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cell volume expansion of about one part in 10'. Both of
these determinations are in agreement with a macro-

scopic .measurement. of the volume, Using a strain

gauge technique, the volume of a pressed pellet of
polycrystalline NiCr204 was observed to increase about
0.8 parts in 10' on passing through the transformation
temperature. "

"P.J.Wojtowicz and L. A. Zanoni (unpublished results, 1958).
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It is shown that the Bardeen-Cooper-Schrie6er and Bogoliubov theories of superconductivity predict an
isotope efI'ect which is the same for all superconductors, so long as the Coulomb interaction is neglected.
This is demonstrated by writing the system of integral equations in a mass-invariant form, and it does not
involve finding actual solutions. The theories predict that II0, T„and the energy gap at T=G are propor-
tional to M &. The inclusion of the Coulomb interaction destroys the invariance of the equations and intro-
duces deviations from the —~ ino-the exponent. The magnitude of the deviation depends on the particular
superconductor considered.

I. -INTRODUCTION
I

HE experimentally determined fact that the
critical temperature T, of a superconductor is

proportional to M & where M is the atomic mass, the
so-called isotope eKect, is one of the phenomena that
must be explained by any successful theory of super-
conductivity. ' This effect now seems to hold without
exception for the superconductors tested, Sn, Hg, . Tl,
and Pb. For the recent theory:of Bardeen, Cooper, and
SchrieGer, ' the proof of the isotope eGect as given by
these authors is based on an approximate solution.
First the electron-electron interaction is set equal to
zero if either electron in either the initial or 6nal state
is outside a certain region R about the Fermi surface.
It is then found that T, is proportional to the width of
R in terms of the energy. This width is taken to be
(jtco)s„, an average phonon energy, which' is proportional
to M:. Hence the isotope effect follows. The proof is
thus directly dependent on the choice for the width of
the interaction range R. This particular value for the
width is taken since the phonon part of the electron-
electron interaction changes from a negative to a posi-

' I"or a discussion of the experimental results and references to
the literature, see B. Serin, Homdbech der Physc7c (Springer-
Verlag, Berlin, 1956), Vol. 15, p. 237. The most recent work 'ore

Pb' is by Hake, Mapother~. and Decker, Ph.ys. Rev. 112, 1522
(1958).

s Bardeen, Cooper, and Schrieffer, Phys. Re'v. 108, 1175 (1957);
referred to as BCS.' J. Bardeen and D. Pines, Phys, Rev. 99, 1140 (1955); re-
ferred to as BP.

tive quantity if the energy change of one of the elec-
trons becomes larger than the phonon energy corre-

.sponding to the momentum transferred. However, it
does not seem justifiable to discard the interaction
where it is repulsive. Besides, for the Bardeen-Pines
interaction' the phonon part becomes repulsive when
the energy digeremce becomes larger than )'tco, whereas
BCS cuts oG the interaction if either electron energy
falls outside R.'

Ke give here a proof of the isotope eHect for the BCS
and Bogoliubov theories which is based on the invari-
ance properties of the Bogoliubov'-Valatin' integral
equations under changing mass and does not involve
finding explicit solutions. Neglecting the Coulomb inter-
action, the isotope e6ect can be demonstrated by this
method even when band structures, anisotropies, and
the functional dependence of tt(t) L2tc(0) is the energy
gap j are considered as well as the exchange energy by a
Hartree-Fock approximation. It is found that T„HO,
and the energy gap at T=0 are all proportional to 3f &.

It has been pointed out by J. Bardeen |,'private communica-
tion) that the scale of energies is determined by Acr since it is the
only energy which enters the-problem. Thus even if there is a
distribution of frequencies, the energy scale is proportional to
M &. Despite these general arguments, it seems desirable to the
author to see the proof carried through explicitly. The author
wishes to thank Professor Bardeen for communicating this
argument.

s N. N. Bogoliubov, Nuovo cimento 7, 794 (1958);Bogoliubov,
Tolmachev, and Shirkov, A Rem Method in the Theory of Super-
condgctceity (Consultants Bureau, Inc. , New York, 1959).

c J. G. Valatin, Nuovo cimento ?, 843 (1958).
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~~ =~kir&k+kgr ~ko.

+s pkk'qadi' Vkk'iik'rr +q—k'e' tiq —kryo'iikey (1)

where ak, annihilates an "electron" in Bloch state k
with spin 0, and ck is the energy of this single-electron
state. These are not ordinary electrons in a periodic
potential, but they carry an associated virtual plasmon
and phonon cloud. ' Here k is used to denote the band
as well as the wave vector, so that k vectors in difFerent
zones refer to difI'erent bands.

The BCS trial wave function for the ground state is
a linear combination of Slater determinants in which
the one-electron states are occupied iii pairs, the pairs
taken from states of opposite wave vector and opposite
spin in the same band.

(1+gkiikt ~i—ki )
@o=II +o,

(1+Igkl')'
(2)

where 4O is the vacuum. For certain rather anomalous
potentials, one may obtain a lower energy if pairs of
opposite k but parallel spins are correlated. This de-

pt.nds on the exact form of the potential' Vkk . In either
case the isotope eGect is derived in the same way.

By minimizing the energy with respect to the gk, the
latter are determined to be

gk —(Pk ) (Ek Vk)p

7 This fact has also been noted by L. N. Cooper in a remark at
the International Conference on the Electronic Properties of
Metals at Low Temperatures, Geneva, New York, 1958 (un-
published). See also J. C. Fisher (to be published).

We also find a general condition that must be satisfied
by any other phonon interaction that might be used in
the BCS theory if it is to give the isotope eQ'ect.

The integral equations are not completely invariant
with respect to the mass, but the errors involved are
very small as long as the solution p(v) of the integral
equation goes to zero in an order of magnitude of AD
away from the Fermi surface. This criterion is satisfied
for the case that the Coulomb interactions are neglected.
It has been shown by means of an approximate solu-
tion' that when the Coulomb interaction is included
p(r) does not vanish a distance of the order of magni-
tude of the Fermi energy away from the Fermi surface.
The integral equations can no longer be written in an
invariant form. However, the contribution from the
phonon part dominates that from the Coulomb part
(the criterion for superconductivity) and the former
part can still be expressed in a mass invariant way. The
exponent is now ——,

' only to a first approximation with
the deviation from this value depending on the par-
ticular superconductor considered.

IL THE GENERAL FORMULATION OF
THE BCS THEORY

We use the formulation and notation of Valatin'
which is more general than that in the BCS paper. The
Hamiltonian for the e-electron system is

vk ——(k—X+-,' P Vi(k, k')
j 1+vk /Ek $

j k'j(k~

Vt(k, k')j 1—ik/Ek j,
j k'j&kJ

p, k= —-', pk Vs(k, k')pk/8, ,

ts=pk(1 —i k/Ek),

(Sa)

(Sb)

(Sc)

in which

pk=—ek — p Vi(k, k'),
jk'j &kJ

Vi(k, k') = s (Vkk'+ V—k-k'+ Vk k+ V-k'-k)

s (Vkk+ Vk'k'+ V-k—k+ V-k' —k') y

Vs(k, k')—=—;(V'.+V ' .),

(6a)

(6b)

(6c)

are known functions. The constant ) is introduced as a
Lagrangian multiplier to insure that the total number of
electrons is n, that is that (Sc) is satisfied. Here ks is the
k value at the Fermi surface and is a function of the
direction and band. '

The energy $k has a significance for the normal state
as we shall now see. %e mean by the normal state at
O'K, Xo, that state of lowest energy which diagonalizes
the electron number operators.

xo = II haik c'o.
j kj (Icycr

(7)

Of course it is only a conjecture that this corresponds to
the normal state of a superconductor at O'K in a critical
magnetic field. However, this assumption appears
reasonable since the superconductor in a magnetic
field larger than critical behaves like a normal con-
ductor, which in turn can be adequately described in
its ground state by the wave function (7). The energy
of this state, including the exchange energy but not the
correlation effects beyond those included in the plasmon
variables, is

or

8' = (xo,H&o) = Q 2ek — Q vi(k, k'),
j k j &ky' j k j, j k'

j &ky

IV.= Q (ok+ pk) = p 2 ok,
jkj(ky j kj(kg

8 The sign of gk is not determined from the variation of the
energy with respect to gk. If gk were restricted to gk &0, then for
those k for which pk(0, the energy is not minimized by the ex-
pression obtained for gk from the variation of the energy, but
rather the energy is iowered hyo gk(1+

~
gk') '~0. However this

is too restrictive to assume gk&0, and in fact for pk &0, the mini-
mum of the energy is obtained~ for gk(0. The author is grateful
to Dr. Valatin for pointing out this fact and for an informative
discussion of his paper.

9 J. C. Swihart, Proceedings of the Kamerlingh Qnnes Confer-
ence on Low-Temperature Physics, Leiden, 1958 LPhysica 24,
S147 (1958}g.

with
&k=+(ik'+ jP) j')'*, (4)

where the functions pk and vk together with the constant
) satisfy
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where pq is given in Appendix A, Eq. (A9). The ex-
change energy should be included for the normal state
as it has been in (8) if it is considered in the super-
conducting state as was done by Valatin. ' This has
been done for the Bogoliubov theory by Rickayzen"
and by Bogoliubov. '

Although the energy of an electron in state k can be
considered to be —,'(e~+g~), the total contribution to
W„ from an electron in state k is

P LV, (k,k')+V, (k', k)]=g„.
) k')(kp

constant, must at least intertwine with it so that

dQ Z(0,j)dv=O,
p

where vp= v($pj). Of course in the case of spherical
symmetry, v=0 is identical to the Fermi surface. Equa-
tion (5a) shows that to first approximation v= (—X and
thus the two surfaces are identical to this approxima-
tion. Using this result, one can now calculate the eR'ect

of the last two terms in (Sa) for v=O:

V(v,j; v', j')= V(—v, j; —v', j') in Ri, (9)

and consequently, the solution p(v, j) of (Sb) is an even
function of v. From Eq. (Sc), it is seen that the surface
v=O, if not identical with the Fermi surface $=fp a

"G. Ricl~ayzen, Phys. Rev. 111,817 (1958).

Thus the Fermi surface is a sphere in $ space, since if
an electron occupies a, state of Pi say while a state of g2

is empty with $&($&, then the total energy would be
lowered by an amount $&

—
$& by filling the state $& and

emptying the state $i. This could be done successively
until all states with $ below a certain value (p are filled
and those above are empty.

We first consider the Bardeen-Pines interaction,
Kq. (A13), for Vkq and neglect the Coulomb inter-
action. The Ea ' factor in the sum of (Sb) weighs the
contributions most heavily for k' near the Fermi surface
while the V» ensures that only the contributions for

~
pa —e~

~

of the same order of magnitude or smaller
than 5~k k will be important. The combined effect is
that

~
p, &

~
goes rapidly to zero at a distance of the

-order of magnitude of &co, =keD on each side of the
Fermi surface, where OD is the Debye temperature.
Hence the sum in (Sb) is effectively limited by the
region of approximately 2koD in width at the Fermi
surface. We shall denote this region by R&. The precise
width of R~ is determined from the integral equations
(5). We shall only make use of the fact that it is much
smaller than the Fer'mi energy.

It is convenient to use v, j=—k/
~

k
~

as the independent
variables in Eqs. (5) and (6) rather than k. The sums
over k are replaced by integrations over angles and v

with the function X(v,j), the density of states, entering.
The functions X, ~~, and P~ depend roughly on v

and v' in terms of powers of k'= (2m*v/h')+kv', but
not in terms of differences of v and v' as in the de-
nominator of Vv" (see Eq. (A15)j. The relative change
in k' in the region R~ about the Fermi surface is of the
order of magnitude of 10 . Hence it seems quite justifi-
able to drop the v, v' dependence of lV, co~, and P~ in
V»' in Kq. (5b), retaining only the angular de-
pendencies of these quantities. This approximation is
examined in more detail in Appendix B.

To the ext.ent that the sum in Eq. (A16) is negligible,
we have for the Bardeen-Pines interaction

dQ' 1V(O,j') ~' dv' Vi(0,j; v', j') (1+v'/E')
2 —a

t dv' Vi(0,j; v', j')(1—v'/E') =0
0

by Eq. (9).Here a(j) is the boundary of Ei.
Thus the surface v=O and the Fermi surface are

identical and the constant 7I, equals gp to second approxi-
mation. This would be true to all orders of approxima-
tion if Eq. (9) were rigorously true, regardless of the
potential used.

III. THE ISOTOPE EFFECT

cvq~M ', P~~3f '.
If the numerator and denominator of V'", Eqs. (A13)
and (A15), are multiplied by M, then V» is seen to be
a function of M only in terms of (see Eq. (A16))

M' v —v' —— dQ" X(0,j") dv" $Vi(v', j'; v",j")

—Vi(v, j; v",j")j(1—v"/E")

We now make the transformation to the set of variables

x—=M'*v, y—=M&y, s=—M'($ —X), (11)

so that in terms of x, V(x,j;x', j') is independent of M
if y(x,j) is.

The system of Eqs. (5) becomes in terms of the
variables (11)

1
z(x,j) =x——' dQ' cV(O,j')

2J

ESPdx' Vi(x,j; x', j') (1+x'/w')
4

+— dQ' 1V(O,j')
~

dx'
24 x0

X Vi(x,j; x', j') (1—x'/w'), (12a)

The Bardeen-Pines interaction V(v,j; v', j'), Eq.
(A13), depends on the ionic mass M through Pp and
co& with3

(10)
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1
y(x,j)= —— dQ' cV(o,j') Ch'

2j

X Vs(x,j; x',j')y(x', j')/w', (12b)

p
vp

j dn cV(O,j) ~ d*(1+x/w) — dx(1 —x/w)j 2
I p (o,j) I

~ M '*. (17)

and k'o', the energy difference is"

Ek,yzk, (v——k, '+ IIrk, I')&+ (j k,'+ IIrk, I') I; (16)

so the energy gap in any direction j is 2 II4(v=O, j) I. It
follows from Eq. (14) that the isotope effect holds for
the energy gap:

where
=0, (12c)

w(x, j)=—+[x'y Iy(x,j) I']'*. (13)

The critical Geld at T=O, Hp, is determined by the
energy difference between the ground state 5", and the
normal state 8'„, where'

Instead of the constant X, we now have the function

xp(j), the value of x at the Fermi surface, which must
satisfy Eq. (12c) and also the condition that sp=z(xp, j)
be independent of j since the Fermi surface is a sphere
in P space. As we discussed in the last section, xp=o,
but we do not restrict ourselves to this. Once xp(j) and

s(x,j) are determined from Eqs. (12), )t can be found by

X=$p—M &sp,

since $p, the energy of the Fermi surface, is known from
the supposed solution of the normal state problem. Thus
Eqs. (12) are equivalent to Eqs. (5).

The system (12) is completely independent of ionic
mass if V(x,j;x',j') is."The latter is true for the Bar-
deen-Pines interaction as shown below Eq. (11).Hence
the solutions y(xj), s(x,j), and sp are then also inde-

pendent of M, and according to Eq. (11)

From the difference of Eqs. (8) and (18), with the use
of Eqs. (Sa) and (6a),

IIp'/(8~)

dv(1 —v/&)[v+(5 —~)j+ dv II I'/~ (19)
vp

It is permissible to use E(o,j) since the integrals give
contributions only in Rt. Equation (19)can be expressed
entirely in terms of the quantities x, y, s, and m of Eqs.
(11) and (13) to give

I4(x,j) or M '*, (14)
dx(1+x/w) (x+s)

for 6xed x.
The excitations induced in the superconductor by

absorption of infrared radiation or high-frequency
phonons are produced by an interaction

—,' dx(1 —x/w)(x+s)+ CxIyI'/w . (20)
xp

Hl ~kk'e' ~kk'~k'a okay (15) The right side of (20) is independent of ionic mass; so

which has matrix elements that connect the ground
state, Eq. (2), only with excited states with two excited
electrons. Thus the energy gap, observed by means of
these experiments, is the minimum difference in energy
between the ground state and the collection of excited
states with two excited electrons. The reason the single-
electron excitations are not considered is due to the
nature of the interaction (15) rather than to the re-
quirement that the number of electrons be conserved
as suggested by Vosida. "In fact, it is possible to excite
a virile electron [but not by (15)j and conserve the
total number by having that electron be on the Fermi
surface.

If the two excited electrons are in Bloch states ko

"The equation of Valatinp corresponding to (Sa) has part of
the sum incorporated in pk, so that the latter is defined differently
than in (6a). However we have split up the two parts as in (Sa)
not only because (k of Eq. {6a) then has a physical significance
for the normal state, as we have discussed, but also because the
sums in {5a) then contribute only in E&. It is necessary to mak. e
use of the latter property in using N(0,j') in (12a).

'2 K. Yosida, Phys. Rev. 111, 1255 {1958}.

Hp~M ', (21)

which is the isotope effect for the critical 6eld at O'K..
The considerations up to now have been only for

T=O. For T/0, it is the free energy that must be
minimized. One is led' to a series of equations similar
to (5):
vk= ek )4 Qk' Vl(k)k )

X[(1—hk') fk +hk (1—fk )], (22a)

I k= —
p E~' Vp(k, k') (I '/&') (1—2f')

I=2 gk[(1—hk) fk+hk(1 —fk) j,
(22b)

(22c)

"It has been shown' that the excitation energy for a single
excited electron in state %101 is Ski. For the double excitation %10-1

and k202, in addition to Ek, +Ek2, there are contributions from
the third term of Valatin's Eq. (8c) for the energy. ' However
these contributions are minimized by vk, vk2=0 and are zero
there except for one'contribution for oi=o.2 of 8 =,V k,k,
XL(1+vk, /Ek4)(1 —vks/Ekp)+44ks*44kr/(EkrEkp) j Plus another
term with k1 and h2 interchanged. For vk, vk, =0, the value of
this term is about V k,k, 4V(0)V/4V(0) 10 '4 erg while ~44kv~

~kT,~10 1' erg. Thus this term is truly negligible.
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where
fk= L]+exP(P~k) J ',

hk =-,' (1—vk/Ek),

+k=+ (vk + ( vk ) )~,

p=—(kT) '.

(23)

Of course, p, k and vk are now functions of the parameter
T as well as of k.

Again it is convenient to consider v, j =—k/~ k
~

as the
independent variables. To the extent that Eq. (A16)
holds, Vkk is once again independent of M when ex-
pressed in terms of the variables

x=M'*v, y=M~p, q=M *P, (24)

2iP, (k' —k) i'

pte, +&k+&k j
"D.Pines (to be published).

(26)

and Eq. (22b) is also. The critical temperature corre-
sponds to the lowest value of the parameter g, g, say,
for which a solution y(x,j) exists for (22b). This ti, is
independent of M, and hence by (24)

(25)

which is the isotope effect for the critical temperature.
The isotope eGect for T„BO, and the energy gap at

T=0 has been proved for the Bardeen-Pines interaction
in the BCS theory, neglecting the Coulomb interaction.
One sees that it is the form of the interaction for non-
zero values of 6k Rk that is important, both for the
proof given here and that in the BCS paper. Since the
series of which the Bardeen-Pines interaction is the
first term' does not converge for (A~q)' —(ek —ek )' too
small, there may be some doubt about the validity of
using this interaction. Pines" has derived the same
interaction by means of the dielectric formulation of the
electron-ion problem. His results show that the de-
nominator has additional small terms so that the former
does not vanish. He also finds that the energy diGerence
in the denominator is (ek—ek) rather than (ek —ek ).
The isotope effect holds for this case if we again make
an approximation as in Eq. (A16).

The quantitative results of the BCS paper, except for
the isotope eGect, do not depend on the form of the
interaction V» since everything is worked out in terms
of an average V. Hence it is possible that the theory is
essentially correct but that the potential is something
other than the Bardeen-Pines interaction. In order for
another potential to be able to give the isotope eGect,
it is necessary that when it is expressed in terms of x, j
and x', j' it be independent of M so that the Eqs. (12)
will be independent of M. This puts a restriction on the
possible forms Vkk can have in the BCS theory.

Although the Bogoliubov theory' starts from a dif-
ferent II than (1), mathematically the results are very
similar to the Valatin formulation of the BCS theory.
In fact if we define

kk ek 2 E Vkk'+s Z Vkk'y
f k'l&k~ l k'l)kp

(27)

then the Bogoliubov integral equations' are precisely
those of Valatin, s Eqs. (5). Since the interaction (26)
is independent of M when expressed in terms of the
variables (]1)and when the approximation in the para-
graph preceding Eq. (9) is applied, the solution p(O, j)
is proportional to M l. The energy gap is again' 2p(O, j);
so the isotope eGect holds for this quantity.

The energy of the superconducting and normal states
at T=O is different in terms of $k, vk, and Vkk for the
Bogoliubov case from Eqs. (8) and (18).Rather it is'

Wn Z 2ek+ Q Q Vkk'y
Ikl(k~ lkl &ky I k'l&ky

(28)

W.=Qk ek(1 —vk/Ek)

+s Zkk Vkk (]+vk/&k)(] —vk/&k)

4 Zkk' Vkk' (Pk/+k) (Pk'/+k') ~ (29)

Since for the normal case Ek is diGerent from in the
superconducting case (in the former pk—=0), Vkk. of
(26) is slightly difFerent in W„and W. ; however we
shall ignore this diGerence. %e then find after a short
calculation by using Vkk ——Vk k and Eqs. (Sa) and (27)
that the energy difference is precisely the same expres-
sion as (19). The isotope effect for IIs then follows in
the same way by Eqs. (20) and (21).

Ricka, yzen" has shown how to handle nonzero tem-
peratures by the Bogoliubov method of compensating
dangerous graphs. He finds an integral equation that
can be treated in precisely the same way as (22b) to
find that the mass dependence of T, is (25).

So far we have neglected the eGect of the Coulomb
interaction. When this is included, the integrand of
(5b) no longer goes to zero fast enough to ensure that
there are contributions only near the Fermi surface.
This can be seen most easily by considering the integral
equation with v and v' as the independent variables.
For v and v' small compared to the Fermi energy, the
Coulomb interaction is independent of v and v', being
a function only of the angles. Taking into account the
E' ' factor in the integrand, one wou1d find a loga-
rithmic contribution to (Sb) which would be important
for large v' unless p(v') would go to zero. Consider v

large enough that the phonon part of V does not give a
contribution to (5b), but v small compared to the Fermi
energy. This is possible since the phonon part of (Sb)
goes to zero as 1/v for large v even if li(v') would be a
constant. Thus if p(v) would go to zero for v small
compared to the Fermi energy, the Coulomb contribu-
tion to (Sb) would necessarily vanish for all v near the
Fermi surface since it is independent of v. This would

not only be fortuitous, but it could not be true in every
case; otherwise all metals would be superconductors if
the Coulomb interaction is the agent that- prevents
superconductivity.
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k8r» t' 2Eg ) 2Fr
ln—p~ 1+p, ln

~

—p, =1+p, ln —, (30)
pp 5 k8D ) k8D

where Ep is the Fermi energy, p= —4@XVI'"'"&0 in
the notation of Appendix B, and p,—=4vrEV '" &0. We
find from Kq. (30)

8pp

Po

p
2

(p(1+p, ln2Fp(k8D) —p,jq 8o
(31)

The first term on the right side gives the ordinary —
2

for the exponent. Due to the second term the exponent
will be —p(1—f') with f &0 and given by the second
term in the brackets.

Using the experimental values of 8~, po, and Ep, a
calculated estimate" of p„and then Kq. (30) to deter-
mine p, we find t =+0.05 for Pb and +0.30 for Ti as
two examples with widely diGerent T,'s and 0&'s. These
values are just at the edge of experimental accuracy. '

These observations are borne out by an approximate
solution found by Bogoliubov' in which the eGect of
the Coulomb interaction is to introduce contributions to
(Sb) a distance of a Fermi energy away from the Fermi
surface. This prevents us from carrying out the trans-
formation (11) to obtain a completely mass invariant
system of equations.

However if we do carry out the transformation (11)
and separate the phonon and Coulomb parts, we can
apply the approximation above Eq. (9) to the former
since we still have contributions from it only in E& even
though p(k') does not go to zero in Ei. The Coulomb
part will have mass contributions in 1V(x'M &,j') and
similarly in the Coulomb interaction itself. The criterion
for the existence of superconductivity, whether the
strong criterion of Pines" or the weaker one of
Bogoliubov, ' ensures that for v near the Fermi surface
the phonon part of the integral equation will dominate
the Coulomb part. This is caused in part by the fact
that p(v') changes sign at a distance of approximately
kOD from the Fermi surface, and thus the contribution
from the Coulomb part for small v' tends to cancel that
for large v'. To the extent that the phonon part is
dominant, y(x) is the same for different masses for x
near zero, and the isotope eGect for the energy gap
follows. However this is true only to a first approxima-
tion. There will be deviations from the —~~ exponent
due to the Coulomb term and these deviations will

depend on the relative size of the Coulomb interaction
and the functional form of .&V. That is, the magnitude
will be diferent for diferent elements.

We can best estimate the size of the deviations from
the approximate solution of Bogoliubov. ' There it is
found that p(0) —=pp must satisfy

Ão/e added iw proof .—The value of /=+0. 10 for Sn
from Kq. (31) agrees in sign and roughly in magnitude
with the value f'=+0.08 found experimentally.
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APPENDIX A. THE BARDEEN-PINES INTERACTION

We derive here the Bardeen-Pines interaction3 be-
tween electrons taking into consideration the re-
normalized energies from the beginning. We start from
the electron-phonon system of BP after separation of
the plasmon variables. Our Hamiltonian is

H =H p+Hi+H p+H p+H„,

HP=+ke &kake ake+Pq hP»qbq bq»

H, =pk;, P,(k' —k) (b,+b,*)ak . ak. ,

H2 pk~(6k qk)ak»» ak»»+pq h(Mq —ppq)bq bq»

Hp= Qk'k~(Pq Pq) (bq+b q )ak'»» aka»

(A1)

(A2)

(A3)

(A4)

(A5)

H„=-', p N'(k' —k)'ak. 'aki k. *aki-k. ak., (A6)
]
k'—kt) k

which is the BP Eq. (4.5) with the neglect of the
plasmon variables. Here ek and ~q are the unrenormal-
ized Bloch energy of the electron and frequency of the
phonon respectively, while ez and coq are the corre-
sponding renormalized quantities; our coq2 corresponds
to BP s Qq for q& k, and to Qq' —Nq for q &k,. The
unrenormalized electron-phonon interaction P, (k' —k)
=P q(k —k')* corresponds to vq(h/2p»q) of BP, while

Pq is the renormalized function. Here qf=k' —k+K
where K is a reciprocal lattice vector such that q is in
the first zone. The last term in II is the screened Cou-
lomb interaction.

We carry out the canonical transformation

IF=e ' He' =ji+ittH;Sj pi[/H;Sj;Sj+—, (A7)

where

S=pkk. ,(h (k', k)bq+ h(k, k')*b,*5ak *a„.,
and h(k', k) is chosen so that the electron-phonon inter-
action is eliminated to first order:

iLHp, Sf+Hi ——0.

Similarly to BP, this gives

"D. Pines, Phys. Rev. 109, 280 (1958); P. Morel, J. Phys.
Chem. Solids (to be published).

—iP, (k' —k)
h(k', k) =

A(dq ( Pkr~ —6k)
(AS)
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Then from

——',[[IIO, SJ; S]+i[By,S]=2'i[IIg, S],
one finds (a) terms diagonal in the electron and phonon
number representation which vanish for the phonon
vacuum, (b) diagonal terms which do not vanish for the
phonon vacuum, (c) an electron-electron interaction,
(d) nondiagonal terms involving phonon variables, and

(e) terms without phonon variables giving interband
transitions (for one electron). The expressions electron
and phonon now mean the particles after the unitary
transformation, so that the electron has a virtual pho-
non cloud associated with it and the phonon has a
screening electron cloud. Terms (a) are combined with
the phonon part of H2 with the requirement that the
result vanish. This determines the renormalized phonon
frequency ~, and was carried out in BP. Terms (d) are
neglected in the random-phase approximation, while
terms (e) give no contribution to the expectation value
of H for any of the states we consider. We are interested
in terms (b) and (c).

Combining terms (b) with the electron part of II2
and the diagonal part of II„(the exchange interaction)
and requiring that this vanish, determines the renor-
malized energy ek.

are omitted. The terms with I'AO, where I' is a
reciprocal lattice vector, corresponds to transitions in
which the one electron changes a diGerent number of
bands than the other. These terms give no contribution
to the expectation value of H for any of the states we
consider and are dropped as were the terms (e) below

Eq. (AS).
The renormalized interaction Pq is determined by re-

quiring that the coeKcients in the sum of H3 and the
commutator of H„with S vanish, and has been worked
out by BP. One should also include the appropriate
terms from (3!)[[[IIO,S];S];S] and —

~ [[II&,S];S].
This procedure, as pointed out by BP, does not include
the eGect of exchange terms on the renormalized
interaction.

The resulting Hamiltonian has the form of Eq. (1)
if one uses kk' of Eq. (A10) instead of ek for the electron
energy and if one combines the remaining terms of
Kq. (A9) with (A14) so that the sum in the interaction
is no longer restricted.

In the superconducting state, at T=0, nk ———,'
&& (1—vk/Rk), and, by Eq. (Sa),

6k/ 6R —Vk' Vk

+-', Qk" [Vg(k', k")—Vg(k, k")]ek". (A15)

where

I
6k = E'k

i P, (k' —k) i'
)

k~q+ ( &k' &k)

~k kk' ————,
' Qk V~(k, k')ek, (A9)

(A10)

For k" below the region R~ (the region near the Fermi
surface), 'ek ——1, while nk" ——0 for k" above. For k and
k' in Rj, most of the contribution to the sum in (A15)
is from k" in R~. In fact, neglecting anisotropies, the
contribution from k" below R& is very nearly zero. Thus

1'1k (Ckt Ckt) —(Ckh Ck4), (A11)

and V&(k, k') is defined in terms of V» by Eq. (6b),
while

(AMg) (Ek' Ek) = (AMq)

—(vk —vk+-,' P [Vg(k', k")—Vg(k, k")]nk"}',
k" CR1

V» —=Vkk'"+~(k' —k)'
(A12)

Ukk' = Ukk' for
I
k —k'

~
(k„

for k, k'QRq.
In the superconducting state for T&0,

(A16)

with

where

2A(o, ~P, (k' —k) ~'

URRI )

(6M') (Ek' Ck)

q= k' —k+K.

(A13)

(+k)Av [(1 kk) fk+hk(1 —fk)],

where kk and fk are given by Eq. (23). Then by Kq.
(22a), we again find Eq. (A16) but with Nk" replaced
by (ek )A„and with vk now being a function of the
temperature by Eqs. (22).

with
X~k"-k ~K" ak"-ke ~k. (A14)

2k~,P,(k' —k—I')*P,(k' —k)
Vkk/K/=- for K'AO

(hMq)' —(6 ~
—krak)'

= VRR for K'=0,

and where the prime on the sum means the diagonal
terms (k' =k, and k'= k"—k for 0 =0', both for K'= 0)

The terms of type (c) and the nondiagonal part of
H„ that together give the electron-electron interaction
are then

1 ~& TrHel-el g ~ v kk'K'~k'e
kyar k'o / k"K'

APPENDIX B. THE EFFECT OF THE DENSITY OF
STATES ON THE ISOTOPE SHIFT

We shall examine more critically the effect of the
energy dependence of E (it)q and Pq on the proof of the
isotope effect when the Coulomb interaction is neg-
lected. If we retain this dependence, then Kqs. (12)
would not be independent of mass, since 3f now enters
in the arguments of E, ~q, and Pq in the form of
M 'x. On the other hand, by taking the proper average
ofiV, cvq, and Pq, over the energy region of the integra-
tion of Kqs. (12), the energy dependence of these
quantities is eliminated without any approximation.
However, this region in energy is also proportional to
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Ã(v) =C(v+kv)', (81)
where C is a constant independent of v and j.

We also assume that the average value of E that is
used in Eqs. (12) is the arithmetic average over the
region R~ rather than 1V(0,j):

M & as is evidenced by the transformation (11) to give
Eqs. (12). Hence 1V, ~~, and P~ are averaged over a
diferent energy region for a ddferent mass. This change
in the average values of 1V, &o„and P~ with mass will
produce a variation in Bo, T, and the energy gap in
addition to that of Eqs. (17), (21), and (25).

We now give an estimate of this correction due only
to the change in the density of states 1V(v,j). For this
we assume that Ã is the function for a free electron gas,
independent of direction j; where

2p M '&' &),

i =-'(4nlVV) '(a/kv)'

(86)

(87)
If the same correction is carried out for Bo and T„

one easily Ands that Eqs. (21) and (25) are replaced by
equations analogous to (86). Thus the effect of the
energy dependence of the density of states is merely
to change the exponent slightly from —,'. Using

or with (83) and (81)
8 (2p)/(2p) = —,

' (4s 1V V)
—'(a/~v)'j1 —(M,/M, )&j. (85)

When this variation due to the change of Ã is com-
bined with that found in Eq (.17), the result is

~(2~)/(2~) = —(1—i) t:1—(M~/M2)*'3,
or

1V=—(1V(v))A. =kL1V(a)+1V(—a)j (82) (4~1VV) ' 10, (a/ev)~(kg~/ev) 2&&10 ')

where
~

v~ =a is the boundary of R&. With the trans-
formation (11), we have found that the boundary a is
proportional to N '*. Thus if it is

~
v~ =a for mass M~,

the boundary becomes a(M~/M2)' for mass M2. The
corresponding change in S is

d'E(v)

v 0-
(83)

An approximate solution to (12b) has been given by
BCS.

y=2a expt —(4slVV) 'j (84)

where V= —(Vkk')Av. Thus the change in the energy
gap due to 8A' is

8 (2y) 8y 1 8A

(2p) y (4n.lVV) 1V

we find

This is completely negligible. However these considera-
tions are not altogether trivial since the difference
between using 1V(0) and 1V(k8D) for the average of 1V
in (12) leads to a change in p of the same order of
magnitude as the isotope shift. Also the calculation
leading to (87) assumed that 1V is for a free-electron
gas and thus the second derivative in (83) is quite
small. This is probably not the case for the transition
elements such as vanadium and tantalum. In fact,
Olsen and Rohrer's results" on the change of the elec-
tronic specific heat with volume indicate that for
tantalum the density of states changes drastically at the
Fermi surface, giving the possibility of a large second
derivative.

~ J.L. Olsen and H. Rohrer, Helv. Phys. Acta 30, 49 (1957).


