength tends to zero when the radius of the
polaron exceeds this wavelength.

For large coupling two things happen. First, the
polaron’s mass increases, and in consequence so does the
resonance momentum P,. The wavelength of the ab-
sorbed phonon decreases as 1/m* or 1/a*. At the same
time, the electron is becoming more localized and is
moving faster in its region of localization. For strong
coupling, the incident phonon sees the smeared out
electron charge distribution, whose radius decreases, at
least until it gets down to the order of magnitude of a
lattice spacing, but only as 1/e®. Thus for strong
coupling, the phonon wavelength is smaller than the
polaron size and the resonance phonon goes right
through the polaron with very little scattering. For this
reason Z, goes to zero with large a. Thus, if we could
neglect the natural cutoff introduced by the lattice and
assume the resonance to be arbitrarily sharp, then for
this idealized case, we would conclude that the mobility
has a minimum as a function of a and then begins to
increase for large a.%

These considerations of Z, raise another important
point. If the coupling is sufficiently strong, the detailed
structure of the charge distribution in the polaron
becomes important. It is just this structure which is
most in doubt in any theory in which the periodic
potential is treated in the effective-mass approximation
and the lattice vibrations of short wavelength are
treated in the continuum approximation, and even more
so in the Feynman theory where, in addition, the
charge distribution is assumed Gaussian.

The rapid decrease of Z; with increasing %k can also
have its effect on the temperature dependence of the
mobility. For higher temperatures the resonance scat-
tering becomes unsharp in a temperature dependent
way depending on the energy distribution of slow
polarons. Phonons of nonresonance wavelengths with
significantly different renormalized interactions with
the polaron become important so that the effective
interaction that limits mobility becomes temperature
dependent.

VII. EXPERIMENTAL SITUATION

The most important aspect of the experimental
situation is that as yet there has been no independent
attempt to verify polaron theories other than mobility
measurements. Thus, both the weak- and strong-
coupling theories, in which the mobility is a rapidly
changing essentially monotonic function of one variable

35 Yafet!® has considered this unphysical behavior an objection
to the strong-coupling theories, emphasizing the need to include
both the lattice structure and nonresonance scattering. He
concludes for the strong-coupling theories that in the limit of
extremely slow polarons the nonresonance scattering contribution
goes to zero but that even at low temperatures the resonance is
sufficiently broad as to make nonresonance scattering important.
Actually calculations of the nonresonance contribution proved
very formidable in Yafet’s formulation of mobility in the strong-
coupling theory and they seem equally formidable for our formu-
lation in the Feynman theory.
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parameter, m (decreasing for weak coupling theories,
increasing for strong coupling theories), have “ex-
plained” the results.

In actual experiments on polaron mobility the
assumptions made in the various theories have not
always been fulfilled. One difficulty has been to isolate
the effect of the optical modes from those of the acoustic
modes, imperfection scattering and trapping by shallow
traps. Another difficulty has been the relatively limited
range of temperatures over which both the Boltzmann
equation and the inequality £#7°>7%/7 have been satis-
fied. In spite of very careful experiments, there have
been almost none in which the microscopic mobility
due to optical-mode scattering has been unambiguously
identified over a reasonable range of temperatures in
which the present theory (including the Boltzmann
equation) is valid and in which the coupling constant is
large enough to distinguish the results from the simple
perturbation theory of Frohlich and Mott.%

The most detailed direct measurements of drift
mobility are those of Brown® and Brown and Dart3
in AgCl. AgCl has the advantage that the time before
trapping of photoelectrons can be made of the order of
several microseconds, so that the actual drift velocity
of electrons excited at one face of a thin crystal by
strongly absorbed optical excitation or by single S
particles can be measured by measuring the transit
time across the crystal. Unfortunately, it is not possible
to isolate the optical-mode scattering to a sufficiently
low temperature because of apparent multiple trapping
in shallow traps.®

More recent measurements of Hall mobility by
Kobayashi and Brown® in AgCl avoid the shallow
trapping difficulty and give data down to 10°K.
Although unknown imperfection scattering mechanisms
make the interpretation uncertain below about 25°K,
a reasonable fit of the data above this temperature
can be achieved by combining an optical mobility
o [exp(0/T)—17] with an acoustic mobility u, o« 7%
according to wl=pui'4ust. For AgCl, using o
= (€/ €0) wrest, €=12.3 and ¢,=4.04, one obtains O
=280°K, which is within the limits of experimental
error. Unfortunately, the experimental data are not
sufficient to determine O directly from the temperature
dependence (which, according to Sec. VI A, should give
a different value) or to distinguish deviations from a
fixed © with varying 7 mentioned in Sec. VI. Further-
more, this low value of © limits the applicability of any
of the polaron mobility theories to a rather narrow
range of low temperatures, because of the restriction
to slow polarons. Even more restrictive, possibly, is the
temperature range over which the Boltzmann equation

36 H. Frohlich and N. F. Mott, Proc. Roy. Soc. (London) A171,
496 (1939).
37 F. C. Brown, Phys. Rev. 97, 355 (1955).
3 F. C. Brown and F. E. Dart, Phys. Rev. 108, 281 (1957).
( ¥ F. C. Brown and K. Kobayashi, J. Phys. Chem. Solids 8, 300
1959).
4 K. Kobayashi and F. C. Brown, Phys. Rev. 113, 507 (1959).
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itself is valid. Specifically, if we accept Kobayashi and
Brown’s experimental estimate of the optical mode
mobility and their use of Low and Pines’s mobility
formula, then «=2.2 with m=0.29m, so that at
T=100°K the collision time of optical phonons with
polarons is m*ug/e=5.74X 10" sec compared with the
characteristic time for this temperature, #/kT=7.62
X10* sec. Even at T'=70°K the inequality (3.1)
assumed in deriving the Boltzmann equation is only
weakly fulfilled since r=2%/kT at this temperature.t
The situation is somewhat different if we choose the
mass m to fit the data of Kobayashi and Brown with
our mobility formula (6.1). We must then choose
m/m,=0.85 for which a=3.64, me=2.15, m=1.83m.,
v,=2.95(2%iw/m)* and Z,=0.65. This value of m/m, is
obtained by trial and error in which mo/m is interpo-
lated from Table I, and v, and Z, are interpolated from
Table IV. For this value of m/m, we can also find,
interpolating from Table IV, that P,=1.7(2mhw)},
which is to be compared with k,=19.18(2mw/%)* for
AgCl. Thus the continuum approximation is valid.

These results suggest three observations. First, even
though the coupling is not strong in AgCl, still the
differences between the theory of Low and Pines and
the present theory are already marked. Second, the
great sensitivity of mobility to the assumed bare elec-
tron mass m allows almost any theory to fit the data
with a not unreasonable assumption for the value of .
Finally, for the present theory, AgCl is already in a
region where the theory is becoming quantitatively
unreliable, not only because of the curiously large
values of v, but also because of a renormalization factor
Z, based on a Gaussian charge distribution in the
polaron which is at best a rough approximation.

An attractive crystal in one respect is MgO which
has a Debye temperature for the longitudinal optical
modes of 1710°K for which a=2.3(m/m,)?. The high
Debye temperature insures a fairly wide temperature
range in which the polaron can be considered very slow
and the resonance can be considered reasonably sharp.
Assuming m=m,, our theory gives P,=1.4(2mhiw)?
compared with k,=7.63(2mw/%)%, so that the resonance
momentum is not too large either. Measurements of
the drift mobility of the charge carriers has been made
in MgO between 200°K and 600°K by Marshall,
Pomerantz, and Shatas®® by bombarding a thin crystal
of MgO with 1—usec pulses of 1.3-Mev electrons and
measuring the current of the electrons and holes excited
thereby. A rough fit to the data can be obtained by

4 It is possible, however, that this criterion for the validity of
the Boltzmann equation is too severe, and that it should be
replaced by one of the form #%/7<AE in which AE is a measure
of the energy change of the polaron in a collision. [See F. J. Blatt,
in Solid-State Physics, edited by F. Seitz and D. Turnbull (Aca-
demic Press, New York, 1957), Vol. 4, p. 311 ff.] Since the double
scattering process is essentially elastic for moderate 7', the
Boltzmann equation would then be valid to much higher temper-
atures. This modified criterion has not been rigorously proved,
however.

4 Marshall, Pomerantz, and Shatas, Phys. Rev. 106,432 (1957).
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combining reciprocals of an acoustic mobility u, and
an optical mobility u,. This fit suggests that above about
260°K the optical modes dominate. Unfortunately the
experiments do not give the mobility unambiguously
because of two uncertainties. First, the mobility due to
holes is not distinguished from the mobility due to
electrons. Second, the mobility itself is not measurable,
only the secondary current. This depends on the
number of charge carriers excited by each bombarding
electron and the average distance they move before
being trapped, neither of which has been directly
determined experimentally.

VIII. SUMMARY

We have started with a comparison of the Feynman
polaron theory with earlier theories of polaron self-
energy and mass and have concluded that except in the
truly weak and strong coupling situations it is the only
satisfactory theory. Turning to the problem of mobility,
we have rejected previous mobility calculations based
on earlier polaron theories on additional grounds arising
from a study of the Boltzmann equation and the theory
of resonance scattering. We have then developed a
theory of resonance scattering based on Feynman’s
polaron formulation and used it to evaluate the polaron
mobility approximately. It was found that the resonance
momentum, velocity, and coupling constant renormal-
ization played critical roles. Even at very low tempera-
tures when the resonance is sharp, both the assumption
of constant lattice frequency and the continuum
approximation have been shown to be important and
questionable in determining those features of the
polaron, the free lattice, and their effective interaction
that are important for mobility. We have furthermore
indicated that the resonance scattering may be very
sensitive to departures from a sharp resonance, which
are associated with rising temperatures. This could
lead to temperature-dependent effects if the coupling
were strong enough, although they would be very
difficult to calculate and probably also to observe.
Finally in analyzing three sets of experiments we have
seen that the range of 7" may be relatively small in
which both the Boltzmann equation and the slow-
polaron approximations are valid, and that imperfection
scattering, acoustic mode scattering, and trapping
make an unambiguous determination of optical mode
scattering difficult. The sensitivity of mobility to the
unknown effective electron mass # and the mono-
tonicity of weak and strong coupling theories with m
diminish the value of having “explained” experiments,
particularly in view of a lack of another experimental
approach to the polaron.
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APPENDIX A

It is possible to estimate the accuracy of m; or mo by
using the extended Hamiltonian formalism developed
in Sec. V to calculate corrections to m, due to quasi-
phonon processes. The ground energy of the polaron
should be the lowest eigenvalue of the extended
Hamiltonian K or equivalently, the lowest pole of the
Green function (E—K-1ie)™! when ¢ — 0 +. To eval-
uate the self-energy and effective mass approximately,
consider the matrix element (P0; 00| (E— K+i€)~1| PO;
00). Using approximations similar to those made in
obtaining (5.21), we have

(P0; 00| (E—K+ie)~1|PO; 00)
~[E—Eo(P)+ie—Vo(EP)T?, (A-1)

where FEo(P)=E;+(P?/2mo) and where Voo(E,P)
=(P0; 00| K:GgK:+A4+B|P0;00) as in Sec. V. A
first-order value for the self-energy, Ei1(P), of a polaron
of momentum P is obtained from the pole of (A-1)
when e —0:

Ey(P)=Eo(P)+Voo(Es,P). (A-2)

A calculation analogous to that given in Appendix B
shows that

Voo(E,P)=A+B— G(AE,P)— G(AE,P), (A-3)
where
Q(AE,P)= 27r_%awf dr
Xexp{— (1= AE)7+[Pr/2m0j(7) ]}
X (Pr/mo) ' F((P*1/2muwj(1))}), (A-4)
and
B (AE,P)=3(v*—w?)r {1 —[vAE/w(v+w) ]}
X[1—(AE/w) 7°[1— (AE) (v+w) T
— (P/2m0o) (B®—w?)v1— (AE/w) 3. (A-5)

Here F(x) and j(7) are given by (5.25). From these
definitions we see that

@(0,00=4 and ®&(0,0)=B. (A-6)
The transcendental equation (A-2) for AE then becomes
AE(P)=[@(0,0)— GQ(AE,P)]

+[®B(0,0)— ®R(AE,P)]. (A-T)

Y For P=0 the solution to (A-7) is obviously AE=0,
or Voo(#,0)=0. There is no correction to the Feynman
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energy at P=0, since the term 44 B was included in
K, to produce just this result.

To compute the first-order effective mass m; we must
expand (A-7) in powers of P2 Differentiating with
respect to P? at P=0, AE=0, we find that
(8(AE)/3P?) pmo=— (3(Q+®)/I(AE))o,0

X (3(AE)/dP?) po— (8(Q+®B)/IP%)s,0,
so that
(6 (AE)/6P2)p=0= - (6 ( @"l- 03)/31)2)0,0

X[14(3(@+®)/I(AE))o,0 .. (A-8)
Now

+2(3(AE)/9P?) p—.
It is interesting to compare this with Feynman’s

expression for the effective mass. It is easily seen from
(2.3) that

(A-9)

my= m0[1+2m0(6(®+ (B)/6P2)0,o]. (A-IO)
Combining (A-8), (A-9), and (A-10) we obtain
my=mo{1—[ (ms/mo)—1]
X[1+@(a+®)/a(AE)) ). (A-11)

For very small a, [d(4+B)/3(AE)]o,0=0(c) and
(mys/mo)—1=0(a), so that mi=m;[140(c?)]. This is
an improvement over 7, which, though never differing
from m; by more than about 109, does not agree with
my to first order in « for small . For increasing a,
[0(B+4)/3(AE)To,0 increase from zero rapidly, and
since (mjs/mo)>1 for all o, we have for large enough «
the inequalities

mo < mamo{ 1+ (my/mo) —1]
X[1+(3(a+®)/d(AE))o,0 1}
<mof{14-[(ms/me)— 11} =m;.
Thus the correction made by m; to my is less than the
correction made by m; and in the same direction. In

particular, for «=3 and 5 we have computed m,. The
results are as follows:

(A-12)

a my/m mo/m my/m
3 1.89 1.78 1.82
5 3.89- 3.56 3.63

The smallness of the difference between zeroth- and
first-order effective masses is another justification for
the procedure employed in Sec. V.

We have also computed AE as a function of P for
a=5up to P=1.76(2mw)?. AE is negative and increases
in absolute value with increasing P. For P=1.76 2muw)*
it is still only —0.084w, compared with a self-energy for
this P of the order of —5w, so that insofar as this is a
good first-order correction procedure, the zeroth-order
Feynman approximation is a good one and the correc-
tions can be treated as small.

SCHULTZ

APPENDIX B

We wish to evaluate

Voo(E',P)=(P0; 00| K:Gr-K,+A+B| P0; 00)
= V0 (2)8 f &k k0| e [ E'— Ko(P)
—w—i—ie]"le—ik“[0)—%Cfd3m§(1c)v,‘2

X{0|exp(ix-1)[E'— Ko(P) —w-+ie ]
Xexp(—ix-1)|0)+(A+B) (B-1)
in the limit that the initial momentum P’ — 0. It is
sufficient here to evaluate only the first term on the
right, since the second term is similar and elementary.

For simplicity, we take w=1.
Since r=R— (M/mo)p, we have

0| [E'— Ko(P)—14ie ] le=%r| 0)
=(0|exp[sk- (M /mo) [ E'— Ko(P—k)
—1+ie] " exp[—ik- o(M/mo)]|0). (B-2)

Furthermore, since E'= (P'%/2m¢)+1 for P' — 0 and
since (x4ie)~=—1 f°d exp[ (— e+ix)t], we obtain

fdskk—2<0[eik.r[E/_KO(P)_ 1+ie]le ik l 0)

o P>— (P—k)?
= —if di e““fdsk k2 exp[i————_t]
0 2myg

X (0| exp[ik- o(M/mq)] exp(—ivy- i)
Xexp[ —ik- o(M/mo)]|0)
=—il, (B-3)

=10 (uv/2) +im (2uv)~

v'=0(uv/2)—im(2uv)~1
Simple operational manipulations with harmonic oscil-
lator variables give
(0] exp[ik-o(M/ma)] exp(—ivy"-yi)
Xexp[—ik-o(M/m0)]|0)
= exp[ — (M/mo)*(k*/2uw) (1—e~")].  (B-5)
Using (B-5), choosing the polar axis along P and calling

cos(Pk)=¢, and performing two of the k-space inte-
grations, we obtain

1 o PP—pPr1—g2/i(if
I=21rf déf dt et exp[i A=&/4 ))t]
0
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(B-4)

X[2emo/itf(it) T4,

where j(r) is as given in (5.25) with w=1.

(B-6)
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We now write

I=1+1, (B-7)

where I; and I, are the contributions to I for £<¢,
and £> &, respectively, and where

£r=1—(P'/P). (B-8)

To evaluate I;, we observe that for |{| — « and
Imt<0, 7(it) — 1 and P2[1—(£/5(it))]— P'*>0. Hence
in 7, we may integrate from 0 to —¢c rather than
from 0 to . Using the function F(x) defined in (5.25)
and letting £, — 1, we can also perform the {-integra-
tion, obtaining finally

I,= —iZW%Pj dr e'eT
0

Xexp{— (P*r/2mo)[1—(/j(7))]}

XE((P*1/2mog)?) (P?1/2mo) ™, (B-9)

a convergent integral to be evaluated numerically.
To evaluate I, pick a fixed T so large that

(@ — ) () T, (B-10)

Now decompose I5:

To=191+1s, (B-11)

where 51 and [se are the contributions to 7, from {<T
and ¢> T, respectively. Is; is of the order (1—£,)7 and
may be neglected when £, — 1. In 75, we may expand:

1/7(it) =1— (v*—w?) (vw?)[1—exp (—1vs) ] (i)
+0(1/8), (B-12)

so that

543

1 w0
I22="2m exp[— (P%/2uv) ] d&f dt et
&

T

X exp[t(P?/ 2mo) (22— x0%) ]
w 1 7 P? p?—q?
X[ Z —f ) —zhvt]
n=0 1.1 \ 2m,q

X[1+0(1/T)].
As £, — 0 all but the =0 term in the sum give contri-
butions to the double integral of the order (1—§&.),
since when £=£, the integral on ¢ converges for #0
neglecting O(1/T); and writing J7°dt as Jfo*dt— Sodt,
the second double integral of the =0 term is also of
order 1—£,. Thus

1 ©
I2o="2m exp[[— (P?/2uv) ] déf dt et
£ 0

27TmO

(B-13)

Xexplit(P?/2ma) (8= £2) ] (2nmo/it)}

+0(1—£). (B-14)

Letting {=1s% the remaining double integral can be
performed :

1+(1—-&2
Ioo=4m*moP~ exp(— P2/2uv) ln[——%]
&

As £, — 1, I5,=0((1—&.)%) justifying the neglect of
O(1—¢,). Hence finally

Toy— 202P" (P2/2mo)~" exp(— P?/2u).

(B-15)

(B-16)

The first term on the right in (B-1) is now obtainable
from (B-7), (B-9), and (B-16). The second term on
the right in (B-1) is readily obtained using (B-5). In
the appropriate units (B-1) reduces to (5.24).



