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The transmission coeKcient defined by Holstein for resonance radiation has been calculated when Doppler
and collision broadening of the resonance line are present simultaneously. From this a simple formula is
inferred for the imprisonment lifetime of the resonance radiation under this condition. The complication of
the hyperhne structure is also taken into account and the results are found to give good agreement with
experiments in mercury.

2. TRANSMISSION COEFFICIENT OF A SINGLE
LINE WITH COLLISION AND DOPPLER

BROADENING PRESENT

The essential feature of this treatment is the calcula-
tion of the transmission coefficient, V", for a single line
in the presence of Doppler and collision broadening.
When the transmission coefficient is determined we can,
in principle, determine the imprisonment lifetime, T,
through the proper mathematical manipulations. How-
ever, once the transmission coefficient is found, we
forego further mathematics and infer the form of the
imprisonment lifetime using the order of magnitude
relation given by Holstein:

T/r = tc/V'(R) . (2.1)

v is the natural lifetime of a resonance atom, a is a
constant of order unity, and E represents the radius of
a cylindrical enclosure and one-half the width of a
parallel plate enclosure. The complication of the hyper-
fine structure will then be taken into account in a
reasonable manner.

The transmission coefficient, V'(p), is defined as the
probability of a resonance quantum traveling a distance

p without being absorbed. Holstein gives the expression
for T in the form

(2.2)v(p)=) P(v) exp[ —k(v)pjdv,

' C. Kenty, J. Appl. Phys. 21, 1309 (1950),
2 P. J. Walsh, Phys. Rev. 10?, 338 (1957).' A. V. Phelps, Phys. Rev. 110, 1362 (1958).
T. Holstein, Phys. Rev. 72, 1212 (1947).
T. Holstein, Phys. Rev. 83, 1159 (1951).' Alpert, McCoubrey, and Holstein, Phys. Rev. 76, 1257 (1949).
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i. INTRODUCTION

HE imprisonment of resonance radiation plays an
important role in many phenomena allied to

gaseous discharges. ' ' Its interpretation, however, is
often dificult because of the presence of collision
broadening in addition to the usual Doppler and natural
broadening, and also because of the overlap of the
hyperfine structure. The purpose of this paper is to
investigate, in such cases, the. imprisonment lifetime of
resonance radiation as defined by Holstein. 4 ' The
results are found to give excellent agreement with the
measured lifetimes. '

where P(v) is the frequency spectrum of the radiation
emitted from a given volume element and k(v) is the
absorption coeKcient as a function of frequency v. For
collision and Doppler broadening Holstein shows that
I' and k are proportional and, in fact,

k (v) =XoPSgsP (v)/Szrg, r, (2.3)

where Xp is the wavelength of the resonance line, X is
the gas density and g2, g1 are the statistical weights of
the excited and ground states, respectively. Equation
(2.3) is not completely accurate in the case of natural
broadening but for simplicity it can be adopted in that
case also.

When Doppler, collision, and natural broadening are
present at the same time, k is given by the approximate
expression'

where ko=Xo'tVgo/Szrlgi&'or is the absorption coeflicient
for the center of the resonance line and

X= v vp C Vp'Vp

vp
——(2ke/nz) '.

Here 7-, is an effective collision time for the resonance
atom, c is the velocity of light, and vp is the average gas
velocity at the absolute temperature, 8.

Formula (2.4) holds within 20%%uq for values of x) 2
and tt up to 0.5. For x) 2 and large values of tt, (2.4) goes
over to the correct form for collision broadening:

k (v) = kptt/zr'x'-.

The integration we will perform will emphasize values
of x larger than 2. Actual computation indicates that
(2.4) is a reasonable form to use for the absorption
coe%cient throughout the whole range of a. In actual
calculations in this paper, the largest value of a en-
countered was 0.011.

7 A. C. G. Mitchell and M. W. Zemansky, Resonance Radiation
end Excited Atoms (The Macmillan. Company, New York, 1934),
pp. 321, 322, and 329.
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The use of Eqs. (2.3) and (2.4) in (2.2) yields

1 p" ( a)
~(~)=—, '

I exp( —~')+, , I

Xexp kop—
l exp( —*')+, I

d& (2 5)
~:-*~)

The expressions for the transmission coefFicient can be
broken up into two integrations:

00

exp( —x')
7l QQ

( a
Xexp —ko~i exp( —x')+ i dx, (2.6)

a p" 1 ( a
I2 ~ —exp —kop] exp( —x')+ [ dh.

~-:~')

These integrals are evaluated by expanding in a Taylor
series about u= 0. The details are given in the Appendix.
Ke give the results here:

7'(p)=9~ exp( mY'. d'/4V )+—T.E9(7I 7 d/2V, ), (2.7a)

where
1 1 t'm~a) '

k,p{~ ink, p)- ~-: &k„3
'

(2.7b)

~cd
~(lnkpp)'

Vd and 1, are the transmission coefFicients in the case
of pure Doppler broadening and collision boradening,
respectively. V,d is the transmission coefFicient under
the condition of collision-type emission with Doppler-
type absorption of the resonance line [DT& in the

I
t

Q 2

FzG. 1. Idealized transmission spectrum with the emission
pictured as coming from the 0 =0 hyperfine line. The upper curve
displays the separation, 6, and the absorption width, 2p of the
hyperfine lines. The absorption widths are broad enough, in the
lower curve, to produce overlapping with a composite width, +.
The actual emission is a sum over the transmitted emission from
all the hyperfine lines.

notation of Holstein, reference 4, Eq. (5.14)j. J-'~

signifies the error integral. '
The determination of the imprisonment lifetime, T,

from the transmission coeScient given in (2.7a) is
accomplished, in principle, by substituting the trans-
mission coeKcient correctly in the integral equation
given by Holstein and then solving, for example, by a
variational method. The net result is Eq. (2.1) where
~ is determined exactly. Now for a cylindrical geometry
a has the following values,

ay= 1.60, z,g= 1.00, ~,= 1.115, (2.8)

for the cases indicated by the subscripts. The diGerences
among the ~'s is much less than a factor of 2 and only
12% for the last two.

As mentioned, we shall not attempt an exact compu-
tation of the decay time. We merely infer the form of T
from an inspection of (2.7a). Noting that 4/m = (1.115)',
the simplest equation for T, as indicated by (2.7a), is

exp( T,2/T, d') —E2(T,/T, ~)

T T.
(2 9)

Note that this equation reduces to the form for pure
Doppler broadening when a=0, and to the form for pure
collision broadening when a is very large. It also has the
correct limit for T,&))T„Tz. Because Eq. (2.9) has
these correct limiting values and the proper functional
dependence as indicated by Eq. (2.7a), we expect
Eq. (2.9) to be quite accurate in predicting imprison-
ment lifetimes.

8 E. Jahnke and F. Emde, Tables of Functions (Dover Publica-
tions, New York, 1945), fourth edition, pp. 23 ff.

3. INFLUENCE OF OVERLAPPING OF HYPERFINE
STRUCTURE ON IMPRISONMENT LIFETIME

Our expression for the decay time has been derived
from considerations of a single resonance line. Actually,
the resonance line may be multiple, as for example in
mercury, where the resonance line has a hyperfine
structure consisting of 5 lines of (very roughly) equal
amplitude and separation. We will investigate the eGect
of this hyperfine structure on the decay times T„Td,
T,~ and determine the changes necessary to make
Eq. (2.9) applicable in the presence of hyperhne
structure.

We first note two important facts concerning the
Eqs. (2.5), (2.6) and (2.7a) for the transmission
coeKcient. First, V'(p) can be broken down to the sum
of I& and I2 as already mentioned. This means that the
eGect of the hyperhne structure overlap on I& and I ~ are
separated. Second, the expression for I2,

I,= v'&, (~-*'v',d/2v, )

essentially separates 1'„~ and V,. This is so because I~ is
given quite closely by the smaller of the two trans-
mission coefficients. If one coefficient is twice the other,
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then I& is equal to the smaller one within 4%. Even
when V.g= 1„ the error in choosing I2 as equal to
either is only 27%.

These two facts strongly suggest that all we need do
to take the hyperfine structure into account in (2.9) is
to consider separately the hyperfine structure eRect on
Td exp(T, '/T, d') and on T,q, T, where these last two
quantities appear in the second term on the right in
Eq. (2.9).This corresponds to separating Ii from I& and,
in I2, to separating V',~ from 1",. This is the procedure
we adopt and it will greatly reduce the eGort involved in
computing the eRect of the overlapping of the hyper6ne
structure.

4. COMPUTATION OF THE HYPERFINE STRUCTURE
EFFECT FOR MERCURY

The computation of the hyperfine structure eRect in
the manner suggested above will be done for the 'P»
resonance state in mercury. %e assume, in this case, a
model for the hyperfine structure consisting of five lines
of equal amplitude and equal separation, 8=11.7 mA
(see reference 7, Fig. 13).

The formula for the transmission in the presence of
hyperfine structure is given by Holstein in the general
form

g'(p) =P P„(v) exp[ —P k. (v) p)dv, (4.1)

where the P„, k, are the spectral emission and absorp-
tion coe%cients of the individual components and

PJ'P„(v)dv= 1. This last equation expresses the
normalization of the emission coefficients. The relation
between k and P is still given by (2.3). We use primes
throughout to denote the presence of hyperfine structure.

For five lines of equal strength, we have J'P„(v)dv = —',.
The —,

' becomes a normalizing coestaet which should eon
appear in frolt of P and k irt all olr preceding equations
To convert our equations to the form including the
hyper6ne structure we must include the sums indicated
in (4.1), replace P, k by P/5, k/5, and x by x—nA,
where n is an integer and 6= bc/vpvp. Then

region bounded by x,z ——oui&)p, z, x,=oh+)p, where the
exponential term drops sharply to a low value. Here we
have approximately

iP,~ ——ln(kpp/5), ))t,= (4kppa/5m *)1,

14——ln'*(kp p/5).
(4.3)

Pq is noted for future reference. In essence, the exponen-
tial term gives each hyperfine component a spectral
width of 2)P. Within this spectral range, centered on each
hyperfine component, the resonance absorption is com-
plete. For ip)D/2, the width of the lines overlap and
the hyperfine structure disappears leaving a single line
of total width, +, where

kop ~-+2
exp[ —(+ —oA)'j= 1

5 0'= 2

kop &=+2

5

(4.4)

I"exp[ —P akpp/57r'*(x —oA)'jdx

( —~)'
—(2~+Pc) —(~+pc)

+
~ —(&&—fc)

dx
~ ~ ~

~&4+to (x nd)—
—(22+4,)

)p,)—,'A. (4.5)
"ps++ (x nD)p

After performing the integrations and manipulating the
fractions, the result is

These remarks are illustrated schematically in Fig. 1

where the transmission is illustrated for the radiation
from the o.=0 hyperfine line for )P less than -,'6 and )P

greater than 2A.
Following the ideas outlined above, we have:

8 I 1

5 ~ „(x—nh)'

kop
&&exp —P exp[ —(x—oA)'j dx,

0

(4.2)

q
2——1

,
=- Z 2 1-(-—)'I —

I

T,' 5 =p.—p E,)

, (~l' '

5 &e„.& -=p Le,) 4.& 2~,

(4.6)

a f 1

5

~OP a
Xexp —P — — — —dx.

5 7ri (x—oA)' with

(~~
E%~) ~=& 4N~)

(4.7)

where )P, is given by (4.3) and%', is given by (4.4) in the
form

The integrations are performed by noting that the
exponential terms are very close to unity except in the
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In the same manner we find
Fortunately, in the case of mercury, the term I&'
becomes negligible before this occurs. We can thus
assume without any error that I~' is unchanged.

The final equation for T is then

(4.8) 1 exp( —T,'/T, q') Es(T,'/TJ )

T Td /
(4.10)

p,g/O, g = 1—(2D/f, d) . (4.9)

The computation is carried out quite easily. In the
region of P, (ran, values of 6/f, are assumed and
T,/T, ' computed from (4.6). The result for T,q/T, q' is
the same in this region for numerical values of 6/f. q

equal to 6/lf, . In the region lf,)ran, values of 6/4', are
assumed, P,/4, calculated from (4.7), and 6/P, com-
puted. Then (4.6) yields T,/T, ' as a function of 6/4',
and hence of 6/f, . An analogous solution yields
T,~/T, d' as a function of 0/P, q. Figure 2 gives the curves
constructed.

In the vicinity of 6/P, q, 6/P, =2, the mathematical

assumptions embodied in (4.5) will break down and, in
addition, the model assumed will not be accurate enough
to give correct results. The net result we believe will be
that Eqs. (4.6) and (4.8) will give values which are too
low. We have consequently joined the curves for
T,/T, ', T.d/T, z' smoothly, but somewhat arbitrarily,
in this region to give values of the ratio of the T's higher
than indicated by our equations.

The computation of the effect of the hyperfine
structure on I&' can be carried out in a similar way with
some modification. The essential features of the overlap
of hyperfine structure on I&' as found by such a, com-
putation are these. There is no change in I~' for values
of 14 within a percent or so of ran. For fq) ran, It' falls

sharply, depending on fd and the actual value of ksR.
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FIG. 2. Ratio of the imprisonment lifetime with overlap to
imprisonment time without overlap, T/T', as a function of ratio of
hyper6ne separation to line width, r =3/p

where 4 given by (4.4). However, 6 is large, of the
order of 7 to 8, so that in (4.4) the only term in the sum

. which is important is exp) —(+,q
—2A)']. Since +,q) 2A,

all other terms are negligible in value. Then, using
(4.3) in (4.4),

T.~', T,' are given in terms of T,~, T, and 6/p, s, 6/It,
by Fig. 2. T„T,z, Tz are given by Eqs. (2.1), (2.7b), and
(2.8) with ks/5 in place of ks.

5. COMPARISON WITH EXPERIMENT

The foregoing analysis was applied to the imprison-
ment lifetime of the 2537A radiation from the 'E'&

resonance state of mercury. Fowler' has fitted the
experimental data' to a curve combining simple dif-
fusion of the resonance state with loss by molecular
formation at large densities. However, the diGusion
coeKcient derived from this fitting is 80 times larger
than the value expected theoretically and 7 times the
experimental upper limit for this coefFicient. "

Our analysis is based on Eq. (4.10) and Fig. 2. The
following rela, tions were used for mercury:

~o

v- 4meo

0.0208 ko 2.23' 10 "—iV(cm ')
8' 5 0'

7.= 1.08X 10 '(sec).

' R. G. Fowler, Hundbuch der I'hyszk (Springer-Verlag, Berlin,
1956), Vol. 22, p. 226.

"A. V. Phelps, Third International Conference on Ionization
Phenomena in Gases, Venice, Italy, 1957 {unpublished).

» See reference 4, equation following (5.17). An extra factor of
7r ShOuld appear in the numeratOr.

Holstein'" gives r/ .=r0.26&(10 "IVn, where n is
coeflicient, less than unity, by which r/r, is reduced due
to the hyperfine structure. The actual calculations do
not depend too strongly on the value of n, and 0. was
adjusted somewhat to give the best fit. The value of n
found was 0.7 which is consistent with the rough
estimate of one-half given by Holstein.

The theoretical and experimental curves are given in
Fig. 3. The agreement is within &4% except for the last
three points which are in the region where the band
Quorescence of mercury complicates the experiments
and the loss by molecular formation, as suggested by
Fowler, may become important. The good agreement
should be regarded with some suspicion since the theory
on which our calculations have been used does not
warrant this type of agreement; perhaps &10% is a
more reasonable expectation. In any case, the agreement
does recommend Eq. (4.10) and Fig. 2 to predict
accurate imprisonment lifetimes in the presence of
collision and Doppler broadening and hyperfine struc-
ture overlap.
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APPENDIX

The evaluation of Ij and I& is carried out by expand-
ing them in a Taylor series about a=0. First con-
sider I~.

c)I 1 8 I
Ii =6(o)+ a+— a'+ .

BC ~—p 2. BQ rt —. p

&O3-

7

Cl

0
C3

CA
to'

O
Q:

7—
O

l ~ I 1 1

I

Pop pl e r
I

Bread ene d

a=o

(—1)"(kopje" I" exp( —x')

& ~-* ) & . x'"+'

)(exp[—kop exp( —x')]dx. (2)

lO

C3
Ld 5——---
C)

E xperinentat ~

Cclcutote d

The evaluation of this latter integral follows the
method given by Holstein. 4 Set

y= kop exp( —x').
I.O
tO

i

7 !O'5 5 5 7 tO!6 5 &' 1Ot7

a=p

( —1)"(kop)" I'"» e ody

~ o kop(lnkop lny) "+'

The main contribution to the integrand comes from the

vicinity of y=1. In the denominator we then set y=1
and extend the upper limit of the integral to in6nity,
since happ is always large in the application. of Holstein s

theory. Then

DENSITY, NUMBER OF ATOMS PER CQ

FIG. 3. Decay or imprisonment lifetime for resonance radiation
in mercury vapor es density of mercury atoms. The dotted line
gives the calculated curve for the case of Doppler broadening with
no overlap of the hyperfine structure as taken from reference 6.
The heavy line includes the effects of the overlapping and of
collision broadening.

we have

(—1)"a

BC ~ p

(—1)"]kopi "

~ 7r' ) kop[ln(kop)]"+'

1 ukpp
1—

kop(or lnkop)' orl ln(kop)

The approximation used to evaluate (3) should be more

accurate as e increases. The accuracy for e= 1 was deter-
mined by expanding the integrand e "(lnkop —c lny) l'

in a Taylor series about c=0, evaluating the subsequent

integrals and then setting c=1 in the series. For
8&kop& oo the approximate solution (4) at n=1 is

a.ccurate within &3%.
Inserting the values of 8"I&/Ba" into the Taylor

series (1), we have

I" (kop) "exp[—kop exp( —x')]
X

~ (
d*. (6)~„& ~) &2(n+z)

(—1)"a (kopje
" r" dx

E or'* ) ~ D~(~,o) j& x'&"+'&

(—1)-a!kopq-

2N+1 or 0 ori )
[1n(kop)]"+l,

For large kop the term exp[—kop exp( —x')] has a very
small value for x values up to kop exp( —x') = 1 at which
value of x the term exp[ —kop exp( —x')] rises sharply
to unity. We then replace this term by a step function
which is zero for —[1n(kop)]t&$&[in(kop)]'* and unity
for all other values of x. Then

= 1"g exp( —or V', g'/4 V', ').

1 ( akop
~ ~ ~

2! &or*' In(kop))

2a 1 !r akop
I2=

or[in(kop)]l 3 (~l ln(kop) )
1 1( u&op

~ ~ ~

5 2! &or-: ln(kop))
In evaluating Io by a Taylor series similar to (1), = V',Eo(m.l V'.g/2 V',).


