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Electromagnetic Corrections to Isotopic Spin Conservation*
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If electromagnetic interactions are wholly responsible for all departures from isotopic spin invariance,
then the strict conservation law AT =0 may be replaced, to order e', by the rule
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this weaker restriction are discussed for elementary particle masses, scattering processes, and weak-inter-
action decay processes. The apparent absence in nature of particles with isotopic spins greater than one
makes it difficult to find very practical experimental tests of this rule.
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MALL violations of isotopic spin invariance in
phenomena dominated by strong interactions are a

familiar matter. They show up most clearly in the small
mass differences within a single isotopic multiplet of
elementary particles, and also in the observation of
certain reactions, such as 0"(d n)N"*(T=1) ' which
would be forbidden if isotopic spin were strictly ob-
served. The most widely held view seems to be that
electromagnetism is the sole agency producing these
deviations from strict isotopic spin invariance. Alternate
possibilities have, however, been raised from time to
time, most recently in an interesting series of papers by
Pais. '

Electromagnetism is a very reasonable suspect.
Indeed, whatever else also violates isotopic spin in-
variance, we expect the lowest-order electromagnetic
process, emission, and reabsorption of a virtual photon,
to give corrections of about the right order of magnitude,

e' (where we take A= c= 1 throughout). Beyond this,
our inability to carry out really quantitative calcu-
lations involving strong interactions has so far pre-
vented a direct test of these views.

What we remark in the present note is the following.
To lowest order in e', electromagnetism does not com-
pletely destroy isotopic symmetry, i.e. , the single
photon picture described above has certain exact con-
sequences which are independent of any detailed cal-
culations involving the strong interactions. The reason-
ing is very simple. Emission or absorption of a virtual
photon leads to change of isotopic spin by at most one
unit. Therefore, to order e, strict isotopic spin con-
servation is replaced by
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~

&&2. This represents a
serious but not quite a total destruction of isotopic spin
symmetry; in principle the surviving restriction is
testable. We have explored the consequences of this
weaker principle for particle masses, scattering, and
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decay processes. As it turns out, they are not im-

pressive from a practical point of view, owing chiefly
to the regrettable absence on the current scene of
particle multiplets with T) 1.

II. MASS DIFFERENCES

Consider a multiplet of particles with total isotopic
spin T, and let the masses of the 2T+1 charge states
be denoted 3f(Ts). For all known multiplets, these
masses are equal to within a few Mev, reRecting the
approximate conservation of isotopic spin. If the small
variations in M(Ts) arise from emission and reabsorp-
tion of a single virtual photon, then it follows from the
~BT~ ~&2 rule discussed above that the masses must
lie on a parabola,

M(Ts) =nTss+PTs+y.

(This will be proven in greater detail below. ) This
relation, of course, has no signi6cance for multiplets
with T ~&1, since any set of three or fewer points may
always be joined by a parabola. Unfortunately there
are no known elementary particles with T & 2, so that
we are unable at present to test Eq. (1) in particle
physics. A similar relation also holds for light complex
nucleii (to order Z'e') but here verification of Eq. (1)
would constitute a much weaker case for the purely
electromagnetic origin of isotopic spin violations.
Nucleii are such comparatively open structures that in

any case one expects the main contributions to nuclear
multiplet "tilt" to come from Coulomb forces and
from the ts —p mass difference. ' Still, it would be inter-
esting to test Eq. (1) with nuclear quadruplets such as
N", 0"* F"*,Ne" and 8", C", N"*, 0", the end
members of which are stable against particle emission. 4

Although we cannot verify Eq. (1) for the known
particles, we can use their measured mass differences
to obtain the parameters rr, P for each multiplet. In the
absence of conclusive 6eld-theoretic calculations of

' Formula (1) was derived and discussed for nuclear electro-
static energies by W. M. Macdonald, Phys. Rev. 98, 60 (1955);
100, 51 (1955); 101, 271 (1956).

This point has been particularly emphasized by E. P. Wigner,
Proceedings of the Robert A. Welch Foundation Conferences on
Chemical Research, 195/ (unpublished), Vol. I, Chap. IV, p. 86.
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H(x) =H'i(x)+H, (x),
H, (x) = —j„(x)As(x), (3)

Here j„(x) is the first-order electromagnetic current,
and k„„(x) is determined by the condition that to order

electromagnetic mass shifts, it will perhaps be useful
to perform an isotopic spin analysis, sorting out the
way different virtual processes contribute to n and P.

To order t,', elementary perturbation theory leads to
the following expression for the masses M (Ts) of
particles of a multiplet a with unperturbed mass 3f, :

M, (Ts) =35,+ (2zr)s&a, Ts
I Hs(0) I a, Ts)

—(2zr) s P „&a,Ts
I
Ht(0) I zz)

X &zz I Hi(0) I atTs)/E M, —(2)

where the electromagnetic Hamiltonian density is

j.""'= ze(e—~A* 4*~—A),
(bosi — csg

(6)

(7)

(Strictly speaking, we should subtract from the ex-
pression for 3f,(Ts) the second order electromagnetic
perturbation to the vacuum self-energy. Since we will
only be concerned with mass differences this will be
ignored. )

The sum in Eq. (2) runs over a complete set of
intermediate states Izz& each containing a photon of
momentum k and a set of strongly interacting par-
ticles labelled by the symbol b. Then

e' the current is

J„(x)= j„(x)+2k„,(x)A "(x). (5)

For example, charged spinless bosons interacting
without derivative coupling contribute to j„and h„,
the terms

t
d'k

I
d'k &a,Tsf j„(0)fb, Ts)&b, Tsf j (0) fa, Ts&P(yb+k)3I.(Ts) =3f.—(a,Ts fk„s(0) fa, Ts& —(2~)' — P . (8)

2k j 2k b Eb+k 3I, —

—(f I [1'Ila& &f II j'[la&*}»»., (12)

v =3-f-—{(allk'll a&
—l T.(T +1)(aflk'll a&)

p d'k p d'k zz(pb+k)
X ' +

2k & 2k b Eb+k M, —
&»T I j.I a, T )= &f IIj.'Ila)+T, &bi[ j„~[la&,

=
I (T.+1)'—Ts'ji&bff j„~[[a&,

T.= Tb+1 (9)
=LT' —T '3'&f IIj.'[la),
=0,

X{I &fzll jo Ila& I'
I &&Ilj Ila) I')zz»~'

EVe observe that the coefficient P receives contribu-
tions from intermediate states b with T&——T only.
Moreover the pion pair contribution to h~ and hence
to P, vanishes; since the pion field transforms as a
pure isovector, the squared field in Eq. (7) transforms
as a mixture of isoscalar and isotensor only. Thus the
coefficients, '

On the other hand, h„c' is proportional to e', and thus
transforms as a mixed isoscalar h~, isovector h~, and
isotensor h~, so that

(a,Ts I k."I a, Ts) = &allk'[la)+ Ts&allk'[la)

+ LTss —sT.(T.+ 1))&allk'Ila) (10) Pv ——zzz(p) —m(zz) = —1.3 Mev,

Px ——m(E+) —m(K') = —3.7+0.7 Mev,

Px ——-,'Lm(Z+) —zzz(Z )$= —3.2&0.2 Mev

Inserting these results into Eq. (8), we obtain the
expression for 3f (Ts) given by Eq. (1),with parameters

z d'k
t

d'k zzs(pb+k)
+(2~)s

2k ~ 2k b Eb+k 3I, —
receive contributions only from intermediate states b

with T&= ~, ~, and 1, respectively, and from the
E-meson pair contribution to h„„(P =0 by CPT in-
variance) .

The coefficient n can be determined in isotopic
X{I &flljo"Ila&I' —1&bi[~ Ila&I )

All field operators here obey the Heisenberg repre- p d'k d'k lls(pb+k)
sentation equations of motion determined by the strong p= —

&affk Ifa& +(2zr)'
~ ~ 2k 2interactions alone. One supposes, of course, that some
sort of cutoff renders these integrals convergent.

Since the current j„is proportional to e it possesses
the' transformation property' of a mixed isoscalar j„s
and isovector j„~, so that by the Wigner-Eckart
theorem,

X{bsb, so 8z b, Tgi fi Tb, so—+t), (.1—1)

5 This fact was used to derive a limitation on the magnetic
moments of the Z particles by Marshak, Okubo, and Sudarshan,
Phys. Rev. 106, 599 (1957).

6 For E-meson, Rosenfeld, Solmitz, and Tripp, Phys. Rev.
Letters 2, 110 (1959};Crawford, Crest, Good, Stevenson, and
Ticho, Phys. Rev. Letters 2, 112 (1959). For other masses, see
M. Gell-Mann and A. H. Rosenfeld, Annzcal Beezer of Nzcclear
Sczczzce (Annual Reviews Inc. , Palo Alto, 1957), Vo. 7.
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triplets, and takes the values'

n =nb(lr+) —nt(2r') =4.6 MeV,

cia=-', (nt(Z+)+nb(Z —
))—nt(Z') =3.0, ,+"Mev,

From Eq. (11) we see that rr receives contributions from
intermediate states b with Tp=0, 1, 2 and from the
pion-pair contribution to kr. (The E'-meson field has
isospin —',, so that its square in Eq. (7), transforms as a
mixed isoscalar and isovector, and hence cannot con-
tribute to hr. ) The algebraic sign of the first of these
contributions is a product of three signs:

(i) A+ (—) sign if the main contribution arises from
states b with Tb 1(T——b=O or Tb 2). ——

(ii) A + (—) sign if the main contribution arises from
timelike (spacelike) photons, interacting with Jp(j).

(iii) A + (—) sign if the main contribution arises
from intermediate states with Eb+k)M, (&M,). In
multiplets stable against single y-decay, such as the
pion triplet, only Eb+k)M', is possible. For the Z
triplet, Eb+k can be as small as nt(A').

As for the pion-pair contribution, we can again
insert a sum over states lb, T2&, obtaining

—(allk'I a&=e'~. l(clio-lid&l'
)(, (hro 2'e —6To, Te+1 O2'o, 2'e —1) q (14)

which contributes a positive (negative) term to n if the
main contribution comes from states c with T,=1
(T,=O or 2).

All in all, it seems rather more reasonable than not
that in fact n is positive for the known cases. These
considerations do not provide any hint, however,
regarding the sign of P.

III. SCATTERING AND DECAY PROCESSES

We turn now to the effects of electromagnetism in
strong scattering processes. Let us consider a process
a —+ b, where a and b are sets of strongly interacting
particles, with total isotopic spin T, and T~, respec-
tively. Since isotopic spin is not precisely conserved, it
is of course not necessarily true that T,=Tb (but Ts
is conserved —we are neglecting weak interactions). In
the most general case, the S matrix then has the form

S=So +S] +S2 +Ss~+ ' ' ' (15)

where Sz' transforms under isotopic spin rotations like
the T3=0 component of a spherical tensor of rank T;
by the Wigner-Eckart theorem,

(h, T2'lsrola Ts&=~»'»c». (TbT2; 0T2)(kllsrlla&, (16)

where CTT is the usual Clebsch-Gordan coefficient. ' In
particular, the matrix element of Sp' vanishes unless

l
T, Tb

l
& T & T,+Tb. —

' For notation, see J. M. Blatt and V. F. Weisskopf, Theoretical
Xucleu~ Physics (John Wiley R Sons, Inc. , New York, 1952},
Appendix A.

The dominant term in Eq. (15) is of course Ss . As
for the remaining terms, their relative importance
depends on the mechanism that produces violations of
isotopic spin conservation. If it is electromagnetism,
then to order e' only the S&' and S2 terms can con-
tribute, so that violation of isotopic spin conservation
cannot occur in an entirely arbitrary way. Indeed,
using the orthogonality properties of the Clebsch-
Gordan coefficients, we see from (15) that

QCrr, (TbT2, OT2)(b, T2
l
S

l tb, T2& =0. for T)2. (17)

If T,+Th~&2, Fq. (17) tells us nothing (except that
0=0). If T,+Tb) 2, (17) is a set of T,+Tb 2rela—tions
among the scattering amplitudes. (A more detailed
proof may easily be constructed using perturbation
theory as in Sec. II.)

We mention first an entirely academic example. For
pion-nucleon scattering, Eq. (17) provides a restriction
on the isotopic spin -,'- amplitudes

A :(Ts)=(~&-, T=-', T2ISI~.~, T=-', Ts):
—A; (-', )+3A; (-,') —3A; (——,')+A; (—-', ) =0. (18)

In terms of individual processes:

—A (2r++ p —+ lr++p)+2A (2r'+p ~ lr'+ p)
+&2A (lr'+P ~ 2r++ n) +&2A (lr++ n ~ 2r +P)
+A(lr++n —&or++n) —A(lr +p —+2r +p)
—&2A (lr'+ n —+ 2r

—+p) —V2A (lr +p ~ 2r'+ n)
—2A(2r'+n + lr'+n—)+A(or +n —+2r +n) =0. (19)

The relations (17), of which (19) is an example,
require some further comment. They connect am-
plitudes for different scattering processes, involving
particles with slightly different masses. Thus, if
A(or++p~or++p) in (19) referS tO partiCleS With
rnomenta k, p, k' and p', respectively, what momenta
are implied for A(or +p —blr'+n)? The two sets of
momenta cannot be precisely identical, owing to the
slight mass differences within multiplets. It is clear,
however, what must be done. In general, we deal with
a set of processes

alp tl+ct2) t2+ ' ' '+crt) tm~ nip tl +62) t2 + ' ' '+bn) tg q

where a~ b„denote particle multiplets; and ti,
are the values of T~ for the individual particles. We
compare processes where tj, . , t„' run over all possible
values consistent with T3 conservation. To ensure the
validity of Eqs. (13), the correct prescription is this:
The momenta of all of the particles are to be chosen as
smooth functions of the various masses 3II,(t), 3fb(t )
subject to energy-momentum conservation. For ex-
ample, fix the energies of all but two of the particles and
the directions of motion of all but one. The remaining
direction and energies are then fixed by energy-
momentum conservation in each case. Now as we
compare one process with another, the variations of the
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dependent variables are equivalent to what we would
obtain by including mass shift terms in the perturbation
Hamiltonian. In eGect, we acquire a correction term
8S „,of the same order as Si' and S&',. but from Eq.
(1) it is clear that to lowest order 8S „,also transforms
like a mixed isoscalar, isovector, and isotensor. Hence
it can be absorbed in Sip and Sop, so that Eq. (17)
remains valid. By the same argument, we can also
ignore variations in phase volume in comparing one
process with another, except of course near thresholds.

Let us then return to the restrictions on isotopic spin
violation implied by Fq. (17). These restrict, ions come
into play for reactions in which the final and initial
total isotopic spins can sum to a value greater than two.
It is not difFicult to list many examples; but in most
cases a test of Eqs. (17) would require hopelessly dif-
ficult experiments, such as the study of the process
pr +e~ prp+e in the example of Eq. (19). Even when
this problem can be avoided, as it is in a number of
examples, one encounters a second practical difficulty:
Eqs. (17) relate scattering amplitudes, whereas one
actually measures cross sections. In the general case,
therefore, a precision phase-shift analysis would be
required to determine the amplitudes; and for practical
purposes this is out of the question. ,

A simple example of a process for which both these
difficulties are avoided is the reaction He'+He'~37r
+He4+He4 or alternatively, the decay of a T=O
nucleon-antinucleon state (even parity singlet, or odd
parity triplet) into three pions. Suppose we denote a
particular three-pion channel by the momenta ki, ko
and kp, and let A (+, —,0) be the amplitude for pro-
ducing 7r+ with momentum ki, or with momentum ko
and x' with momentum ks. The other six amplitudes
A(—+0), A(0+ —), A(0 —+), A(+0—), A(—0+),
and A (0,0,0) are defined similarly. The cross sections p.

are proportional to IA I'. Now if charge independence
were exactly satisfied, only the T=O three pion state
would be produced. There is just one such state and
it is totally antisymmetric under permutations of the
pions. We therefore write

A(+ —0) =Apyu(y —0),
A (—+0)= —A o+R4 (—+0),
A (+0—. ) = —A p+8A (+0 ), (20)

A (—0+)=Ap+Ri (—0+),
A (0+—) =A p+6A (0+—),
A (0—+)= —A o+&A (0—+),

where the 6A are of order e' relative to Ao. To order e'
then, we have

~.(+—o) =~(+—o) —~(—+0)+~(—o+)
—p-(+0—)+0.(0+—) —a. (0—+)

=2 Re(Ap*[SA(+ —0)+6A(—+0)
+8A (+0—)+RA (—0+)+RA (0+—)

+~A (o—+)3) (21)

0. (+—0) = —4 ReI Ap*A(000)], (2.3)
and hence

a '(+—0) &16IApI'IA(000) I'. (24)

Finally, we have 0(000)= IA(000) IP which is of order
e4; and to zero order

o, (+—0) —=o (+—0)+p.(—+0)+o (—0+)
+o'(+0—)+0 (0+—)+0 (0—+)

(25)

Altogether then, we find to lowest order,

I .(+ —0) I
&

I (8/3), (+—0) (000)$-: (26)

both sides of this inequality being of order e'.
With particles of isotopic spin greater than one

available, it would be possible to find more practical
tests than the above example of the hypothesis that
isotopic spin violations are solely due to electromag-
netism; and unlike the above example they would
involve equalities rather than inequalities.

Finally, we comment on the question of isotopic sym-
metries for the weak reactions. It has been suggested
by a number of authors that weak nonleptonic processes
obey a selection rule

I
AT

I
=-,' to a more or less good

approximation. The extreme view is that this rule is
violated only by electromagnetic effects. From the
observed rate for the decay E+~ m++m' it appears
that the correction terms are rather too large to be
explained by electromagnetic effects alone. In any
event, if electromagnetism is indeed the sole agency
which destroys the

I
QT

I

=
p selection rule, it follows

that to lowest order in e',
I
AT

I
&-,' is still forbidden.

This is an incredibly weak restriction, but in principle
at least it would be testable in a reaction like E—+ 371-.

In general
I
DT

I
= 2 could contribute here. The absence

of a
I
DT

I

= —,
' component would imply

A I~'(3) = (p)'*A xp'(3) (27)

where Ax+(3) and Ascpo(3) are the amplitudes for E+
and E2' decay, respectively, into three-pion states with
T=3. This relation could in principle be tested, ' but
only in principle.
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The time-dependent interference between the decay modes
E1 —+7t-++71- +7l-0 and E2 ~ +++71- +~ could possibly serve to
measure the interference between the T=0 and T=3 states. See
S. B. Treiman and S. steinberg, Phys. Rev. 116, 239 (1959).

But our selection rule IATI ~&2 tells us that the T=3
amplitude,

A p
= 2A (0,0,0)+A (+—0)+A (—+0)+A (+0—)

+A (—0+)+A (0+—)+A (0—+), (22)

is zero, at least to order e'. Thus


