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EfFect of Nuclear Forces on the Cross Sections of Photonuclear Reactions*t
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The effect of nuclear forces, or the effect of the quasi-deuteron model, is discussed for the integrated cross
section and the bremsstrahlung weighted cross section. The nuclear force is assumed to be of partly
Majorana exchange character. Only the central force is considered. The two-body potential is a Gaussian
type without a hard core, the parameters of which are taken from the effective range theory. The calculations
are performed by first-order perturbation theory and the results are that the integrated cross section is
increased by about ten percent and the bremsstrahlung weighted cross section is decreased by a few percent.
Therefore the independent-particle model can be regarded as a good approximation for photonuclear reac-
tions.

I. INTRODUCTION

A S is true also in other nuclear reactions or in
nuclear structure, the independent-particle model

(hereafter referred to as JPM) is now known to be
successful for photonuclear reactions. Especially in the
sum rule calculations, in which knowledge of the wave
functions of the nuclear excited states is not necessary,
the results of the IPM are in fairly good agreement with
experiment. ' ' On the other hand, it is also well known
that the strong correlation between nucleons due to
nuclear forces plays an important role in high-energy
photonuclear reactions, and if we assume a deuteron-
like subunit inside the nucleus, we can explain the
high-energy phenomena. ' ' This we call the quasi-
deuteron model.

These two facts seem to contradict each other, and
few calculations have ever been done to explain this
discrepancy. I evinger calculated the effect of the
quasi-deuteron model on the bremsstrahlung-weighted
cross section (hereafter denoted as as) and found that
o.g decreased by about ten percent, although the exact
value depended on the parameters. ' Brueckner calculated
this for the integrated cross section (hereafter denoted
as o;~~) and found that o. ;~, was increased. "

We shall calculate this effect in detail both for 0~

and for 0.; &. We expand the wave function by pertur-
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where fs„ is the oscillator strength defined as follows':

2M(E„—Ep) 2

Pp* P sg.iJ„dr, (2)fo =

where s~ is the component of the displacement of the
kth nucleon along the direction of photon polarization.
The summed oscillator strength, P fs„, is given by
Levinger and Bethe' (hereafter abbreviated as LB).

Z fo.=

bation theory taking into account the two-body inter-
action. The two-body potential is assumed to be of
partly Majorana exchange character. Only the central
force is considered, and the radial dependence is of
Gaussian type without a hard core. The parameters are
taken from the effective-range theory.

In Sec. II, 0-;„& is found to increase by about ten
percent. The dependence of the above results on the
values of the parameters is investigated and it is found
that the above result is roughly independent of the
choice of the parameters, as long as they are within the
reasonable range. In Sec. III, 0~ is evaluated by two
independent approximations. The results of the two
approximations agree with each other that o-b is de-
creased by a few percent. This is not inconsistent with
Levinger's preliminary results. ' The effect of the
Coulomb force is also estimated. For 0-; & this is exactly
zero because only neutron-proton pairs affect the value
of o-;„&. For 0-& this eGect is not exactly zero, but is found
to be negligible. The eGect of the hard core is neglected
in our calculation. It may not be negligible for 0;„&,
but is probably negligible for 0-&. Therefore our calcu-
lation shows that the IPM is a fairly good approxi-
mation for photonuclear reactions.

II. CALCULATION OF THE INTEGRATED
CROSS SECTION

According to the sum rule, o. ;„& is given by'
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where V;; is the potential between the proton i and
the neutron j and the relation between V;, and V will

be given later by Eq. (12). 0 is the volume of nor-
malization defined by

0= (4qr/3)r p'A. (6)

k, , k, , k,' and k,' are wave numbers of the proton i and
the neutron j.They must satisfy the following relation
of momentum conservation:

k,+k, =k,'+k, '.

Then Eq. (3) becomes

EZ M
P fo„———xP P Pp*r, ,'UP;, hodr

A 3h'

M (V,,)o.
+ xg Q r, ,'VQ

3k & 7' ~ ~' E~I —E

X (4. *P,,No+go*P, A-)dr+o[(V„)o-']. (8)

For convenience of later discussion we reverse the
order of Eo and E„in the third term. We introduce the
following quantities:

then

q= k,—k,'=k, ' —k, ,

q'= k —k, =k;—k,';
(9)

(9')

Q„*P,,rI/p il/p*P, ;f = 0 'e'q——' '. (10)

The first and second terms of Eq. (8) were calculated
by LB' and correspond to the IPM value. We neglect
the last term and take only the third term as a cor-
rection due to the quasi-deuteron effect.

2M 1 t" (V )p„
aQfp„x — ——PPr, ,'VZ

3'~ Q&o ' ~ n E~—Eo

X~iq r;/dpr. . (11)

where x is the fraction of the Majorana exchange
force, i and j refer to a proton and a neutron, respec-
tively, r;, is the distance between them, V is the two-
body potential for a proton i and a neutron j, and P,,
is the Majorana exchange operator for them.

LB' took a plane wave as a wave function and found

rr;„4——15A (1+0.8x) Mev-mb. (4)

Here we assume X=Z=A/2. 'The first and second
terms inside the bracket correspond to the first and
second terms of Eq. (3). The coefficient of x, which we
shall call C, is somewhat different for different models. '

In this paper we expand the wave function by per-
turbation theory:

(V'/)o-
4 =6+2

~ Eo—En

The relation between V and V,; is given by

V,,= V[(1 x)—+xP;;],
then (V,,)p„ is given by

(12)

(V,,),„=-L(1—x)F(q)+xF (q')],
0

where F(q) is defined by

F(q) = t Ve"d'r.

(13)

(14)

X r,P Vd'r, ;. (17)

The summation with respect to k, ' is again replaced by
q' using Eq. (9').

The energy denominator of Eq. (17) can be written as

k;"+k,"—k '—k,'= 2q'(q'+k, —k;). (18)

The summations can be transformed into integrals
as follows:

d'k.
(2qr)o &

(19)

Here the factor 2 comes from spin. However, this
factor is not necessary for q', because once we specify
the spins of i and j, they remain unchanged in the
excited states. Then Eq. (17) becomes

8M' 0
6 Q fp

——px— r;,'Vd'r, , dok,
3 A' (2qr)'~p

F(q')~" "'
d'k,

~

d'q' . (20)
J &

p
q'/. (q+k, —k,)

We use the following approximation for the energy:

E= Ii'k'/2M*
= (1/p) (ii'k'/2M), (15)

where M* is the effective mass of the nucleon and
p= M*/M, which will be determined later.

The summations with respect to i and j correspond
to those with respect to k, and k; and the summation
with respect to ii corresponds to k,' and k, ', but can
be reduced to k, ' only, because of Eq. (7). Then Eq.
(11) becomes

4 M' 1
t
" (1—x)F(q)+xF(q')

~ Z fp. =ax
3 A4 0' ~ o k; k; k; k;"+k "—k '—k '

Xe" "/r, ,'Vd'r, , (16)

The term involving F(q) is dificult to evaluate, but
we expect that the integral involving F(q)e'q" is
smaller than that involving F(q')e'q'' because of the
interference between q and q'. Therefore, as an upper
limit, we replace F(q) by F(q').

4M' 1 F(q )eiq' rii

3 h' 0' ~ o k, k; q k "+k "—k '—k '
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For simplicity we omit the inequality sign. We shall
also express the wave numbers in units of the Fermi
wave number kp, which is defined by (2g)

(28')

Equation (26) then becomes

For simplicity of calculation we introduce the fol-
lowing quantity:

(M/Ii') V= —soW= —soWo exp( —r, i/X')&

Wo= (M/&') Vo= 5 53/b'

Then the wave numbers can be written

k, =k&p, k, =km, q'= krs'. (22)

16M 0
6 Q fo„—px———— kr"soWo

45 tie' (2s)o

8M' 0
a& fo.=p~

3 A4 (27r)' ~o j
r, oo F(s)eikrs r;;

X tdois ~l dos . (24)
jo s (s+p —n)

Of course the limit of integrations with respect to p
and n is given by Eq. (23). We omit the prime and
write s' as s for the sake of simplicity.

The integrations with respect to p and n is given by
Eq. (23). We omit the prime and write s' as s for the
sake of simplicity.

The integrations with respect to p and n were already
done by Euler" and are given in the Appendix.

47r' P(s)1
,

d'p ' d'ri
s (s+p —n) 15 s

(25)

where P(s) is the polynomial given in the Appendix.
Then Eq. (24) becomes

16 M' 0
& Q fo„=pe kp' —r Vd'r

45 h4 (2~)o

X sds F(s)P(s)e*kk' "i. (26)

The first integral with respect to r,; is carried out
very easily for a Gaussian potential, with parameters
taken from the eGective-range theory. "

V= —so Vo exp( r,,'/X'), — (27)

According to the Pauli principle they are restricted by
the following relations:

lpl lnl&1; lp+"
I

Equation (20) then becomes

X l

~ r . .2 exp( r . .2/)ts)eikzs z;idler

F(s)P (s)sds. (29)

The first integral is evaluated as follows:

J
r .2 exp ( r2/g2)ei Fsk' r idr,o,r

0 = —,'-~i)i'(6 —X'kr's') exp( —)t'kr's'/4). (30)

Inserting Eq. (30) into Eq. (29), we get

4x''3f 0
3, P fo.= —soxp — kr'Woh'

45 fk' (2~)o

jX I (6—)t'kr's')F (s)P(s)

Xexp( —X'kk's'/4) sds. (31)

F (s) is defined by Eq. (14), and for the potential of Eq.
(28) it is

(M/k') F(s) = —soWovr*'X' exp( —X'kr's'/4) (32)

Inserting this into Eq. (31) and putting s=2N, we get

2 0
& P f „=o+ &spo— kF'Woo)w. s

45 (27r)'

X I (6—4X'kr'I')

Xexp( —2)t'kr'I')P(N)N«(33)

Let us define E as follows":

E= (2/45) l Q/(2m)ofkr'Wo9, s

=0.024A $4, ($=b/ro). (34)

Equation (33) then becomes Eso'xp J,where J is given by

Vo= (229.21/b') MevX10 "cm', (27')

)t = b/ (2.06) ', (27II)

where b is the intrinsic range and so is the well depth
parameter. Their values are to be determined later.

J= Jt (6—PN') exp( —nm')P(N)ed',
0

0.=2K'k '

P=2n.

(35)

(35')

(35I/)

"H. Euler, Z. Physik 105, 553 (1937)."J.M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

"It should be pointed out here that ro in our case is not the
effective range, but the nuclear radius parameter &vhich is taken
in this paper as 1.2&&10 '3 cm Lsee Eq. (6)g.
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We expand P(u) and break it up into two parts as
given in the Appendix.

0.3 gl 1 OAK, O RKG'LON fOR g

J=Ji+Js, (36) 0.2

Ji= (6—Pu')(40(1 —ln2)u' —10u'

Xexp (—nu') du. (36")

J& can be calculated analytically.

Ji=36.822n s (12.274P+60)n
+(30P+24)n 4—(16P—15.12)n '
—e E(—1.804P+11.452)n '

+ (0.059P—8.658)n '+ (9.726P —28.44)n—'
+ (14P+39 12)n '. (16P——15.12)n '7. (37)

Upon using Eqs. (21), (27"), and (35'), n is given by

n= 2.25/,

where" $=b/rs as given after Eq. (34)
Using Eqs. (38) and (35"), Eq. (37) becomes

(38)

Ji——2.42$ '(1—0.128$ '+0.108( ')

+exp( —2.25/) (3.61—5.03( '—2.13$
+0.0385$—'—0.277$ '—0.261$ ") (39)

J2 is evaluated numerically:

Js —— t L15t'u'+ 1.50@—20+ (0.72@—2)u '7

X exp( —2.25Pu') du. (40)

As we shall see later, for reasonable values of P the
first term of Eq. (39) is predominant and we can
approximate

J=Jt+Js—Ji—2.42+'. (41)

Combining Eqs. (34) and (41), we obtain

6 Q fp„0 058Apsssx=——0 .232(1VZ/A)ps. ssx (42).
Here we use the relation 1V=Z—A/2. Next we deter-
mine the values of p, and so. p is defined by Eq. (15)
and we assume'4

+-,'u'+0. 21u'7 exp( —nu')du (36')

QO 10 21 I
Js = (6—Pu') + +016—

3 3 I' n4

L
).5

FIG. 1.The effect of the dynamical correlation on the integrated
cross-section as a function of ri=ro/b, where ro is the nuclear
shape parameter and b is the intrinsic range of nuclear forces.
C' is the coeiircient which appears in Eqs. (45)—(48) and represents
the effect of the dynamical correlation. The "allowed region"
shown by the bracket is the region of g from our present knowledge
about nuclei.

validity of the IPM and the magnitude of the 6rst
order perturbation is proportional" to M*.

Next we determine the value of so. Strictly speaking,
there are singlet and triplet states, with well depth
parameters s& and ss, respectively, ""so so is a weighted
average of the two.

sp= 4si+4ss —1.3. (44)

Then the coefficient fo EZ/A, here denoted as C', is
about 0.26.

C'=O.26. (45)

Next we shall investigate the dependence of C' on
the value of (=b/rs to test the validity of the approxi-
mation of Kq. (41).

1. (—&0; Eqs. (35"), (38) show n, p —+0. Inserting
this into Eqs. (36'), (36")and combining with Eq. (34),
we get

C'-+0 for t-+0. (46)

2. $~ ao; we combine the results of Kqs. (34),
(39), (40) and get

C' —+0.26 for $~ ~, (47)

assuming the above-mentioned values of so and M*.
3. 0&/& 0c; C' must be evaluated numerically. The

calculations are performed for 1 ~(~2 and the results
are shown in Fig. 1 as a function of ri = $ '=re/b. From
our present knowledge of nuclei, g lies in the region
indicated in Fig. 1 and for these values of q, C' is
roughly constant. In other words, the approximation of
Eq. (41) is justified.

Combining Eqs. (1), (3), (4), and (45), we get as a
final result

2m'e'5 )VZ
fTint = {1+(C+C') x)

Mc A

M*=2M/3. (43) = 153(1+1.06x) Mev-mb. (48)

This value of M* seems to be somewhat larger than
is usually taken (M* M/2), but in our case a larger
value is better, because our purpose is to And an upper
limit of the quasi-deuteron effect and to show the

"e.g., K. A. Brueckner and J. L. Gammel, Phys. Rev. 109,
1023 (1955).

"For a physical explanation of this fact, see for instance,
W. J. Swiatecki, Phys. Rev. 101, 1321 (1956).For a mathematical
discussion, see for instance, E. Feenberg, Ann. Phys. (N. Y.) 3,
292 (1958), and the references of this paper."I.. Hulthen and M. Sugawara, Hundbuclz der I'kysik, edited
by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. 39, pp. 52, 55.

"Strictly speaking, the strength of the two-body interaction
inside the finite nucleus may be different from that in free space.
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, , ~i~.)
L(U' )o-'3 (55)

Ke neglect the third term. The first term vanishes
because it is the integral of an odd function. Using Eq.
(54), the second term becomes

(V„)..
2 r 4.1"* IA)

n go —g„
(V't) o

Q„soPodr, dr,
jv —jv„

(U, ,)o.
P„s, hodr;dr, (56).

jVo

III. CALCULATION OF THE BREMSSTRAHLUNG-
WEIGHTED CROSS SECTION

(a) Damping-Factor Method

According to the sum rule, o-& is given by

e' pjV Z
=4''—P ]

—g s,——P s; )

AC ~ LA a 2 g )o„

The coeScient of x is increased by about 30% as Then for the wave function of Eq. (5)
compared with Eq. (4). However, if we put x= o, the

(SsSj/00 —g'po
~

SsSj ~

lp'OJ
whole cross section is increased by only 10%.It should
be pointed out here again, that this value of C' is an (U'j)o~

upper limit as shown by Eqs. (17), (43). Therefore we 2 Z
can conclude that the eGect of the dynamical correlation
on o.;~& is to increase it by probably less than 10%. +0

7r2 1 2
& -&o'+—4 Q (sp')oo

137 5 A

2——5' Z r ( ' & o, (50)

where S~ is the statistical factor for the singlet and
triplet states.

The first term was given by I B.' The second term
corresponds to the so-called Pauli principle correlation
arising from the antisymmetrization of the wave
function and was calculated by Levinger and Kent. '
The third term corresponds to the dynamical corre-
lation. Strictly speaking, the second term also includes
the dynamical correlation, but if we assume charge
independence of nuclear forces, the dynamical corre-
lation between e—e and p —p pairs in the second term
is exactly cancelled by that between singlet u ppairs-
in the third term. Therefore we take only triplet e—p
pairs and define the effect of the dynamical correlation
as follows:

27r2

X-,' P P(s,s, )oo.
137

(51)

Herei and j refer to a proton and a neutron respectively
as before. 0~ then becomes, for LV =Z,

g2

gy=X' — ~ S;— j S& 00

hc

The first term vanishes because of the orthogonality
of the wave function. Finally, the quantity to be cal-
culated, I, is

I=—2, Z, (s,s, )oo
I

(U, ,)o„=+-', g P P P„r,,'hodr, dr, (57).
j 4 n E„—go

Inserting the explicit forms of the functions defined by
Eqs. (5), (12), and (13), we get the equation corre-
sponding to Eq. (16) of 0.;„~.

p 3f 1
( (1—x)F(q)+Ji(q')
ZZZ —,

3 8'11'»' ~; ~" k "+k "—k' —k'
X&'"' "'&;,"d'&,, (58)

2&1 0I= ——4 I r 'd'r—,, I dl,
,

d'to,
9 O' 0' (2~)' "o

F(q)e'& '*~
d'k (6o)

Then again neglecting the interference between q and
q' as we did after Eq. (16), and assuming p= o2 from
Eqs. (15), (43), we get as an upper limit

2M 1 P(q)e'& "~
r, , d'r, ; (59).

9 It'0'& ~; o; ~ k,"+k,"—kP —kP

After that, the calculation proceeds in a very similar
way to that of o;„„. (We omit the inequality sign for
simplicity. )

AVe introduce the following variables:

S= (s;ys, )/2, (52)

4M 0
kr" ' r, ,'d'r, ; d'p, d'rt

9 i'o (2~)o

Therefore
sij=Sj Si.

s,s;= s' —s, ,o/4.

(53)

(54)

)oo P(q)e~krs rgjd's, (61)
s (s+p —n)
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where kps= g. The limit of the integrations with respect
to p and n are given by Kq. (23) and these integrals are
given in Eq. (25) and in the Appendix. Inserting this
into Kq. (61), we obtain

8 M 0
r;,'e"I"' "7d'r

135 i't ' (2~)'

Xj sdsF (s)I' (s) . (62)

However, unlike the similar expression for 0-;„t the
first integral will diverge. Therefore, we introduce a
damping factor expL —(r,P /P)5, where t is the Gaussian
mean radius of the nucleus defined as follows:

t= (2/5)&R0. (63)

Physically speaking, this introduction of a damping
factor corresponds to taking into account a damping
of the wave function at the nuclear surface. Then the
first integral can be calculated as follows:

j exp ( y 2/i2)y, .2ef kys ~ &&jday, .

0 = (7y "/4)P(6 —t'k 'y)sexp( —'tk'ys/ )4. (64)

After that the calculation again becomes exactly the
same as that of 0.;„t, except that X is replaced by /:

TAsr.K I. Value of J'.'

64
125
215

—0.031—0.013—0.008

$ =1.5
—0.009—0.008—0.006

(=2.0

+0.002—0.004—0.004

Here we assume" b= ro, (triplet effective range) = 1.7
X10 "cm and r0=1.2X10 "cm. J' is defined by

J'= j (6—P'u') exp( —n'I')P(tt)ede,
0

n'= (V+X')ky',

P'=4Pky'

(67)

(67')

(67")

Using Eqs. (21), (27"), and (63), we 6nd

n'= 0.932'13+1.13@

P'= 3.712'".
(68)

(69)

The calculation is performed in a very similar way
to that of J in Sec. II.

J'= J'g'+ Jg', (70)

' J' is the integral defined by Eqs. (70), (70') and (70"),but in this table
it is calculated by using the approximate formula of Eq. (71). $ is defined
by &/i'0, where b is the intrinsic range of the effective-range theory (reference
12) and ro is the nuclear radius parameter, which is taken as 1.2 X10 "cm
in this paper.

I= —s.'— —
i

—
) i

—),W & WP.
135 (2m)' 27 &3) ES)

t (6—P'N. ') L40(1—ln2) u' —10m'

+ 431'+0 21m'5 e. xp( —n'e')de, (70')

10
+ +0.16—

3 3Q IXI'(s)sds. (65) J2'= t (6—P'e')
0

X " (6—kF't's') exp/ —(t'+ X')ky's'/45

Here the well depth parameter s0' is somewhat diferent
from the value used for o;„„given by Eq. (44). For
Ao-;„& calculated in Sec. II, strictly speaking we should
have taken both central and tensor forces. However, we
took only central force, which is of course an approxi-
mation. Recent numerical calculation' shows that in
our case of Gaussian potential, s0 for the central force
is 0.6—1.0 and s0 for the tensor force is about 0.5—0.9.
Therefore, the somewhat larger value of s0=1.3 is
supposed to include the effect of tensor force as well,
although we did not calculate it. However, in the case
of Ao.q the potential appears only once and the other
factors are spherically symmetric. Therefore, the con-
tribution of the tensor force is zero after integrating
over angles. Hence we shall take s0' ——1.

After putting s = 2N as before and assuming s0' = 1,
Eq. (65) becomes

~= —4.61X10-4&r0A'~3J'

= —9.4oXA'|'J'10—30 cm' (66)
' Biedenharn, Blatt, and Kalos, Nuclear Phys. 1, 233 (1956);

6, 359 (1958).

Xexp( —n'u')du. (70")

In the case of &r;„t,, n=2X'ky'=2. 25/ and is fairly
small if ( is small, so that it might be dangerous to
neglect terms which include e in Eq. (37). However,
in this case, 0. , is fairly large except for light nuclei.
Therefore we can safely neglect terms including e "'.
Similarly we can neglect J2'. In other words, J' is

given by

J'=J&'=36.822n' ' —(12.274P'+60)n' '

+ (30P'+24)n' '—(16/' —15.12)n' '. (71)

Numerical results for Eq. (71) are given in Table I.
As seen in Table I, for A =64 the sign of J' changes

for )=2.0; i.e., the results become qmatitatively op-
posite. This is unreasonable. However, for r0= 1.2
X10 " cm, )=2.0 means b=2.4X10 " cm, which is
somewhat too large and shouM be excluded. Further-
more, our model should be regarded as a model for
heavy nuclei, so this discrepancy need not be taken too
seriously. In fact, for heavy nuclei the results do not
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TABLE II. The results for 60'b and O.b in mb. o.b is the brems-
strahlung cross section defined by Eq. (49). Aa-b is the change of
o.b due to the quasi-deuteron eGect and is given by Eq. (51).
Calculated values of o-b are for the IPM. Both calculated and ex-
perimental values of of ab are for Cu ~ 5, II BP, respectively.
All these values are taken from Table II of reference 5. Calcu-
lated values of hob and hob(Coul ).are for rb 1.2&&1——0 " cm,
b=1.7)(10 "cm, so'=1, where b and rO are the same as in Table
I and sO' is the well depth parameter introduced by Eq. (65).

We shall start from Eq. (62) but. replace the integral
with respect to s by a sum with respect to q using Kq.
(19) but omitting factor 2. LSee the discussion after
Eq. (19).] In other words, instead of transforming all
sums which a,ppear in Eq. (59) into integrals we trans-
form the first two of them and leave the last one as it is.

Bob
60 (Coul. )

0 5 (calc.)
(rb(ex .)

In~5/~5 (%)

—0.6
0.03

77, 74
65, 80
~1.0

125

—3.2
0.13

188
194
&2.0

216

—10.2
0.4

354
416

2.5-3.0

4 M 0 (" t." F(s)P(s)
75&7 ' y 2eibys riidzy, ,

135 A2 (22r) ~5 5 S

4 M 0 t
" z'" F(s)P(s)

kp' I r; e' J' "7d'r
i d'q

135 A,
-' (2 ) &

0 g

change so rapidly for different values of g, as seen in
Table I.

Combining these results with Eq. (51), we obtain

4 M kp'
y 2erq r„dz„

135 52 (22r)4 2 "5
F(q)P(q)

Drrb= —1 02XAstsX
~

J'~fzb. (72)

Since we assume b= 1.7&(10 ' cm and ro ——1.2X10 "
cm, the value of $ is approximately 1.5. Therefore, we
take the results of J' for )=1.5. The value of Diyb are
listed in Table II for A = 64, 125, 216 together with the
results of previous calculations of the IPM'4' for
nuclei with approximately the same mass numbers, and
also with experimental values. The effect of the Coulomb
force is also listed, which we shall discuss brieQy later.

From Table II we see that the quasi-deuteron eGect
on 0.b is to decrease it by a few percent, and that this
percentage increases with increasing A. Therefore, we
shall investigate this effect for an inhnite nucleus. If
we let A —+ ~ in Eqs. (67'), (67") we find

y . .2ei2 r rdzy'
0

L/2 L /2 L/2
—3 t t'

I nisei (nnn+nr y+nrr) 2 r ZLrz&d

J J—I /2 —L/2 —L/2

(79)

Then we assume that the whole system is in a large
cubic box of dimension I and decompose q into its
three components.

q, = 22ryz /L, qy
= 22m„/L, q, = 22ryz, /L, (78)

where zz„zz„, zz, =0, 1, 2 . The integral in Eq. (77)
becomes

P'=452' for rt = ~. (73)
The integrals with respect to y and z are straight. —

forward and give a delta function.
The calculation of J' becomes very simple and quite

similar to that of J in Sec. II. I /2

e'" ~dy=IJ
J'—J1' —+ 12.2740. ' —+ 14.191A—"',

lim Ao-b= —0.014 A /' mb,.4 —moo

whereas in the IPM 0-b is given by'

(74)

—I/2

I /2

j e'"**ds=Lis
—L/2

(80)

therefore
Ob, IPM=0.30 A / mb; (75)

lim
+~co ob

(76)

(b) Box Normalization Method

In other words, for an infinite nucleus the quasi-
deuteron effect on ob is about 5 jo decrease of the IPM
value. This result is not inconsistent with that of
I evinger. '

tn
L/2 (—1)nnL2

x2e'"**dx=
—L/2 2m'e '

Therefore, from Eq. (79),

(81)

Therefore, when we evaluate the integral we should
put e„=e,=0. If we further assume r/,,=0, @=0.
However, since P(q) in Eq. (77) is proportional to q'
for small q (see Appendix) and F(q) has no singularity
at q=O, Eq. (77) becomes zero if q=O. In other words,
we must assume e WO. Then the integral with respect
to x is given by

In order to test the validity of introducing the
damping factor of Eq. (64), we shall calculate o.b using
a somewhat di6'erent method.

6L5( 1)n,
r, 'e'1 "~d'r;, =

(22r) 'N. '
(82)
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Substituting this into Eq. (77), we find

8 ilE krb ~ (—1)"*F(q)P(q)I=—— I.' P
45 A' (2~)' '=i n.'

(83)

here. The results are also listed in Table II. As seen in
the table, this e6ect is negligible.

IV. CONCLUSION

On the other hand, if I is very large, q is very small
for fixed m, . Then from the Appendix

lim
F(q)P(q)

=F(0) lim
q—bo

P(q)

F(0) 2vr
= 10(1—ln2) —I,.

kF' L

Substituting this into Eq. (83), we get

16 M kr3 ~ (—1)"*
I=—(1-ln2)—F(0)

9 (2pr) 3 ~*=i rb,

16 kI,'=—(1—ln2) Wppr 'Xp

9
L4 ln2,

(2')'

where X and H p are given by Eqs. (27"), (28'). The
value of L is given by

then I becomes

I.= (4pr/3) '*rpA', (86)

16 krp t'43-l 4"
I=—(1—ln2)»21&3~'lI' I' —

i
rp'&'" (87)

9

Substituting necessary values and combining with
Eq. (51), we obtain

d o-q= —0.018 A& mb.

Comparing Eq. (75), we get

Ao b/~b ——6%. (89)

(c) Effect of Coulomb Force

This is exactly zero for o;„& in this order nf approxi-
mation, because the value of o-;„t is aGect~d only by
ri —P pairs as seen in Eq. (3). However, in the case of
ab, this effect appears in p —p pairs. LSee Eq. (50) and
the discussion after that. ) We shall evaluate this by
replacing a nuclear potential in Eq. (57) by the Coulomb
potential. LFor an infinite nucleus this effect will

diverge, but in our case it will converge because we used
a damping factor in Eq. (64).$

V=+e'/r;;. (90)

The calculations are exactly the same as in the case
of nuclear forces, so it is not necessary to repeat them

This agrees very well with Eq. (76). Therefore, we see
that the damping-factor method can be regarded as a
reasonable approximation.

The e6ect of the quasi-deuteron model, i.e., the
effect of the dynamical correlation between nucleons,
has been treated by first order perturbation theory. The
results are that o-;„& is increased by about ten percent
and that o.

& is decreased by a few percent. The eGect
of the hard core has not been treated in our calculation.
This may affect the result for o;„&, but it will probably
not be so large as to change the main conclusion. For
instance, recent calculation" shows that for an at-
tractive potential with a hard core the wave function
outside the core is similar to that of the IPM. This
seems to support the above prediction. For o.y this eGect
is clearly small, because the main contribution to o.

&

comes from the low-energy part.
Finally we conclude that the IPM is a fairly good

approximation for photonuclear reactions.

APPENDIX

The integrations with respect to p and n for the
energy denominator of Eqs. (24) and (61) were carried
out by Euler. "We merely quote his results here,

D—= d s

p+s) &&

dpp dse
n[ &1 S (S+p—Il)a-s[ &i

00

td's exp( esp)dn —e- &'»dpp
Jp

[p+s] &1

i

~ n)&~
n —s( &1

e+a{s n)d333, (A1)

Gomes, Walecka, and Weisskopf, Ann. Phys. 3, 241 (1958).
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kr2

s ~.
1

e '& —{sye& '"»
-y'

+e '(y+1)(e '"—1)l dy

4x' p" 1
+ d's ' e 'v —(e"(y—1)

s s

+e &(y+1)) dy. (A2)

where o. is an auxiliary variable introduced for con-
venience of calculation. Putting os=y, we get

For N(1,

P(u) =Pr(u)
= P4+ (15/2)u —5u'+ ssu'g ln(1+zz)+29u'+3zz'

+E4—(15/2) u+5u' —-', u' j
&& ln (1—u) —40uz ln2

—40(1—ln2)uz —10u'+ sszzs+0. 21us. (A4)

For QQ 1

P(u) =Ps(zz)

= P4 —20u' —20u'+4zzs] ln(u+1)+4u'+22u

+P—4+20zzz —20u'+4u'j ln(u —1)

The integration with respect to y is elementary but
tedious. After integration we put s=2N and obtain the
following results:

101 11
+ (40u, "' —8u') lnu + +0.16—.(A5)

3 u 3 I' I'
64D=~s P(u)du.
15 ~p

(A3) The error of the above power-series expansions is

less than 0.1% for Pr(u) and less than 0.5 /o for Pr(u).

P H YS I CAL R EVI EW VOLUME 116, NUM BER 2 OCTOBER i 5, 1959

Heavy Nuclei in the Primary Cosmic Radiation at Prince Albert, Canada.
I. Carbon, Nitrogen, and Oxygen*
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A stack of 6-5 emulsion, exposed at 120 000 feet for 8 hours at 61'N has been used to study the charge
and energy spectrum of heavy nuclei at the low-energy end. Energy measurements have been made on

C, N, and 0 nuclei up to 1 Bev/nucleon. The spectrum shows a broad maximum at 550 Mev/nucleon,
extrapolated to the top of the atmosphere. Various possibilities to explain this spectrum are discussed.
However, it seems desirable to determine the energy spectrum of the other heavy-nuclei components in

this energy region in order to gain a more complete understanding of the whole problem. Measurements
of this kind are in progress and will be reported.

l. INTRODUCTION

f
'N order to gain information concerning the a,ccel-

eration mechanism of the primary radiation, the
study of the heavy-nuclei component in the cosmic
radiation has certain advantages over studies on
primary protons and the various secondary components.
This is due to the fact that heavier nuclei cannot be
created from lighter elements once they are ejected from
the source into interstellar space. Any conceivable

*This work has been supported in part by the U. S. National
Committee of IGY, the National Science Foundation, and the
joint program of the 0%ce of Naval Research and the U. S.Atomic
Energy Commission.

t Department of Physics, Rikkyo University, Tokyo, Japan.
f College of General Education, University of Tokyo, Tokyo,

Japan,

process the primary cosmic radiation might undergo in

interstellar space takes place in the direction from
heavier to lighter elements.

The very existence of the heavy-nuclei component'

poses stringent restrictions on the possible types of
acceleration mechanisms. Furthermore, the determina-
tion of the Auxes of Li, Be, and B ' has so far been the
only method of estimating the average age of the

primary cosmic radiation.
The study of the heavier Z components can yield

valuable information regarding the relative abundances

'Freier, Ney, and Oppenheimer, Phys. Rev. 75, 991 (1949).
H. L. Bradt and B. Peters, Phys. Rev. 77, 54 {1950);80, 943
(1950).' Koshiba, Schultz, and Schein, Nuovo cimento 9, 1 (1958).


