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In this paper properties of a boson gas at zero temperature are investigated by means of Geld-theoretic
methods. Difficulties arising from the depletion of the ground state are resolved in a simple way by the
elimination of the zero-momentum state. The result of this procedure when applied to the calculation of the
Green's functions of the system is identical to that of Beliaev. It is then shown generally that for a repulsive
interaction the energy L~"{h) of a phonon of momentum k, which is found as the pole of a one-particle Green's
function, approaches zero for zero momentum, which means that the phonon spectrum does not exhibit an
energy gap.

The Green's function method is applied to the calculation of the properties of a low-density boson gas. The
next order term beyond that calculated by Lee and Yang, and Beliaev for the ground-state energy is obtained
and the general form of the series expansion is found to be

(L~'p/0) = ,'u'f p)1+-a(u fp') &+b(u fp') lnu fp'+c(rsf p') +d (stfp') t ln (u fp') + ~

where n is the density and fo is the scattering length for the assumed two-body interaction between the
bosons. The coefficients u and b are independent of the shape of the interaction, and are the only terms thus
far calculated. The coefficient b is in agreement with the hard-sphere gas calculations of Wu and of Sawada.

A discussion is given of the intermediate-density calculation of Brueckner and Sawada, and certain
possible improvements in the method of summing a selected set of higher-order terms are proposed.

1. INTRODUCTION shown how in the case of very weak interaction and low
density the divergences can be removed by means of a
canonical transformation. This same procedure was also
used by Lee, Huang, and Yang in their pseudopotential
method.

Recently Beliaev' developed a method which enables
one to take into account the depletion effect rigorously
and which furthermore leads to a formulation which to
all orders is free of divergences. In this method essential
use is made of the Green's functions, which are well-
known in held theory. From these functions both the
phonon spectrum and the energy L&,0 of the ground state
can be obtained.

In the present paper we present in the first place
another, and to our opinion, simpler and more trans-
parent treatment of the depletion effect, in which we do
not make use of any form of perturbation theory. This
forms the content of Sec. 3, which follows a rather ex-
tensive discussion of the difhculties in Sec. 2.

In Sec. 4 we introduce the one-particle Green's func-
tions. We follow Beliaev and obtain a closed expression
for the Green's functions in terms of two functions XII
and 220 which are the analog of the proper self-energy
parts in field theory. This procedure involves a partial
summation of the perturbation series expansion of the
Green's functions and is sufhcient to remove all low-
momentum divergences. One then has a consistent
scheme where both difhculties, mentioned above, have
been resolved. We use this scheme in Sec. 6 to derive a
quite general relationship between the chemical po-
tential tc= dL&'p/dlV and the functions Zrt and Esp, both
for zero momentum and energy. This relation permits
one to prove that the phonon energy is equal to zero for
zero momentum. That some calculations give rise to an

~ 'HE realization that there exists a great formal
similarity between the quantum theory of a large

number of interacting Fermi particles and quantum field
theory has led in recent years to the development of new
methods for the treatment of such a fermion gas, ' in
particular at zero temperature.

The application of similar methods to a system of
particles obeying Bose statistics gives rise to two difFi-

culties of a different nature. The first difhculty has to do
with the particular role played by the large number of
particles of momentum zero. In the noninteracting
system all particles have zero momentum. In the inter-
acting system the zero-momentum state likewise con-
tains very many particles, since only a finite fraction of
these is excited as a consequence of the interaction. The
fraction of particles of nonzero momentum in the
ground state of the interacting system is a function of
the density and is very small for low density. Hence for
low density this so-called "depletion" of the ground
state can be neglected, as in the work of Bogoliubov' and
in the pseudopotential method of Lee, Huang, and
Yang. ' However, for calculations of the energies of the
ground state and of low-lying excited states going
beyond the extreme low density case, the depletion effect
must be taken'into account.

Another difhculty, which also is absent in the fermion
case, is the fact that even for a regular, repulsive inter-
action perturbation theory diverges Bogoliubov has

* Present address: Department of Physics and Department of
Electrical Engineering, University of Illinois, Urbana, Illinois.' J. Goldstone, Proc. Roy. Soc. {London) A239, 267 (1957).N.
M, Hugenholtz, Physica 23, 481 (1957).V. M. Galitskii and A. B.
Migdal, J. Kxptl. Theoret. Phys. U.S.S.R. 34, 139 (1958) Ltrans-
lation: Soviet Phys. JETP 7, 96 (1958)j.See also A. Klein and R.
Prange (to be published).' N. N. Bogoliubov, J. Phys. U, S.S.R. 9, 23 (1947).' Lee, Huang, and Yang, Phys. Rev. 106, 1135 (1957).

' S. T. Beliaev, J. Exptl. Theoret. Phys. U.S.S.R. 34, 417 (1958)
I translation: Soviet Phys. JETP?, 289 (1958)).
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energy gap in the phonon spectrum' is due either to an
incorrect treat. ment of the depletion eGect, or to an
inconsistent treatment of some of the terms in the
interaction.

In Sec. 5 we give a short discussion of more general
Green's functions and their significance for treating the
scattering of neutrons by a boson gas.

Sections 7 and 8 are devoted to the calculation of the
properties of the low-density boson gas. In Sec, 8 it is
shown that, in agreement with Sawada' and Wu, " there
exists a term in the expansion for Ep/E of the form
12 fp ln (rifp'), the coefficient of which is calculated.
Finally in Sec. 9, we discuss the general form of the
series expansion, and, somewhat brieQy, the intermedi-
ate-density theory of the hard-sphere gas due to
Brueckner and Sawada. '

+p Zk 3~ ak ak)

V=-',0 ' Q [v(k, —k,)+v(k, —k4)]
k1k2k3k4

Xeric„(k,+k,—k, —k4)akr aks akpak4.

(2.1)

The operators ak
'

and ak are creation and annihilation
operators, satisfying the commutation relations

[akyal] [ak pal ] 0 j [akyal ] ~kl'

The function v(k) is the Fourier transform of the central
two-body interaction

v(k) = dpi' v(x) e ""

2. DIFFICULTIES WITH DEPLETION
OF THE GROUND STATE

The system under consideration consists of lY inter-
acting particles enclosed in a cubic box of volume Q. We
assume these particles to obey Bose statistics. The
Hamiltonian can be written as H= IZp+ U, in which the
kinetic energy Ho and the interaction V have the usual

.form in second quantization'.

In the limit of an infinite system, bs(k —1) is the Dirac
8-function and the symbol Jk is replaced by the integra-
tion sign j'dpk. In our new notation the Hamiltonian
becomes

+P ) 3~ $k Eked

V=-,'(23r)-3, [V(k,—k,)+V(ki —k4)]
~ &yk2kgk4

Xe(k,+ ks —k, —k4) gk, *gks*gksgk, .

It is our purpose to calculate the energies of the
ground state and of low-lying excited states of this
system, all at zero temperature. Since practically all
available methods for the treatment of such problems
are based on some form of perturbation theory (in which
the interaction between the particles is considered as the
perturbation) let us first consider the noninteracting
system. Here we notice a marked difference with the
fermion gas, a difference which, as we shall see, . gives
rise to definite complications in any treatment of the
boson gas. In the ground state

~
pp) of the noninteracting

system all particles have zero momentum. Consequently
in any form of perturbation theory this zero-momentum
state will play a role different from the other single-
particle states. It is therefore convenient to rewrite the
interaction Hamiltonian in a form in which all terms
with one or more k's equal to zero are written separately.
When we do this, we find

II=EIp+V +Up+V, +Ug+V, +Uf+V, (2.2)

where

V,=-', (23r)
—'

~

[v(ki —k3)+v(ki —k4)]
~ ki ~ ~ k4

XP(k,+ks —k, —k4)ski pks Pkp/k4)

I

V&
——-,'(2 )

—'a, (2 )-'*0—*' I [v(k )+v(k )]"kxk2k3

The Kronecker symbol 8&, is equal to one if the argu-
ment is zero, and zero otherwise.

Since we are interested in the limiting case in which
both E and 0 are infinite, with a finite particle density
r3= X/0, we find it convenient to use another notation,
which is more suitable for that case. We define

= (23r)30 ' Qk bs(k —k') = (23r) 308K, (k—k'),

tk =0-'*(23r)-lak.

The commutation relations for the (-operators are

[k,k]=[8„*,k,*]=0; [P„P,*]=&3(k—1).

~ M. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959).
See also S. Butler and J. Valatin, Nuovo chnento 10, 37 (1958).' K. Sawada (to be published).' T. T. Wu (to be published).

K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957).' We choose such units that A= 35= 1.

X&'(ki+ks —k3) (ki"(ks*(k3~

V.=--,'(2~)-3a, *(2~)-"0—'
~ kskpk4

XS (k,—k, —k4) tks*gkp~k, ,
/

Vd=-', (23r) 'ap'(23r)'0 ' I [v(ki)+v(ks)]

Xe(k,+k,)tk, *gks*,

V.=-,'(23r) —'ap*'(23r)30 —' [v(k,)+v(k,)]
k3k4

XP(k3+k3) tkptk4,
I

Ur ——(23r)
—3ap*ap(23r)30-' I [v(kp)+v(0)]

Xy(k, —k,) tk, *Pk„

V = & (2~) pap+saps(2~) 30 3P (0)v(0).

(2.3)
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Here the primed summation symbols mean that the
summation is extended over all k/0.

The operators co* and ao always appear together with
a factor Q l in the Hamiltonian (2.2). At first sight one
might suppose therefore that the operators a0*0-& and
cod i could be neglected. However, because the state of
zero momentum contains a large number of particles,
this is not the case; thus ao*+oQ '~4o)=zz~po), if ~go)»
the unperturbed state of the system, corresponding to
~V particles with momentum zero.

I et us now see the way in which the operators ao~ and
ao prevent the immediate application to the boson
problem of methods which have been very successful in
the case of fermions. These methods possess the common
feature that the ground state of the system is considered
as the analog of the vacuum in field theory; that is, the
ground state of the noninteracting system is then defined

by the condition that all annihilation operators applied
to that state give zero. In the case of the Fermi gas this
means that neither holes nor additional particles are
present. For the -Bose gas a similar situation does not
exist. Although in the unperturbed ground state there
are no particles of momentum k&0, a large number E of
particles has momentum zero. Hence the noninteracting
ground state cannot be considered as vacuum with re-
spect to the operators ao~ and ao.

This leads to serious difFiculties, which become ap-
parent as soon as one starts calculating the ground-stat. e

energy, using perturbation theory. The energy of a gas
of interacting Fermi particles can be expressed as a
power series in the interaction V, and the various
contributions can be represented in terms of diagrams.
As shown by Goldstone, ' an expression for the ground-
state energy may be derived, in which only connected
diagrams appear. The derivation depends upon a rule
which makes it possible to express the contributions of
disconnected diagrams in terms of their connected
parts.

For the boson gas one can likewise represent the vari-
ous terms arising from the power series expansion of V
in terms of diagrams. The difference lies in the fact that,
when one calculates the contribution from a given dia-

gram, the resulting expression is multiplied by the ex-
pectation value for the unperturbed ground state of
products of uoQ: and ao*Q—

&, arising from the various
terms in V. For instance, for the fourth-order diagram of

Fig. 1(a), where the dashed lines represent particles of

zero momentum, this factor is equal to 0 '(&0
~

ao*'ao'
~
&0)

=0 'E(iV —1)(iV—2). For any connected diagram the
contribution for large systems is asymptotically pro-
portional to 0, so that in the foregoing expression one

may replace the factors iV—1 and iV —2 by iV, the neg-

lected terms being of relative order Ã '. This approxi-
mation amounts to replacing the operators co~ and ao by
the c-number E&.

In contributions from disconnected diagrams this re-

placement would lead to incorrect results. Consider the
disconnected fourth-order diagrams of Fig. 1(b) and (c).

C

FIG. i. Three fourth-order ground-state diagrams; diagram a is
connected, b and c disconnected. The dashed lines refer to annihila-
tion and creation of particles with zero momentum.

They give contributions of order 0 therefore a term
of relative order Ã ' can no longer be neglected. Thus
the diagrams b and c differ not only in the fact that the
energies of the intermediate states which appear are
different (as is the case for analogous diagrams in the
fermion problem) but also in that the operators ao and
ao appear in different orders, contributing in the one
case a factor i V (X 1)(lV —2) (iV——3) and in the' other
cV'(lV —1)'. It is this la, tter difference which renders
invalid the theorem on the contribution of disconnected
diagrams and makes a linked cluster expansion impos-
sible for the boson gas.

For the case of extreme low density, the correction
terms we have discussed may be neglected, since they
lead to higher powers of the density zz=NjQ. In that
case one is justified in replacing the operators ao and co

by the c-number E', a procedure well known from the
work of Bogoliubov. ' Then also the theorem on the
disconnected diagrams and hence the Goldstone formula
are valid. But for cases where e is not small, the deple-
tion of the ground state spoils the validity of both.

3. TREATMENT OF THE DEPLETEON EFFECT

Two essentially different ways are open to resolve the
difficulties related to the depletion of the zero-mo-
mentum state discussed in the preceding section. One

possibility is to carry through all necessary calculations,
treating the operators ao* and ao exactly, until a stage
has been reached in which only 0-independent expres-
sions appear. In such expressions one is justified in

neglecting terms of order 0 ', a procedure which leads to
great simplifications. This is the basis for the Green's
function approach of Beliaev. ' Recently Sawada' has
handled the problem along these lines, with the aid of
ordinary time-independent perturbation theory. In both

' See, for instance, N. M. Hugenholtz, reference 1.
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sV'H =HE'[1+O(Q ')].
Our original problem was to determine the ground state
of the system of .V interacting Bose particles, that is,
that eigenstate of the total Hamiltonian H which has
the lowest eigenvalue Ep, subject to the condition that
the number of particles is equal to E. In the modified
problem, in which the momentum-state zero has been
eliminated, we must therefore impose the subsidiary
condition that

(c7')=Ã—n pQ. (3.2)

The variable szp must be determined in such a way that
the energy we find is minimal.

In a theory in which l'lt' commutes rigorously with H,
the subsidiary condition (3.2) could be satisfied most
easily by imposing it on the unperturbed wave func-
tions. It would then be automatically satisfied for the
true wave function, since &V' would then also commute
with the operator e '~', which enters when one wants
to describe the transition from the unperturbed to the
perturbed wave function. In the present case, E' com-
mutes with H only to order 9 '; since e '~' has matrix
elements which contain arbitrarily high powers of the
volume 0 (due to disconnected diagrams) a correction

methods one runs into considerable complications in the
derivation of 0-independent expressions.

We propose another and simpler method of dealing
with the depletion of the zero-momentum sta, te; we use
a Lagrangian multiplier technique to eliminate this
state at the outset. Our method amounts to a generaliza-
tion of the original argument of Bogoliubov' concerning
the role played by ap and ap*, and forms the natural ex-
tension of his argument to 6nite densities.

We remark that, no matter what the density is, the
commutator of the operators ap*Q ' and apQ ' is equal to
0 ', and therefore vanishes for an infinitely large system.
Furthermore, these operators commute with all other
operators in the problem, so that in this limit they can
be considered as c-numbers. The operator ap*ap/0, the
density ep of particles of zero momentum, is then like-
wise a c-number. Thus it seems natural to replace the
operators a~*'and ap*Q ' by a c-number zzp'. The
variable esp ls to be determined by the properties of the
interacting system, in a way which will be discussed
below. It will turn out that for low densities, Bp is ap-
proximately equal to e, the particle density, so that the
foregoing procedure then reduces to that of Bogoliubov.

Let us see what happens when one replaces apfl ~ and
ap*Q l by ep'. The zero-momentum state then simply
disappears from the problem. The new Hamiltonian is

H(zzp) =Hp+ V(zzp). (3 1)

Now the number of particles is no longer conserved,
since V(1zp) contains terms which do not commute with
the operator E'=Z'aA, *aI,. However E' is still approxi-
mately a good quantum number, in that it commutes
with II to order 0 '. Thus

term of order 0 ' cannot be neglected. Hence we cannot
satisfy the subsidiary condition by imposing it on the
unperturbed states and we must turn to another method
for satisfying (3.2). To that purpose we use the method
of the undetermined multiplier.

We 6rst remark that the ground state of the Hamil-
tonian (3.1) with the subsidiary condition (3.2) is also
the ground state of the Hamiltonian

H'= H(zzp) plV', — (3.3)

without any subsidiary condition. Clearly now the
ground-state wave function

~
1t p(zzp, zz)), and thus also the

expectation values Ep'(zzp, zz), Ep(zzp, zz) and E'(zzp, zz) of
II', B, and E', respectively, depend on the parameter p, ,
which is determined by the condition

zz (1zp,Zz) = zz zz p (3.4)

This relation expresses, for 6xed e, the parameter p, in
terms of mp. As said before mp is determined by the condi-
tion that, again for e fixed,

d (Epg

dzzp (n) (3 5)

Using (3.4) and (3.5) we may derive two useful

equations for zz. From the observation that
~
Pp(zzp, zz)) is

the ground-state wave function of H' in (3.3) we con-
clude that the expectation value of B' for the wave
function ~Pp(zzp', zi')) has a minimum for zzp'=zzp and
p'= p, and hence

B )Ep'q d ( V~
0 0 )

Bzz, & n) d~, in) (3 6)

B (L'p) Bzz

Bz E n ) Bz

(3 7)

B (Epg

Bzzph 0 )
(3.8)

The second equation we obtain by noticing that Ep/& is
a function of zz, since p, , which is a solution of (3.4), is a
function of zzp and zz. By virtue of (3.5) we have

d (Epg B (Ep) f Bzz) B (Ep't Biz

dzz E0) Bzz (0) (Biz) np BIz (0) Bzz

which with (3.7) reduces to

d (Ep'l

dzz &n )
(3.9)

Keeping zz fixed and using (3.4) and (3.7), one finds

easily
d (Ep) B (Ep )

dzz, (n) BN, E n )
so that
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We thus arrive at the following procedure. Instead
of the Hamiltonian, B(no) we consider B', given by Eq.
(3.3), in which the kinetic energies of the particles 0 /2
are replaced by k'/2 —p, with p=dEO/dlV playing the
role of a potential. We then calculate the ground-state
energy Zo'(mo, p) of FZ', the parameter no being de-
termined by (3.4).
, Our original problem of calculating the ground-state
energy of a system of E interacting boson is thereby
reduced to the mathematically simpler problem of
finding the smallest eigenvalue of the Hamiltonian
FF'= FFO'+ V(no), in which

FF0
J $k tk(2~ P) )

k

and V(eo) is a sum of terms, which are obtained from
(2.3) by replacing the operators aoQ &and a0*0 l by nol.

It should be emphasized that here all difhculties con-
nected with the zero-momentum state are absent, since
this state has been eliminated. Hence, in this respect,
we are now free to use the same methods, which are
applied successfully to a gas of fermions, or to field
theory. In particular, one can now use the linked cluster
expansion of Goldstone':

1
Eo' 0V—U—— V+ V V V— 0 . (3.10)

&o' &o' IIo' -c

Here 0) is the vacuum state, which now replaces the
state po) with X particles of zero momentum in the
original problem. The subscript C means that only con-
nected diagrams contribute to the expression.

We will end this section by making a comment on the
number of zero-momentum particles in the ground state
of the interacting system. It is very easy to show that,
as long as perturbation methods are applicable, a finite
fraction of particles always occupies the zero-momen-
tum state. Suppose namely that the interaction be such
that e&, the density of particles of zero momentum, is
equal to zero. In that case the only nonvanishing term
in the interaction (2.3) is V„which describes the
interaction of two particles in excited states. With such
an interaction as a perturbation, it is clearly impossible
to get the perturbed ground state, if one starts from an
unperturbed state in which all particles have zero
momentum.

4. THE GREEN'S FUNCTIONS

There is a further complication in the boson problem
which arises from the fact that the interaction allows for
the creation of pairs of equal and opposite momenta. As
a result one has terms in which. two or more intermediate
states consist of pairs of particles of the same energy, as
shown in Fig. 2. This leads to divergent integrals for low
momenta.

One way of handling this problem is to transform to a

FIG. 2. A ground-state diagram leading to an integral which is
higMy divergent for small k.

new set of variables, as proposed by Bogoliubov'.

Ck=Qk ~k &k fi k i —+k +k f'k &k f'—kq (4.1)

where uA,
' and vt,

' are real, and satisfy uI,"—v&"= 1.One
can then determine the coeKcients of the transformation
by imposing the principle of the compensation of danger-
ous diagrams, "and work with the linked cluster expan-
sion (3.10) in terms of the new variables bk and bk*.

We shall here follow another method, due to Beliaev, 4

which is closely related to the Green's function methods
of quantum held theory, The relationship between the
Green's function method and the Bogoliubov transfor-
mation will be discussed briefly in Sec. 7. In the Green s
function method the divergences are removed by making
partial summations over classes of diagrams. Our presen-
tation diGers from Beliaev's mainly through the fact
that in our work the zero-momentum state has already
been removed. The results turn out to be completely
equivalent to those obtained by Beliaev.

We dehne a one-particle Green's function by"

in which i/0) is the ground-state wave function of the
interacting system and the f(x1) are field operators in
Heisenberg representation. They are related to the
creation and annihilation operators $k* and gk by

P(xt) = (2ir) *' e'k *$k(t)'

Defining the Fourier transform of G(x,t) by

G(x,t) = (2n.)
—', d'P e"& "G(y,t),

one finds

G(u, ~
—~')~'(u —p') = —Qol Th. (&)$. *(&') l0o) (43)

For an extensive discussion of the use of Green's func-
tions in the theory of many-particle systems we refer to
the work of Beliaev and also to Migdal and Galitskii, '
who studied the fermion problem in this way.

The one-particle Green's functions, as defined above,
are appropriate tools to describe single-particle excita-
tions. In particula, r, the analytical behavior near the

"N. N. Bogoliubov, Nuovo cimento 7, /94 (1958).
"The sign agrees with that of reference 4. In field theory the

opposite sign is customary.
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real e-axis of the function G(p, e), defined hy

G(p, e) = ~ G(p, t) e"'dt (4 4)

The ground-state expectation value of the kinetic
energy Hp ls

( oI oI o&
= ( ) ' ~ ' l '( oI '.

I o& ( )

tells us the energy and the life-time of a single-particle
excitation of momentum p."

It is also possible to derive a formula expressing the
total energy of the system in terms of the one-particle
Green's function. One proceeds as follows. Using (4.3)
for t & t' and taking the derivative with respect to t, one
has

~(p, t —t') ~'(p —p')

0 ' ~d'pQoI 4*CV,E.jlko&

~
d'p "d~(~—kp'+t)G(p, ~) (45)

(2ir)4 "
The path of integration C is a contour consisting of the
real axis from —~ to +~, together with a semicircle in
the upper half plane. Making use of (2.3) for V, in which
cpQ ' and ap*Q ' must be replaced by np&, one easily
finds that the left-hand side of Eq. (4.5) can be written

0 ' —2(iPOI vliPo&+zzo iso
dSp

Vga) . (4.6)

k~

~k4

FIG. 3. The vertices a, b, , f correspond to the terms
V„Vb, , Vy of Eq. {2.3}.

"The function G{p,~} plays a role very similar to that of the
function D~(s} of Van Hove and Hugenholtz. See, e.g. , Physica 24,
363 {1958),

=8 l4 *(t')I:&'(t),4(t)Elf &

'( P' tz)G(p t t)ti'(p p)

+gaol 8, *(t')Lv(t), 4(t)PI@&

Here H'(t) and V(t) are the total and interaction
Hamiltonian in Heisenberg representation, and one
should bear in mind the fact that the unperturbed
energies are shifted from -', p' to —,'p' —tz. Using (4.4),
taking the limit t —+ t' (always keeping t(t'), and sum-

ming both over p and p', one gets

The expectation value QollVi, lifo& for the number of
particles of momentum p can be expressed in terms of
the one-particle Green's function

2

(iso I Xi, I po& = iG(p, —0) =—I dE G(p, e). (4,8)

Equations (4.5), (4.6), (4.7), and (4.8), together with

(3.6), and (3.8) lead to

I-'p—2~0t = ~ d'p d~2(~+kp'+t)G(p, ~)
0 (2ir)' ~ "c

or with

zz'=i(27r) ') d'p)I de G(p, c), (4 9)

E~p Z——',zztz = I d'p ! d e —', (e+-,'p') G(p, e&. (4.10&
0 (2 )4&

This is actually a rather complicated di6erential equa-
tion in Eo/0 as a function of zz, since tz= (d/dzz) (Eo/0)
appears not only at the left-hand side, but also in

G(p, e). In the low-density case the situation is, in fact,
much less complicated. If one uses Eq. (4.10) to calcu-
late Eo/0 to a certain accuracy, one can use for tz on the
right-hand side an expression of lower order. One there-
fore finds a simple linear first order differential equation
for EO/0 which leaves the term zz' undetermined. This
is however the first term in the expansion for Ep/0,
which can easily be calculated by other methods; for
example, by the formula (6.2) for p, derived in Sec. 6.

Having seen that both single particle properties and
the ground-state energy can be derived from the one-
particle Green's function, our task is to derive a useful
expression for G(p, e). Here we use the method of
Beliaev. 4 Since we will use the same ideas in Sec. 8 to
obtain a new result, we will have to repeat some of his
arguments.

Using the interaction representation we have

G(p, t —t')P(p —p') = —i(OI Tg, (t)g, .*(t')SI0), (4.11)

where IO) is the vacuum state (no particles of mo-
mentum lkl NO) and g, (t)=e'~4'g, e 'H" The 5-matrix
can be expanded in powers of the interaction V:

( z) 4 p+~ +00

5=P, l dt, ' dt„TV(t,) . V(t.)..=0 zz! J „J„
If one substitutes this expression in (4.11), one obtains
an infinite series, in which each term contains a vacuum
expectation value of a time-ordered product of g and &'"
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operators. Using the method of Wick, one can write
such a vacuum expectation value as a sum of terms,
which are found by forming pairs of creation and
annihilation operators in all possible ways and taking
the product of the vacuum expectation values of the
time-ordered product of each such pair. From the
definition (4.3) of the Green's function we see that each
such pair carries a factor

(0~ Tgl, (t)pl, *(t') ~0) =iGs(k, t —t')P(k —k'),

Gp being the Greeri's function of the noninteracting
system.

As usual in field theory, we represent the various ways
in which such pairs of creation and annihilation opera-
tors can be formed by Feynman diagrams. In that way
one obtains a one-to-one correspondence between dia-
grams and terms of our Green's function. It is now a
simple matter to find the following rules for calculating
the contribution of each diagram to G(y, «). (a) For each
line, either internal or external, of momentum k and
energy «one has a factor Gs(k, «)=—(«——,'k'+tl+i5) '.
(b) For each vertex one has a factor P(P; k~) 8(P; «,)
for conservation of momentum and energy. (c) For each
vertex of type a, b, c, d, e, f of Fig. 3, which correspond
to the terms V, Vl„V„Vq, V„and Vr of Eq. (2.3) a
factor e(k, —k, )+n(k, —k,), e(k,)+1(ks), «'(ks)+~(k4),
li(k), v(k), v(k)+e(0), respectively. (d) For each pair of
equiva, lent lines (i.e., two lines connecting the same pair
of vertices) a factor —',. (e) For each incomplete vertex
(i.e., a vertex with one or two missing lines) a factor ns'

or is« as the case may be. (f) A numerical factor
1/r(271) 4 +".i ' where m is the order of the diagram
and s is the number of factors ep, due to the incomplete
vertices; r is the number of ways in which the vertices
can be permuted without changing the diagram. In
addition to G(p, «) it is advantageous to introduce two
similar functions

G(p, t —t')~'(11+1')= —i(f I &k.(t)k. (t') I1to),

FIG. 4. The general form of the diagrams contributing to G(p, c).

and

g(p, t —t')e(P+P') = —iQ,
~ r(,*(t)(,*(t') I1t s),

which are represented by diagrams with two outgoing
lines (i.e., external lines running to the left) and two
ingoing lines (i.e., lines running to the right), respec-
tively. These functions obviously have no counterpart
in the unperturbed system.

The general structure of the diagrams contributing to
G(y, «) is shown in Fig. 4. It simply forms a chain con-
sisting of three types of proper parts, connected by a
single line. These proper parts will be called Zll(p, «),
5» (p, «), or ass (p, «) depending on whether they have one
ingoing and one outgoing line, two ingoing lines or two
outgoing lines, respectively. One sees easily that Zp~ and
Zse are equal. Clearly G and (7 have diagrams of the
same general structure as G.

It is now very easy to express G(p, «), C"(p,«), and

6(p, «) in terms of these three quantities Ill Z» and
5». One can immediately write down the equations

G(P, «) =Gp(Pi«)+G(Pi«)211(Pi«)GP(Pi«)

+G(pi«)~»(pi«)Go(pi«) i

G(p «) = G(p «)Zll(p, «)Gp(p «)

+G(p, )~-(p, )G.(p, —),

G(p, «) =G(p, )Zl«l(p, «)Gp(p «)

+G(pi«)~»(pi«)Go(pi

These equations are represented graphically by Fig. 5,
where the thick lines are exact Green's functions and the
thin lines the unperturbed Green's functions. These
three algebraic equations can be solved and one 6nds
the expressions

«+ SP tl++11
G(p, «) =

P«s (Zll Zll )j —
Ls p

—tl+s (Zll~+Zll )] +ass
(4.»)

~p2
6(p, «) =G(p, «) =

L«s {zll Ill )j Pgp tl+s(~ll +~11 )3 +~02
(4.13)

as derived by Beliaev. Here Zll+=Zll(p, «) and Z»
=Z»(p, —«). By calculating these explicit expressions
of the Green's functions in terms of Z~~ and &p2, one has
performed the partial summation necessary to remove
the divergences from the theory.

S. THE CORRELATION FUNCTION

One is also interested in more general Green's func-
tions than the one-particle Green's functions defined in

the preceding sections, namely those which characterize
the interaction of the many-boson system with external
fields. For instance, the only way in which the ele-
mentary excitation spectrum of liquid helium may be
directly measured is through the inelastic scattering of
slow neutrons. As has been shown by Van Hove, " the
probability per unit time that a slow neutron give up
energy ol and molnentum k to a boson gas in its ground

"L.Van Hove, Phys. gev. 95, 249 (1954).
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Pe pE pe 1
F (t—t') =— doo F(k,oo)e ' &' ".

2x ~

It then follows that

(5 4)

-P, -& -P, -e

pe +
-P-E'

F(k,~) =Z(p~)-o' —,(5.5)
oo o—1„o+ib (o+o1„o—9

from which one immediately finds

-p-e
I

ImF(k, o1) =mrs(k, oo). (5.6)

We further remark that the structure factor, S(k), which
is de6ned by

Fio. 5. The graphical representation of the algebraic relations
is given then bybetween G(p, e), G(p, e) and g(p, ~).

S(l )=(ol po*pol0)i~ (5 7)

state may be written in the Born approximation as
S(k) =— d1o —F(k,&o),

e e 2x
(5.8)

w(k, oo) = AS(k,oo). (5.1)

2 is a constant which characterizes the neutron-boson
interaction, and S(k,oo) characterizes the elementary
excitation spectrum of the boson system according to

S(k,~)=Q.(po).o'S(~ —~.o). (5.2)

Here p~ is the density fluctuation of momentum k,

p|,——)t e(x)e '" *d'x=Q; e—'

iFg(t —t') =(0~ T{pg(t)p g(t')} ~0). (5.3)

which may easily be written in second quantization as
pe=go ao*ao+q. (pq)„o denotes the matrix element be-
tween the exact wave functions

~ Po) of the ground state
and ~f„) of the excited state, which correspond to the
exact eigenvalues Ep and E„,so that Go p= E —Ep is the
exact energy of the excitation produced by the neutron.

S(k,oo) is the Fourier-transform in space and time of
the pair distribution function. It is simply related to the
following function:

where the contour may be closed either above or below
the real axis (since pl, and p ~ commute).

If we now eliminate the condensed state operators, Qp

and up*, according to the prescription of the preceding
sections, we see that there are three distinct contribu-
tions to iFj,(i—t'), corresponding to diagrams with two,
three, and four external lines, respectively. Thus we may
write

iF, (&
—t') =i{a, (&

—&')+F, '(t —r')PF, (&
—&')}, (5.9)

where

F"(&
—&') =~o(fo I &{[~-.*(&)+o.(&)j

XL~.*(&')+~.(&')j}IA), (5 1oa)

F"(&
—&') = 2(~o)'(Al T{L~- *(&)+~~(&)j

&&LE ~+~*(~')~%(~')j}I4o), (5 10b)

F.'(&—&') =9 o I
2'{LZ, ~,—.*(&)~,(&)3
XLP, ~~ p~*(i')&c (~')j}I4o) (5 10c)

F~'(t —$') may be expressed in terms of G and 6 as

F„(t—i') =no{G (t—t')+Gz(t' —t)

+G, (t—i')+G, (t' —t)}. (5.11)

This relationship can be seen if we define the Fourier With the aid of (4.12) and (4.13), we may write its
transform of FI,(t t') by- FOurier tranSfarm, F (k,o1), aS

k'+&11++&11 —2p —2~oo
F'(k, o1) =eo

O (+11 ~ll }] t OP P+2 (~11 +~11 )] +~GO
(5.12)

6. THEOREM ON THE PHONON SPECTRUM

The expression for G(p, o), derived in Sec. 4 can be
used to calculate the energy E(k) of a single particle
excitation as a function of its momentum k. In the low-
density approximation it appears that for small mo-
menta E(k) is proportional to k, so that in particular
E(0)=0.

It is the purpose of this section to show generally, i.e.,
to all orders in the interaction, that the phonon energy
is equal to zero for zero momentum. The proof is based
on a simple relationship we shall establish between the
chemical potential p and the functions Z, i(0,0) and
Z»(0,0) for p and e equal to zero.

In order to derive this relationship we shall start with
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the well-known expansion
t

U(t t')—=e '~—~' '&—=e '~ot Q (—i)" Ct
nM t'

ptn —I

X ' dt2 dt„V(ti) . V(t„)e'np'

where, as before, V(t) is the interaction in interaction
representation. Introducing the time-ordering operator
T, one can easily write

Z
n

U(t —t')=e—'H t g

~t ~t
dt, dt„TV(t ) .V(t„)e'""' (6.1)

tl t/

Since the asymptotic behavior of (OI U(t) IO) for large t

is of the form Ep exp( —iEpt),"one can use the diagonal
element (OI U(t)IO) to derive a convenient expression
for the total energy Eo of the system in its ground state.
Using diagrams to represent the various terms of the
expansion (6.1), one finds that (OI U(t) I0) can be ex-
pressed in terms of connected diagrams only, by the
formula"

(0I U(t) IO)=exp((OI U(t) IO)),

where (OI U(t)
I 0) is defined by

Z
n p2t

(0I U(t) IO)=g ~ dtiJ,,
1 t(I 2

x ~ dt-«ILI'V(ti) ".V(t-)lcl0).

The subscript C means that only connected ground-
state diagrams contribute to (OI U(t) IO). In exactly the
same way as in the case of the Green's function, the
time-ordered product can be expressed in terms of
normal products. We now study this function in the
limit t ~ ~. As before, the integrations over t; lead to
factors b(p, 0,. ) in each vertex, saying that the sum of
the e, 's, with appropriate signs, must be zero for each
interaction. However, in the case without external lines,
one of these relations is identically satished as soon as
the others are fulfilled. This means that the last inte-
gration simply leads to a factor t, expressing the fact
that (OI U(t)

I
0) is asymptotically proportional to t. The

proportionality factor must clearly be —zoo. It is now
very easy to establish that Ep/0 can be calculated as the
sum of the contributions of all connected ground state
diagrams. The contribution of each diagram must be
calculated according to the rules given in Sec. 4, with
the following modifications: (b'). For each vertex except
one, there is a factor bp(P.; k;)b(P; p.;). (f'). A numerical
factor 1/r(21r) 4 +4' 'i" '+'

"Cl. Sloch, Nuclear Phys. 7, 451 (1958).

We shall now use this expansion of Eo to establish the
following equation involving the chemical potential p, ,
~ii, and ~o~'

t4 ~11(0,0)—~02(0 0). (6 2)

p, &' =1snp —'(n nt) (6.4)

AVe now calculate the sum of all terms of &11(0,0) and
&02(0,0) which can be obtained from this ground-state
diagram. The process of attaching two external lines
diminishes the number of factors no by one. Hence, in
the numerical factor for XII or Zo2, as given in Sec. 4
under f, we must replace s by s —1, which makes this
factor identical to the corresponding one for np 'Ep/D.

I et us now start adding the two external lines, one by
one, An ingoing line can only be added to vertices b, d,
and f, transforming them into a, t1, and c, respectively.
The transitions b —b a and f +c do no—t change the
value of the diagram, since the vertex-functions it(ki)
+n(k2) and it(ki —p)+~(k2 —p) are equal for p=0, and
similarly for v(k)+1(0) and e(k)+2(p). However the
transition d —+ b leads to a factor of 2.

If we denote by I(n, nb, n„n&,n„nt) the sum of
terms one gets by adding one ingoing line in all possible
ways, one finds

I(n„nb, . ,n1)
=nb{n,+1, nb —1, n„ng, „B)B1

+Bg{n„nb+1,B„ng—1, n„)nr
+Br(n, IZb, B +1, 'Bg, 12, By—1),

where one should remember that the different bracket
expressions, representing different diagrams, have all

equal values, except for a factor of 2 for each missing
vertex of type d or e. Adding one more ingoing line in
exactly the same manner, one finds

502'"'(0,0)=II(n, . Br}= Lnb(nb —1+2B~+B1)
+ 2ng (nb+ 1+2ng 2+Br)—

+n1(nb+2nd+Br 1)jnp 'Ep/0, — —

which, by virtue of (6.3), gives

202 @(0,0) = (S —S)no L'0/ft (6.5}

To prove this equation we remark that all diagrams
of Z»(0,0) can be obtained in a unique fashion from the
connected ground-state diagrams by attaching in all
possible ways one ingoing and one outgoing line of
momentum and energy zero to one or two incomplete
vertices; to obtain 502(0,0) one attaches two ingoing
lines in a similar fashion. Let us consider an arbitrary
connected ground-state diagram, which is built up from
m vertices of type a of Fig. 3, eb of type b, etc. , and
denote its value by (B„nb,n„nz, n.,n&} Obv. iously nb

+2nd= n, +2B,. The number s of factors np is given by

s= 2nb+ 2-B,+Bq+B,+B~=nb+2nd+BI (6..3)

With the Eq. (3.8) derived in Sec. 3, the value of t4

arising from this diagram is found to be
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3

a p 4 +

3

~ 1 ~ ~

the first few terms in the expansion of these properties
in an ascending series in e; for instance, the ground-
state energy may be written as

7-'0= &0"'+&o"'+&0'"+

Fxo. 6. (a) The multiple scattering terms which for low density
are all of equal importance; (b) the graphical representation of
Eq. (7.3) for the scattering matrix t.

Similarly

Z, ~&d' (0,0)= OI fn. . er}=s'no 'E,D/0 (6.6)

in which 0 is the operation of adding an outgoing line.
Equa, tions (6.4), (6.5), and (6.6) give immediately

p
&"'= ~~, g&'& (0,0)—Zo, & "& (0,0).

Since we proved this relation for an a,rbitrary diagram
of order e)1, and since for m=1 this relation is also
satisfied, we have proved Ecl. (6.2) generally.

This equa, tion makes it very easy to prove our
assertion concerning the phonon spectrum. Indeed, it
follows immediately from (4.12) that for p, satisfying
(6.2) both poles of G(p, e) coincide at &=0. Hence there
can be no energy gap in the phonon spectrum.

We therefore conclude tha, t for those theories of the
boson gas for which an energy gap has appeared in the
elementary excitation spectrum, the cause of the ap-
parent gap is to be found in an inconsistent treatment of
the vertices Z~~ and ZO2, or the depletion effect, in the
higher order terms of the perturbation-theoretic ex-
panslo11.

A few remarks should still be made concerning the
conditions under which Eq. (6.2) is valid. We made use
of a power series expansion for Eo which, as can be
proved easily, is equivalent to the linked cluster ex-
pansion (3.10). We obtained Eo from the limiting
process

Eo= i lim —(0 ( U(t)
~
0).

t~~ d~
(6 7)

7'. THE LOW-DENSITY LIMIT

In this and the succeeding section we will be con-
cerned with the calculation of the properties of a dilute
boson gas at zero temperature, Our goal is to calculate

It is clear that this expansion in powers of V does not
converge in the boson case. In fact, many of the terms
are infinite, due to the divergence of integrals for smaIl
momenta. For actual calculations this expansion is
therefore not very useful and we prefer (4.10).However,
in our proof we implicitly used a cuto6 for small mo-
menta, knowing that the result will not depend on the
cutoff, provided the limit in (6.7) exists. A criterion for
this existence is not known at present. We believe that,
at least for repulsive interactions, this condition is
fulfilled.

where in the low-density limit Eo&')«Eo('&«Eo~'). As
discussed in Sec. 4, the calculation of the properties of
a given system in the present method begins with the
calculation of the effective potentials, Z~~ and 202. Once
these are determined, in a given order, say, the Green's
function G(p, e) is obtained from (4.12). The poles of

G(p, ~) then yield the low-lying elementary excitations,
while the ground-state energy, Eo, may be obtained by a
suitable integration over p and e, according to (4.10).

It should be emphasized that the Green's function
method differs markedly from a conventional pertur-
bation-theoretic approach, in that a first-order determi-
nation of the G's (and the system properties deriving
therefrom) already corresponds to the summation of an
infinite sequence of terms in a perturbation-theory ap-
proach. As an example, calculating Z» and Zog ln first
order, one finds

Zj g no(——VO+ V„),
202 ——no V~,

(7.1)

(7.2)

where 2 ~~ represents the sum of a direct and an exchange
term. As Beliaev has remarked, the results (7.1), (7.2)
when combined with (4.12) already contain the classic
result of Bogoliubov for the excitation spectrum of a
dilute gas of weakly interacting bosons. ' We may
further remark that a, calculation of the ground-state
energy based on (7.1) and (7.2) is formally equivalent to
the high-density electron gas calculation of Gell-Mann
and Brueckner. "It represents a sum of all ground-state
diagrams which are topologically equivalent to a con-
tinuous line, punctuated by dots to represent the
interactions, as illustrated in Fig. 2. The use, then, of
(7.1) and (7.2) for the Z's is likewise equivalent to the
random-phase approximation introduced by Bohm and
Pines for the electron gas."

The first-order calculation above is not sufficiently
accurate to describe the properties of the system in the
low-density limit, The reason is that there is, in fact, a
whole sequence of contributions to the Z's which are of
equal importance in this limit. These correspond to the
repeated scatterings of a given pair of partic1es. "Con-
sider the scattering of particles of momentum pi and p2

to p3 and p4. Then, as shown in Fig. 6(a), not only is the
first-order scattering of importance, but also all the
additional multiple scatterings which are indicated
there. Thus all the terms of Fig. 6(a) contribute to the
Z's in the same order of eo. From Fig. 6(b), it is clear
that this infinite sequence of terms may be summed
with the aid of an integral equation which may be

"M. Gell-Mann and K. X. Brueckner, Phys. Rev. 106, 364
(N57)."D. Bohm and D. Pines, Platys. Rev. 92, 608 (1953). See also'
P. Nozieres and D. Pines, Nuovo cimento 9, 470 (1958).
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written symbolically as

Z12; 34 212;24+2'12;56+5 G6 Z56;64
Z

"&=&ii(o)—&62(0) =»pfp. (7.8c)

while the first-order chemical potential is, according to
6.2 ,

(7.3)

Henceforth, in all diagrams, we shall assume the vertex
to be given by t according to (7.3), so that the point
representing a given vertex is in reality a sum over an
infinite sequence of diagrams. The class of diagrams
which must then be considered is correspondingly con-
siderably reduced.

The solutions of (7.3) may be expressed in terms of
the scattering amplitude for two particles in a vacuum.
The particular vertices which are of interest to us here
have been calculated by Beliaev, who finds

d q
Z(001 —P) =f'(P,0)+ f(0,a)f*(»e)

1 1
X —+, (7.5)

16+2@ ', p' q—2+-28—q' ', p' 27—I 1-—
where f, (p', p) =(f(y', y)+f(—y', p))/2, f(p', p) is the
scattering amplitude defined by

f(p', p) = ~dpx v(x)e
—'»' *+»(x), (7 6)

and @»(x) is the eigenfunction for a particle moving in a
potential 2&(x) which behaves at infinity like a plane wave
of momentum y plus an outgoing spherical wave.

It is not necessary to know the complete solutions of
(7.4) and (7.5) in order to determine the leading terms
in the low-density expansion of the ground-state energy
and excitation spectrum. As we shall see these are com-
pletely determined by the properties of the Z's for
momentum transfers which are small compared to the
inverse of the zero-momentum scattering amplitude, fp.

In this limit, we have

1 11
X +— (7.4)

2zz —q'+zb q' 1

daft

&(01&1&0)+Z(01201&)=2f.(l»l1&)+2 '

I f (l»&)1'

I'6&'&/0=-22»p, o& = —,'»'fp, (7 9)

since there is no contribution from the integral in (4.10).
The energy spectrum of the elementary excitations
derived from GP(P, 6) is of course that of a gas of free
particles.

The first-order excitation spectrum and the second-
order ground-state energy are obtained from the first-
order Green's functions, which are, according to (4.12)
and (7.8),

G~'& (P,p) = (6+ 'P'+» 6f6-)/(6' M2+il'&—), (7.10)

G"&(p,p) =G~'&(p, p) = —»pfp/(6' —M '+Q), (7.11)

where the poles of t", and hence the energies of the low-

lying elementary excitations, are given by

M» p»ofp+4p —. (7 12)

The dispersion relation, (7.12), for the excitation spec-
trum shows that in the low-moment um regi on (p« (»6f6) ')
the elementary excitations behave like sound waves
with a constant velocity, (zip fp) '. En the high-momentum
region (p))(»pfp)'), M» lila, y be expa, nded in powers of
»pfp I

M„=,'p'+»pfp (»p'fp'/p-')+ . .. — (7.13)

The elementary excitations then correspond to almost
free particles moving in an "optical potential, "

»pfp.
It is convenient to re-express the first-order Green's

functions in the following form:

G"'(p+~) =
6 M»+28 6+M» ZS

(7.14)

G'i&(p+z ) =G "& (p+z )

I.et us now consider the properties of the system in
first and second orders. The first-order ground-state
energy Eo('~ is determined from the "zeroth" order
Green's function, (Zi, i'& =Zpzi'& =0),

G'(p, 6) = 1/(6 ——2'p2+25),

and the first-order chemical potential, p(". According to
(4.10) we have

f.(21,l1)=f(1,0)=f(0,0) = fo, (p«fp ') (7 7)

Further, the integrals in (7.4) and (7.5) give rise to
terms of order fp(»pfpp)&. As we shall see, the expansion
parameter for the low-density hard sphere gas is just
(»pfp') &, so that contributions arising from the integrals
may properly be regarded as giving rise to second-order
corrections to the hrst-order Z's formed from the t's.
The latter are, therefore,

where
24„'= (—',P'+»pf 6+M „)/2M „,

. p» = (2p+«fp M»)/2M»—
24»'U» = »pf p/2M

(7.16a)

(7.16b)

(7.16c)

1 (7.15)
M»+25 6+M» Z8

~62O'=»pfp,

Zi, o& = 2»pf p,

We remark that the coefficients 24» and 2&» may be
regarded as coherence factors which, for a given mo-

(7.8b) mentum, measure the way in which the interaction be-
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tween the particles influences the system properties. The
role that these coherence factors play depends in turn
on the relative size of the momentum p, and the mo-
mentum which characterizes the strength of the inter-
action, (npfp) . Two limiting cases are of interest:

one gets
Epi')/0=+(nf p) i, (7.2O)

To complete the calculation, we consider (7.19) as a
differential equation in Ep/0 as a function of n, since
u= (d/dn) (Ep/0). Putting in this order,

Case 1:p«(2npfp)', )= 'fl (7.21)

u~' —v „'—u„v~—(np fp) l/2p,

Case 2: p))(2npfp)',

u„'—1; i),' n—p'f—p'/p'«1

Thus for small momenta the coherence factors N„and
~„are large and equal. The resulting Green's function
divers markedly from its free-particle value, G(", and
the related properties of the system are determined by
the sound-wave type excitations in a way which is not
at all accessible to a conventional perturbation-theoretic
treatment. On the other hand, for large momenta, the
Green's function, G~", approaches that of a free particle
(as do the elementary excitations), Gi') is negligible, and
the interaction could easily be treated by ordinary
perturbation theory, to which, in fact, the present
treatment reduces.

The second-order ground-state energy is found from
(4.10) and (7.14) to be

gqo(2) 1
t

d'p
t

ide—-'ep(') =- (p+l p')

Q~
1 (7.17)

p My+ i8 6+p)p —z8

where the contour integral is to be closed in the upper
half plane. We find, on carrying out the integration
over e,

g (&) 1 p dpp
--——,'ep, &') =—

0 2 ~ (2 )P

+0 0

X . (7.18)

(Ep")/0) —-'np, &') = —2 (n pfp) '/15m'. (7.19)

We remark that we can now see that the neglect of the
dispersion in f(p'p) is justified in the calculation of the
first-order ground-state energy: the contributions to
(7.19) come from

p&(n fo)*«fo '

since

(npfp') &«1.

According to (7.13), for large momenta (p& (2npfp)&),
the integrand on the right side of (7.18) is of order p ';
the dominant contributions to the integral come from
the low-momentum part (p& (2npfp)**). The integration
is straightforward, and one finds

If we substitute (7.20) and (7.21) in (7.19) and bear in
mind that in this order we may replace eo by e in the
right-hand side of (7.19), we find n=8/15m', and thus

L~'pi')/0= n'fp(n fp') '*

15m'
(7.22)

f d p pp +npfp p)„—
n=np+

(2~)P

( (npfp') ')
=np] 1+

3~'

As in (7.18) the main contributions to the integral come
again from low momenta (p& (2npfp)'*), since for large
p, the integrand is of order p '. We see that the depletion
of the ground state as a result of the interaction be-
tween the particles is of order np~fp'.

We may also calculate the time-dependent correlation
function F (k,p)) and the structure factor 5(k) defined in
Sec. 5 in this order. It is straightforward to show that in
lowest-order only the two-line part of F(k,p)) is of im-
portance. One finds, on substituting Eqs. (7.8) in (5.12)

ek'
Po)(k p)) =

(p p) p+i8) —(p+ p), ib)—(7.25)

We then have, using (5.8)

k'
5o)(k) =

2p) p 2(np fp+k'/4):
(7.26)

We thus find from (7.26) that in this order the phonon
excitation spectrum takes the form proposed by
Feynman"

p) p
——k'/2S(k).

"R.P. I'eynman, Phys. Rev. 91, 1291 (1953).

in agreement with the results of Beliaev. ' For the special
case of a gas of hard spheres, the result (7.22) is at once
seen to yield the result of Lee, Huang, and Yang, ' since
for this potential fp =4m a, where a is the diameter of the
spheres.

It is of interest to calculate the depletion of the
ground state in this order. We have from (4.9) and (7.14)

d p I
n np=) dp

(2m)' ~ o 2n-

2

XI
"" — '"

t, (7.23)
I p Mp+2b p+Mp i6

and hence
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We note that for large k(k»(epfp) ~), S(k) approaches
unity, which is its free particle value. For small
k t k«(eofp)~j on the other hand, S(k) differs greatly
from unity, and in fact varies linearly with k. It is
natural, then, to regard (m()fo) & as the correlation length
in the problem, i.e., the length over which correlations
brought about by the particle interactions play an im-
portant role.

We see from (7.9), (7.22), and (7.24) that the
parameter which characterizes the series expansion of
the properties of the dilute boson gas is (n()f()8)'*. That
this parameter should enter (rather than, say, f()/mo &)

is a direct consequence of the fact that it is the low
momentum transfers which determine the properties of
the system. Thus the interaction is weak when the
scattering length f() is small compared to the correlation
length, (m()f()) ', and it is this ratio which appears as the
expansion parameter.

We conclude this section by remarking on the con-
nection between the present method and that of
Bogoliubov. ' In the latter approach one obtains the
first-order excitation spectrum and Ep&') by keeping only
the terms Vq, V„Vr, and V, of (2.3) in the Hamiltonian
(assuming one has erst introduced an effective inter-
action by the pseudopotential method or by using
L7.3$). The resulting Hamiltonian then may be diago-
nalized by means of a canonical transformation of the
form (4.1).The condition that the new Hamiltonian be
diagonal is simply

)r

Sp =Qpj Vp =Vy)

where N„and ()„are defined by (7.16). In this fashion
one may obtain a ground-state energy and excitation
spectrum in accord with (7.22) and (7.12). It is inter-
esting to note that the coeKcient v~ which measures the
admixture of the new creation operator in the old
annihilation operator is likewise a measure of the
strength of the negative frequency pole in our Green's
function, (7.14), as might perhaps have been expected.

8. THE NEXT ORDER TERM IN THE
GROUND-STATE ENERGY

We now carry out the calculation of the next term in
the series expansion for the ground-state energy. To do
this, we need to know the second-order effective po-
tentials, Z~~('~ and Zp2"'. With the aid of these we may
determine G&", and then calculate Ep(3) and p, (@ in a
fashion directly analogous to our calculation of Ep"' and
p('~ in the preceding section.

Ke find it convenient to begin by obtaining an ex-
pression for 6&2) which divers somewhat from that, one
finds on direct application of (4.12). We do this by
considering the algebraic e uations for G and 8 which
obtain if one uses G"'(p, «)i ")(p «), and G'"(p, «) as the
"bare" propagation functions instead of G'(p, «); one
must likewise introduce new eGective potentials, Z~~'

~].1 ~].f and ~p2 ~p2 ~p2, in place of &11

P, » p, »

P, »
P, »

-P -»

p, »

P, -»

-P -» -p-»t

Fio. 7. The graphical representation of the equations (8.1) and
{8.2). The wavy lines correspond to the Green's functions Q('),
C(') and G(').

G(p «) =G(p «)&»'(p «)G'" (p —«—)
+G(p, )~. '(p, )G(')(p, —)
+G(pi«)&» (pi«)G"'(pi«)

+G(p «)&»(p «)G'"(p «) (g 2)

These equations may also be obtained by suitable
algebraic manipulations from (4.12) and (4.13), using
(7.10) and (7.11).We now remark that for the calcula-
tion of Eo(') it will suKce to work directly with (8.1),
substituting G('), G('), and G(" for G, G, and G on the
right-hand side of the equation, and then using the
resulting expression in (4.10). Thus we may write
G= Go)+G(2), where

G"'(p «) =G'"(p «)~»"'(p, «)G"'(p «)

+G'" (p «P»"'(pi«)&'" (pi«)
+Go) (p «p»(2) (p —«)go) (p «)

+G(')(p, «)z ("(p «)G(')(p «) (8.3)

and the Z(2's denote the appropriate expressions of
lowest order in mp for Z's.

' Actually, the G(')(pe»)y and 6(')(p, c) of (8.1) and (8.2) differ
from the expressions (7.10) and (7.11), in that one should include
as well the higher terms in the expansion for p. To the order of the
calculations carried out in this section, these higher terms make no
contribution, so we drop them at the outset.

Zp2. The new coupled integral equations may be simply
obtained by analysis of the appropriate new diagrams in
a way directly analogous to the procedure of Sec. 4, as
shown in Fig. 7. The resulting equations are"

G(p, )=«"(p, )+G(p, )~ (p, )G'"(p, )
+G(pi«)~02 (pi«)G (pi«)

+G(p, )~. (p, )G'"(p, )
+G(pi«)&» (pi —«)G"'(pi«)i (g.1)
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There is a further very great simplification which re-
sults because ED~3' turns out to depend logarithmically
on zzofo'. As will presently become obvious, we can
obtain the correct coefficient of this term by taking only
the leading terms for small zzo in (8.3). We therefore find

~. '-'(p, ) 2&of@oz'" (P, ~)
~'"(p,~)—=-

( --'P'+'&)' ( -!P'+ ~)'(+-'P'-z~)

4Z zf zg (2&(p 4)
+ , ,

— (8 4)
(~ p—z'+zt')'(z+ z P' z~—)'

The corresponding expression for Eo'3) is

1
&

d p I z—l z'"=- ' — ~ (+-'P') '"(P, ),
0 2 " (2zr)' ~ c (2z&.)

now apply the rules of Sec. 4 and make use of (7.10) and
(7.11) to calculate the contribution from this diagram,
we find for small mo

Zoz& &=4zzo fo dz-
d q

I
i

(2zr)' 2m.

NI &a

X
4'+e —zkz+i5 z'+ a+zkz i8—

Ig'Vg N4IVg

+ , (8.6)

where we have introduced k=q+p, and approximated
the vertices by (eofo)l. On carrying out the integral
over e', we find for the relevant term,

d g
&oz&z&~4zzozfoz i' — —,, —

—.
— (8 7)

(2zr)' q'[z+zq'+ ', k' z3—$—

which upon substitution of (8.4) becomes

1 t- d'P
I

dpi [e+-',P']&»'z&(P, z)——,'ep(') =-
0 2" (2zr)z ~c (2zr)

2zzofpZoz~z& (P,z)

(.——,'Pz+zS) z

zzo'fo'&zz "(p, —.)

(e—-'p'+i8) '(e+-' p' —i8)
(8.5) f' d q t' 'Z Z444&z ZZzZ&z

(2m)» 2z&. z' —-',,q +zzb e'+ ', qz z7&-—

There are two kinds of contributions to &11 (p, &)

which are relevant to our purposes. Those of the erst
kind give rise to singularities above the negative real c

axis, and arise from the diagrams of Fig. 8(b) and (c).
The contribution from (b) is

In carrying out the integral over 4 in (8.5), it is im-

portant to bear in mind the fact that any singularities of
G(p, e) must lie slightly above the negative real e axis,
or slightly below the positive real e axis, as follows from
the definition of G, (4.2). Therefore, because the contour
of integration in (8.5) is closed above the real axis, the
only contributions to Eo'@ arise from the singularities
along the negative real e axis. As a result we need con-
sider only those parts of Zoz&z&(P, e) which have singu-
larities on the negative real e-axis, while for the terms
involving Zzz~'&(p, e) and Zz&"&(p, —e) we shall need to
consider the leading term in zzo for Zzz&z&(P, Pz/2), as weH

as the leading terms which possess singularities above
the negative real e axis.

Inspection of the terms of 202(2) which might then
contribute shows that the only diagram of importance
(in the limit zzo —+ 0) is that shown in Fig. 8(a). If we

Sjc81c
X —

, (8.8)
E+z zk +z8 +ze +zk 14&

while that from (c) is

f d g f

(2~)' "

a+ 4' ——',k'+i6 e+e'+',k' it'& —. —

Qq
2

z' ', q'+i5 4—'+-,'q' i6-—(8.9)

On carrying out the integrals over e', and keeping only
the relevant terms for small eo, we find for the sum of
(8.8) and (8.9)

q pl

+q, e+ei
d'q ( 1 1 ) 1

+—
I

(24&-)z l, qzkz k4) zyzqz+zkz zt'&—

FIG. 8. The relevant diagrams for those terms in Z02(') and Z»&'),
which contribute in Eq. (8.5). The wavy lines correspond to G(",
6&'), and 6(').

The contribution to Zzz'z&(P, c) to be substituted in the
last term of (8.5) arises from the momentum dependence
of f, (-', p, -', p) and the integral in (7.5). It is, to lowest
order in eo,
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d q
22Zp Imf4( —,'p, op)+20(ifo'

(2zr) '

1
X . +—.

p ——'p' —q'+26 q' '—p'-27—'(

(8.11)

Zpo(P, o), and Z»(P, —p), respectively, and the last term
in (8.13) arises from the singularity at 4= ——,,'p' in (8.5).

It is convenient to combine A and 8. On doing this,
and taking advantage of the symmetry between k and

q, k and p, and of course p and q (when the expression
appears as the integrand of [8.13j), one finds

where, as Beliaev has shown, one may apply (7.6) to
obtain

1
1mf, (z2p, pzp) = —Imfoo

(22r) ' q' —-'P' —2((

rf+B= (8.15a)
k2q2 (k2+ p2+q2) q2 (k2+ p2+ q2) 2

We also have

C=-
p2 (p2+ k2+ q2) 2

d'q
fp'~J— p(q' .P'). ——

(22r) '

On summing (8.10) and (8.11) we find then:

2„(2&(P,o) =20of p

(22r)

2zzo fo [k +q ]
p —i q2 22k2+ 2(1 qok4(, +22q2+ 2 k2 27()

('
+2(z((f() 'P.P.j! '-——— — ——,(8.12)

(2zr) '
—,
' q'-+ —.', k"-—-', p'

where we have shifted va, riables in order to write the
contribution from (8.11) in a more symmetric way, and
P.P. denotes the principle part. The results (8.7) and
(8.12) are in agreement: with the high momentum

(p)&(zzpf p) **) expansion of the Beliaev effective potentials.
The singularities in (8.7) and (8.12), which give rise

to an imaginary part of 202 and X~I, are associated with
the fact that in this order it is possible for an excitation
of momentum y to decay into two excitations of mo-
mentum —q and p+q.

If we now substitute (8.7) and (8.12) into (8.5) and
carry out. the integration over ~, we find

1 1
+

P' (k'+P'+q')

P.P.
(

d'q
(8.16)

p' (2zr) '(k'+q' —p')

On carrying out the integration over q and over the solid
angle of p, we find

ZZo'fo4 (4 V3) p dp—-'-zz((("" =
JJ p

(8.17)

1 1 1
+—— —— —. (8.15b)

p4 k'+ p'+q-' q'+k' —p2+28

We now note there is considerab1e cancellation amongst.
the terms arising from the diGerent singularities. The
resultant ground-state energy is real (as of course it
must be) and is given by

I,"o&'~
( d'p

(
( d'q 2

———.';zzZ4'" = 22zp'fp' ll

(2zr)2 ( J (2zr)2 ppq2(p2+q2+k2)

where

1
+Im , (8.13)

J (2~) 2 p2(q2+k2 p2 zp)

2(p' —q' —k') (1+q'/k')
rl (P,q) =

(p2+ q2+ k2) 2k2q2
(8.14a)

d p
2tzlz = 24zo—4fo J'

(2zr) '

d 3'gJ,&~(P q)+~(p q)+~(p, q)}
(22r)'

l dP Pn~nzc g

J
—=ln = ln
p pniin (&Zofo ) '

(8.18)

Our limiting procedure has led us to a loga, rithmically
divergent expression. This need not concern us unduly
however. Ke know that, had we kept the next-order in
no terms, the expression would be well-behaved in the
low-momentum region, and possess a, natural cutoG at
P; (zzpfo)*' Further, t.he logarithmic divergence for
large momenta is a consequence of the fact that we re-
placed the f(p, q), which properly appear in the Z's, by
fp, had we not done this, we would have found a natura, l

cutoG occurring, in the case of hard spheres, for

p ...-f We are thus le.d to write

and

B(p,q) =
q'(P'+q'+k')'

(8.14b) where g is a constant which will inQuence only the next
order terms, Eo"& and p, &'&. We have therefore

4
C(p, q) =- ——,(8.14c)

(P'+q'+k') (P' q' k'+z~)— —

are the contributions from the singularities of Zzz(p, o),

Ep(" zz'fo4 (v3 4 )roc l & r
p, '

32~& E ~

in which we replaced zzp by zz,

(8.19)
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To solve this equation we proceed as in Sec. 7 and expansion of the macroscopic sound velocity, s, with the
write aid of the following equations:

so that
Ep&8& =Pnofp' ln(nf 8'),

/2'87 =3p»2fo4 ln(nfp'),

in which P is determined by substituting this in (8.19).
We find

s= (dP/dn)'*,

d (Eo )7P=n'
dn/ X&

(8.24)

(8.25)

ln(n fp'),
n

We find, from (7.9), (7.22), (7.24), and (8.20),

(8.20) s= (nfo)'[1+(nfoo)~/7r2

+ (3/167r2)nfo'f 84
—v3/7r) ln(nfp')+ .. (8.26)

3»8fo4 4 W3

/
/8& = ———ln(n fo').

16m' 3
(8.21)

Our result (8.20) is in agreement with the results (ob-
tained by diferent methods) of Wur and Sawada. '

The present calculations also permit us to determine
the second-order excitation spectrum in the high-mo-
mentum region (p))(npfo)&). In this region, one has,
from (4.12) and (8.11) a pole at

=2p'+»ofoI 1 f p I=—2i—p'+f—(2p, op), (8.22)

in agreement with the results of Beliaev' and Lee and
Yang." In this momentum region, the imaginary part
of e(p) is seen to be simply related to the imaginary part
of the forward scattering amplitude.

Beliaev has calculated the second-order excitation
spectrum in the low-momentum region. For this calcula-
tion it is necessary to include many more terms in the
calculation of Z~~&" and 202( ), that is terms which are of
the same order at low momentum as those we have con-
sidered. Beliaev finds"

e(P)=P(nofo)'[1+(7/67r2) (npfpo)'*]
—2(3/6407r) p'/np. (8.23)

Thus in second-order, for low momentum, there is a
correction to the real part of the sound wave frequency,
and an imaginary part, corresponding to the fact that a
phonon of momentum y can decay into two phonons of
momenta q and p —q. That this latter process goes as p'
is a consequence of great cancellation amongst the
coherence factors appearing in the Z&"'s and in the low-
momentum expansion of the denominator in (4.12).

It is interesting to note that the microscopic calcula-
tion of the sound velocity, (npfp)1[1+(7/67r2)(npfp')l$,
is in agreement with the macroscopic calculation. The
latter derives from the fact that the velocity of sound
waves of infinite wavelength is related to the compressi-
bility, which may in turn be obtained from the ground-
state energy. We calculate the first three terms in the

'0 T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958).
"An independent caicnlation of (8.23) has been carried ont by

Leg and Yang."

9. DISCUSSION

In the preceding section we have seen that both Eo
and p possess a series expansion of the form

Ep ——-', n'fp[1+a(»fo')'+bnfo' ln(nfp')+ .], (9.1)

p=nfo[1+a'(nfoo)i+b'»fop in(»fop)+ .7. (9.2)

It is not difficult to see that m'=e —eo possesses a
similar series expansion

1
72 no= n—'= (»fo)'[1+a"(n fo') *'+ ]. (9.3)

37r2

Depletion eGects associated with the difference between
mo and e only make their appearance in the higher order
terms of the expansion (9.1) for the ground-state energy.
To see this, recall Eq. (7.19), which states that

Ep/2) n/8/2) ~ (n pfp)
2

If one then substitutes the series expansion (9.3) for np

into (7.19), one finds contributions to higher order
terms in the expansion for Eo, which have the form:

a nof 4+a»7/2f 11/2+. . .

If one further remembers that Ep&@—2»/2'87 np'f o'

Xln(nofoo), one finds further contributions from the
depletion eGect which take the form

727/2f 11/2 ln(nfoo)+, . . .

It thus appears likely that the series expansion for Eo
takes the form

Eo= 2»'f8[1+a(nfoo)'*+bnfoo ln(nfo')+cnf p'

+dn'fo"' ln(nfoo)+en~f8" + $ (9 4)

Of these coefficients only a and b are known at present.
It should further be remarked that while the coeffi-

cients a and b are independent of the particular "shape"
of the interaction potential, the coefficients of the higher-
order terms will depend on the specific law of force.
Thus, no matter what the interaction which gives rise
to the scattering length fp, the coeKcients a and b

remain the same, while c is a shape-dependent parameter
[as may be seen directly from (8.18), for instance].

The coefficient c appears to be quite difficult to calcu-
lates, Consider the calculation of 282~", for instance. It
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may readily be seen that to calculate this quantity, one
must include, amongst other terms, the entire sequence
of diagrams shown in Fig. 9. As Beliaev has remarked,
the summation of these diagrams cannot be expressed
in terms of two-body scattering amplitudes, but requires
that one obtain a solution to the three-body problem in
closed form.

Actually the incentive does not appear great for
performing a calculation which yields c. The reason is
that if one studies the relative size of the logarithmic
term and the term immediately preceding it in the series
expansion for Ep, one Ands that when one gets to densi-
ties and scattering lengths which might characterize the
behavior of liquid helium, the logarithmic term is much
arger than its predecessor. For a model of hard spheres

of diameter 2.2 A, with a density equal to that of liquid
helium, (Nf33)'—21.4, and E3(' 686(').

The one hope, then, of carrying out a microscopic
calculation of the properties of liquid helium would
seem to lie in summing a selected class of higher order
terms, as has been done by Brueckner and Sawada. '
Their procedure is equivalent in the present formulation
to the following approach. One takes, as in the extreme
low-density limit, the eRective potentials to be

Z»" =)3Lt( '(OqOq)+t&') (Oqq0) j,
Z»( ) =23t('(00q —q),

t4" = 23t(') (0000).

(9.5)

Ke have introduced the notation t("& to reflect the fact
that the t( 's are now determined by a nonlinear inte-
gral equation, which is similar in form to (7.3), but in
which the propagators are altered to include the effect
of forward scattering via the eRective potential, Z~~( &.

Thus (7.3) is replaced by

where
t12;34 ()12;34+2)12;56G5 G6 t56;34 (9.6)

G(' (p, «) = 1/(« ——', p' —2„('+t4('+i()). (9.7)

In this fashion one is able to sum a selected class of
higher-order diagrams.

It is always difFicult to justify including some higher
order terms and not others. For instance, certain terms
which are of importance in the calculation of the loga-
rithmic term, Ep(', in the low-density expansion, are

I'"xG. 9. An in6nite series of terms which contribute to the n0'f04
term in E6/Q.

neglected in the Bruecker-Sawada approximation.
Whether this neglect is justidable remains to be seen.
We believe the methods described in this paper o&er a
useful way to carry out such an investigation.

We may further remark that Brueckner and Sawada
have neglected the depletion eGect. This omission would

appear to lead to nonnegligible corrections for a system
of hard spheres of diameter 2.2 A at the density of liquid
helium (this being the Brueckner-Sawada model for
liquid helium). It is not dificult to see how to apply that
correction in the present formulation. In the expres-
sions, (9.5), one should properly have n6 appearing in
place of e, where ep is determined, in this order by

dp (' z

n233 ~ .—
~

d« —G'(p, «),
(2~)' ~ 22r

(9.8)

where G'(p, «) differs from G&" (p, «) only in that the
modified effective potentials (with 236) given by (9.5)
are to be substituted in place of Zyy() and Zp2( ~.

It is also not difFicult, using the Green's function
method, to formulate procedures which go well beyond
Brueckner and Sawada in the number of higher-order
terms which are summed. One approach, which has been
proposed by one of us and Nozieres, 22 consists in taking
for the eRective potentials

Z»(5) =N6Lt(5)(OqOq)+t&" (Oqq0)g,

262(5) =net(5) (00q—q),

t4= 236t(5) (0000),

(9.9)

where the t'~&'s are determined by a nonlinear integral
equation with the more accurate propagators, G&5) (p, «),
defined in terms of the effective potentials (9.9), ac-
cording to (4.12). Thus

t12;34 212;34+212;56G5 G6 t56;34 y (9.10)

where

«+ 1p2+g (5) (p «) t((5)
G(5)

-'L~ '"(P «) —& '"(P —«)j)'—(-'P'+-'L& '"(P «)+&»'"(P, —«)]—t '"}'+I:&»'"(p,«)32

and the relation between ep and e is to be determined
according to (4.9) using the above value of G(5)(p, «).
How successful such a procedure may be (it will cer-
tainly require extensive machine computations) remains
to be seen.

io. CONCLUSION

We have shown that a simple treatment of the deple-
tion of the ground state as a consequence of the inter-

action between particles permits one to apply the
powerful methods of field theory to the many-boson
problem. It is then possible to present a consistent
divergence-free formulation of the problem to any order.
This enables one to obtain certain general relationships
between the quantities of interest in the theory. We
were thus able to prove that the low-lying excitations of

"P.Nozieres and D. Pines (private communication).
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the system would not possess an energy gap. Another
general relation, which perhaps can be proved by the
methods of the present paper, is the equality which
appears to obtain between the macroscopic and micro-
scopic sound velocities.

The present approach also aGords a straightforward
way to calculate the series expansion of the properties
of the dilute boson gas. We have calculated the next
term beyond the results of Beliaev and I ee, Huang, and
Yang, and find that the expansion is not a power series,
but involves as well the logarithms of the expansion
parameter (ufo')&. We have likewise seen that for the
terms up to and including the n'fo' 1n(ufo') term in the
ground state energy, the character of the forces between
the particles in a dilute boson gas is irrelevant; only the
zero energy scattering amplitude enters. It is obvious

that the series expansion has no meaning in the case of
forces which are attractive, so that the scattering
amplitude, fo, is negative. In this case one would expect
a complete breakdown of the perturbation-theoretic
expansion in the low-density region (no condensed
state, etc.) along with the appearance of two- or more-
particle bound states.
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