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Plausibility of a Nonlocal Optical Model*
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The implication of a simple two-kernel form of nonlocal potential is considered in the nuclear matter
approximation. It is shown that this leads to a wave equation with a complex reduced mass. The parameters
characterizing the real part of the optical potential are found to be in reasonable accord with expectations
from two-body forces. The parameters associated with the imaginary part are handled only phenomeno-
logically. A description is found which works quite well in the energy range 0 to 25 Mev. The results of
this study compares favorably with the corresponding results of an investigation with a nonlocal model for
finite nuclei.

I. INTRODUCTION erst approximation, an equivalent Schrodinger wave
equation containing, however, a spatially variable
effective nucleon mass which appears in a fully sym-
metrized kinetic energy operator. 4 An equation of this
type has been used recently by various authors to study
the approximate eGect of a nonlocal nucleon-nucleus
interaction on single-particle level schemes" and
nuclear binding energies. '

The case of an inlnitely extended nucleus (V= V,
=constant) can be treated exactly within the above
framework, since the matrix (1) then has translational
invariance in coordinate space, and hence is diagonal
in momentum space. One 6nds

I 'HF optical model' for nuclear reactions provides
a good over-all description of scattering of

nucleons by complex nuclei, if the effective scattering
potential contains an absorptive (imaginary) term and
is allowed to vary with the incident nucleon energy.

The momentum dependence of the effective nucleon-
nucleus interaction potential is evident from the self-
consistent treatment of the nuclear many-body problem
by Brueckner et a/. ' This analysis shows that the
effective interaction of a nucleon with a nucleus must,
for finite nuclei, be nonlocal in both coordinate and
momentum space, and is described by a potential
matrix (r I

V
I
r') or (k I

V
I
k'), rather than a local

potential V(r). The self-consistent determination of this
potential matrix from two-body forces is an extremely
involved problem and only preliminary results of
calculations of this type have been reported as yet. '
For almost local potentials, however, a reasonable
phenomenological form for the potential matrix may
be taken as4

(k I VI k') = (2s-)lV.b.f-,'(k+k')g8(k —k'), (2)

in which 5, (k) is the Fourier transform of 8, (r) and Ak

is the nucleon momentum.
Frahn' has shown that the phenomenological form

(2) for the nucleon-nucleus interaction can qualitatively
account for the modified propagation of nucleons in
nuclear matter and the energy dependence of the real
part of the optical potential. One might hope to include
absorptive effects in (2) by simply letting V, be
complex as is done in the local optical model. However,
this procedure leads to an incorrect energy dependence
of the imaginary part of the resulting optical potential
as can be directly seen from the nonlocal continuity
equation (Sec. II). In Sec. III, we discuss the inclusion
of a repulsive ("hard core") contribution to (2) in the
light of recent work on the related bound-state prob-
lem, ' "and show that an improvement may be obtained.
Finally in Sec. IV, we compare the potential parameters
derived here with those inferred from a phenomeno-
logical study of finite nuclei using nonlocal optical
potentials.

(rI VIr') = VI (r+r')/23~. (r—r'),

where 8,(r) is a normalized approximation function of
the delta function b(r) with range parameter a. This
range parameter, a, is a measure of the nonlocality in
the potential, with a=0 corresponding to the local case.

A nonlocal interaction of the type discussed above
leads to an integro-differential wave equation in
coordinate space for the motion of a nucleon in a
nucleus. By using form (1) for (rI VIr') and expanding
the interaction term in the resulting integro-difTIerential

equation about r in a Taylor series, one obtains as a
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IL CONTINUITY EQUATION

The nonlocal wave equation for the motion of a
nucleon in a nucleus may be written as

(A'/2Mp) AP (r)+Ef(r)

U, L-', (r+r') $8,(r—r') P(r') dr', (3)

where U, = V,+iW, with V„W, real, and we assume
the form (1) for (rI VIr').

Since the reaction cross section is proportional to the
number of particles removed from the incident beam
per second, this is easily found to be given by

I

divSdr= (2/A) W.I
-', (r+r') j

Xb.(r r') p(—r,r') drdr', (4)

where p(r, r') =P*(r)P(r') is the mixed nucleon density,
and S is the usual probability current density vector.

We confine the discussion to nucleons interacting in
nuclear matter. Then W', is a constant, and we can
describe the nucleons by plane waves. The mixed
density then becomes

p(r, r )= expL —ik (r —r') j (5)
for a nucleon with momentum hk. The expression (5)
essentially introduces the Fourier transform of 8, (r—r')
into (4). Taking a Gaussian representation for the
function b, (r—r'), the right-hand side of (4) becomes
proportional to W, exp( —k'a'/4) =W, ff(k).

Clearly W, ff(k), the effective absorptive potential, is
a monotonically decreasing function of the nucleon
momentum. This result is contrary to the findings based
upon phenomenological fittings which indicate that the
coeKcient of the absorptive term is an increasing
function of energy. "While it must be recognized that
such studies are based upon actual fittings to finite
nuclei, it is reasonable to suppose that the coeScient
in front of the form function represents the well depth
for absorption in nuclear matter. Since the result of
the monotonic decreasing function follows so immedi-
ately from the continuity equation, one is greatly
constrained as to how one can embody a theoretical
modification which leads to an increasing absorptive
part for scattering at low incident energies. A possible
modification which may be made to the theory is to
incorporate two nucleon-nuclear complex kernels. This
seems reasonable in view of the work of Brueckner' and
others on nuclear structure in which the nucleon-nuclear

kernel contains an attractive part which arises from
the attractive component of the two-body force and a
repulsive part associated with the inQuence of the
repulsive core when taken in conjunction with the
exclusion principle. Assuming now that we do have
two kernels, one associated with the attractive part
and one with the repulsive part of the two-body force,
we may write the single-particle wave equation as

(fp'/2Mp) Df(r) +Ef(r)

U,L-', (r+r') j8.(r—r')P(r')dr'

f
U, L-', (r+r'))S, (r—r')y(r')ar', (6)

where U, and U, are related to the attractive and
repulsive parts of the nucleon-nucleon potential, re-
spectively. In the case of nuclear matter, the natural
division' of the total energy into contributions from
those two parts also seems to favor a formulation of
the type (6).

Proceeding now to the continuity equation, we can
determine the absorptive term in a similar fashion to
the method used previously. The possibility of fitting
the phenomenologically determined absorptive function
now resolves about the relative magnitudes of U and
U, as well as the range parameters a and c associated
with them.

III. EFFECTIVE LOCAL OPTICAL POTENTIALS

For the interaction of nucleons in infinitely extended
nuclear matter, the Fourier transform of (6) leads
directly to the dispersion relation'

E= (k k /2Mp)+Veff(k)+iWgff(k), (7)
where

V,,ff(k)+iW, «(k) = (V +iW ) exp( —k'a'/4)

+ (V.+iW, ) exp( —k'c'/4) (8)

if Gaussian forms are used for 8, and 8,. V,fq(k) and
W, ff(k) then represent the real and imaginary parts of
the effective local potential felt by a nucleon.

In view of the fact that k' is complex, we write
k'=kP+ikpP and use the approximation

exp ( ikpPa'/4—)= 1 ik2Pa'/4— (9)

Substituting (9) into (7) and (8), and making the
reasonable assumption

I
W.kp'a'/4V.

I
«1,

I
W kp'"/4V.

I
«1,

it then follows that

V f&(k) V exp( k ~ /4)+V exp( k c /4)

W, exp( —kPa'/4)+ W, exp( —kPc'/4)
W,ff(k) =

1—(MpV a'/2A') exp( —kPa'/4) —(MpV, c'/2h') exp( —kPc'/4)

E= (A'/2Mp)k '+ V, exp( —kPa'/4)+ V, exp( —kPc'/4).
"See for instance, A. E. Glassgold, Revs. Modern Phys. 30, 419 (1958).

(10)

(12)
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60 I i I lillj I I I I IIIII I I I lllllj I I I I Letting R=roA'* and A. =A/4, we have
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(a)

where
P = (3Mo Vo/orb'kf') LY(r.)—Y (r,)g,

Y(r,) =
4 sin2krr, +oker, sin'k—rr, /kyar, . (17)
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Fzo. 1. The effective real optical model potential as a function
of incident nucleon energy. The empirical points are those referred
to in articles by Glassgold. "'5 Curve (a) is for the case: V
==125 Mev, V.=43.4 Mev, u'=0. 48 f' and c'=0.12 f-'. Curve
(b) is for the case: V~ = —117 Mev, V, =43.4 Mev, a'=0.48 f'
and c'=0.

The method of Gomes, Walecka, and Weisskopf' as
extended by Green" may be used to derive the param-
eters V and a from an assumed two-body interaction. "
For example, choosing the Serber force with a repulsive
core,

(13)

then it follows from the Born approximation that the
potential due to the attractive part of the two-body
force exerted on a single particle of momentum Ak by
3A unequal particles is

V(k) = —3{AVo(r, ' —r o)/2R'

+ (Vo/or)Lg(r„k, kf) —g(r„k,kr)1}, (14)
where

If, for example, we assume the parameters' r, =2.3 f,
V0=28.34 Mev, r, =0.4 f, which lead to a zero energy
virtual singlet state of the deuteron, and take kf
=1.52/ro, one obtains nuclear stability near ro 1.—2—f
with well parameters V,= —117 Mev and P=0.535.
In terms of the nonlocality range a, it follows that
p=MoV(kf)a'/25'. Accordingly, these values of p and
V~ corresponds to a'=0.48 f'.

If we assume that the eGect of the two-body repulsive
interaction leads to a local repulsive nucleon-nuclear
force, then the methods of Huang and Yang" yield
V,=43.4 Mev and c'=0 at the above core radius and
nuclear radius constant.

Using these values, one might now find the predicted
energy dependence of V,« from the dispersion relation
(12) by evaluating ki as a function of the nucleon energy
E and inserting into (10). The result is shown in Fig. 1,
curve (b).As is seen, the calculated values are, in general,
larger than the empirical ones. The agreement is,
however, improved if we assume that the core potential
is also nonlocal, i.e., c &0. In modifying the previous
expressions to embody this nonlocality, it is reasonable
to hold P'=Mor V~(kf)a'+ V, (kr)c'7/2A' fixed at 0.535
and to vary V and c'. The best agreement with the
empirical data is obtained by choosing V,= —125 Mev
and c'=0.12 fo

I Fig. 1(a)]. The former choice corre-
sponds to a relatively small change in the well depth of
the two-body force, and the latter to the type of
nonlocality associated with the core term in the more
detailed work of Brueckner. '4

W ff(E) may now be obtained from (11) once the
parameters 8', and 8', are chosen. Unfortunately, the
derivation of these parameters from two-body forces
constitutes an even more involved study than that
associated with the real well parameters. Accordingly,
only a limited phenomenological treatment of this term

30 I I I IIIII I l I I I iiiI I I I I IIIII I I I I

g(r„k,kr) = to{SiLr,(k+kf))+SiLr, (k&
—k)]

—2 sinker, sinkr, /kr ). (15)

20

/0—

ii
o

where Si denotes the sine integral function.
The momentum dependence of the g-function gives

rise to the nonlocality or the effective mass associated
with the single-particle potential. One may characterize
the momentum dependence by means of a parameter
p= (Mo/M* 1) in terms of the —effective nucleon mass
M*. To evaluate P, one assumes that the function g is
parabolic in k in the neighborhood of the Fermi surface.

"J.H. Van Vleck, Phys. Rev. 48, 367 (1935); W. E. Frahn,
Nitovo citnento 5, 393 (1957).
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FIG. 2. The effective imaginary optical model potential as a
function of incident nucleon energy. The empirical points are
those referred to in articles by Glassgold. ""The curve is for
the case: W =32 Mev, 8".= —37 Mev, a'=048 f' and c'=0

"K.Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).
' K. A. Brueckner, Proceedings of the International Conference

on the Optical Model, The Florida State University, Tallahassee,
1959, p. 145,
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TABLE I. Parameter combinations.

V+V,
W+W,
V,a'+ V,c'
S',a'+ W,c'

This study

—81 Mev—10 Mev—54 Mev f'
+22 Mev f

W.W.G.a

—70~3 Mev—14~6 Mev—47~3 Mev f'
+32~7 Mev f'

a See reference 19.

'5A. E. Glassgold and P. J. Kellogg, Phys. Rev. 109, 1291
(1958).

' A. M. Lane and C. F. Wandel, Phys. Rev. 98, 1524 (1955);
W. B. Riesenfeld and K. M. Watson, Phys. Rev. 102 (1956);
E. Clementel and C. Villi, Nuovo cimento 10, 176 (1955).

"H. Feshbach, Annlal Review of 2VNclea~ Science (Annual
Reviews, Inc. , Palo Alto, 1958), Vol. 8, p. 49.

will be made. It should be clear from the form of W,gr(k)
that rather unusual measures are needed to obtain a
function which rises with k. Accepting a and c from
the derivation of the real potential, one is extremely
restricted as to the choices of 8' and 8", which can
accomplish such a behavior. The choice W, =32 Mev
and t/V, = —37 Mev leads to the curve in Fig. 2. This
gives a satisfactory description in the low-energy region
(0 to 25 Mev). We feel, however, compelled to call
attention to the implications of the negative sign
associated with the core term which, if interpreted
literally, would suggest that this component of the
potential leads to emission rather than absorption.
Since this is certainly rather nonphysical, we must
conclude that either this representation of the imaginary
term corresponds simply to a mathematical device, or
else what is involved here is a type of interference effect
as is also found in the case of Coulomb plus nuclear
scattering.

It is seen from Figs. 1 and 2 that the real part of the
effective potential inferred from a two-kernel form for
the potential matrix is in fair agreement with that
resulting from phenomenological analyses using local
potentials. As to the imaginary part, although it gives
a satisfactory description in the low-energy region (0
to 25 Mev), the over-all agreement is rather poor. The
absence of a ma, ximum around 70 Mev (as pointed out
by many authors" '6) and the nonzero contribution at
the top of the Fermi sea indicate that nonlocality alone
when embodied in the form assumed here cannot
explain the energy dependence of the imaginary
potential over a wide energy range. '

Therefore, in view of the above discussions, it would

appear that a nonlocal optical model of the two-kernel
type with constant parameters may be successfully
used at low energies. However, to correlate experimental
data over a wide energy range, an explicit variation of
the nonlocal potential parameters seems necessary;
alternatively, at the present stage of data fitting, one
might simply use a local imaginary potential with a
larger explicit variation of the potential parameters.

In our calculation, the nonlocality has been char-
acterized by a Gaussian dependence. This assumption,

together with other simplifications, does not introduce
any significant uncertainty in the behavior of the
low-energy part of the curves. However, it does render
the high-energy part somewhat doubtful, since the
details here are expected to depend somewhat upon the
shape of the nonlocality.

IV. COMPARISON WITH RESULTS FOR
A FINITE NUCLEUS

In a study of Wyatt, Wills, and Green, "an attempt
has been made to find a phenomenological description
of the nucleon-nuclear interaction for finite nuclei
which could handle without explicit variations of the
parameters, both bound and scattering phenomena. On
the basis of their attempts to fit angular distributions
and total cross sections as well as mass separation
energies, they have arrived at parameters which might
now be compared with the results of this current study.
Let us assume a two-kernel nonlocal optical model
potential of the type given by (6). In the case of almost
local potentials given by (1), it can be easily shown
that at low energies, the wave equation may be reduced
to a form which is independent of the shape of the
nonlocality. 4 This equation may be written as

—(A'/8)(6[1/M*(r)]+ 7[2/M*(r)]V'

+[1/M*(r)]&)4 (r)+I (V.+V.)E(r)

+i(W,+W,)g(r)]P(r) =EP(r), (18)

where

M*(r) = Mp/{1 —(Mo/25') [(V.u'+ V,c') $(r)

+~(W a'+W, c')g(r)]} (19)

is the effective mass and $(r), q (r) are the form functions
for V, V„TV, 8'„respectively. It should be clear
that insofar as this characterization of the problem is
concerned, the combinations of parameters which are
essential to the determination of the cross sections are
those listed in Table I. In this table, the combinations
deduced from the parameters of the preceding Sec. are
given in the second column. In the third column are
given the parameters deduced directly by fitting data
for finite nuclei. "The limits shown are based upon the
range of parameters which lead to good fits. In com-
paring the imaginary part, a correction was made for
the differences in form factors used in the two studies.

The agreement between the two sets of combinations
is gratifying in view of the considerable difference in
viewpoint used in arriving at these numbers. It is also
gratifying that the agreement occurs at a nonlocality
corresponding to a reduced mass at the center of the
nucleus of the magnitude which has been used success-
fully in fitting total energies and densities of nuclei in

"A. E. S, Green, Proceedings of the International Conference
on the Optical Model, The Florida State University, Tallahassee,
1959, p. 44.

"Wyatt, Wills, and Green (to be published).
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various nuclear structure calculations. One might
therefore expect that a good mass surface would result
from a nuclear potential characterized by the param-
eters arrived at here. ~ In conclusion, we believe this
study in conjunction with the work of Wyatt, Wills,
and Green suggests that the simple nonlocal nucleon-

nuclear potentials when pursued in the Frahn-Lemmer
approximation can serve to describe the average
behavior of nucleons with nuclei in the range of energies
from minus 70 Mev to plus 25 Mev which corresponds
roughly to the entire range of concern of classical
nuclear physics.
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The nuclides Gd"' Eu"', Gd"' and Eu"' were prepared by the interactions of 20- to 40-Mev helium
ions with Sm"', and found to decay with half-lives of 25&2 minutes, 5.6+0.3 days, 46+2 days, and 4.4+0.1

days, respectively. The mass number assignments were made on the basis of excitation functions, and
chemical evidence of parent-daughter relationships, with special reference to the previously known nuclide
Eu"'. The most prominent gamma rays appearing in the decay of each of these four nuclides are as follows:
in Gd"' decay, at 0.80, 1.03, and 1.75-Mev; in Eu" decay, at 0.53, 0.64, and 0.89 Mev; in Gd"' decay,
at 0.114 and 0.153 Mev; and in Eu"' decay, at 0.63 and 0.74 Mev. There is also a strong E x-ray line in
each spectrum, In addition, Gd'4' was found to emit positrons with an end-point energy of about 2.4~0.2
Mev.

INTRODUCTION

KCENT reports by several workers' ' suggest the
existence of a gadolinium isotope with mass

number less than 147, and having a half-life in the
range between 25 and 70 days. The mass number of
this nuclide has been estimated variously to be 145
and 146.

This paper reports work in which both Gd'4' and
Gd"' were prepared and partially characterized under

conditions in which the assignment of mass number was

relatively unambiguous, In particular, the nuclides in

question were prepared by the interaction of 20-Mev
to 40-Mev helium ions with Sm'44, the mass assignments

being made on the basis of the excitation functions for
their production.

The observed half-lives were found to be 25 minutes

and 46 days, respectively, for Gd"' and Gd"', suggest-

ing that Gd"' had been responsible for the observations
mentioned above.

f Research performed under the auspices of the U. S. Atomic
Energy Commission.
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EKPERIMENTAL

Target Foils

By means of a Zapon painting technique described
elsewhere, ' reasonably uniform deposits of samarium
oxide were formed on very pure (99.99%) 0.001-inch
aluminum foil. The thickness of the samarium oxide
layer in typical target foils was about 400 micrograms
per cm'. A simple backscattering type of beta gauge
was used to assure sufhcient target uniformity in those
experiments in which uniformity was necessary. The
samarium oxide enriched in Sm'44 was obtained from
Oak Ridge National Laboratory and had the following
isotopic composition (expressed in atom percent): Sm"',
58.9%; Sm"', 13.5%, Sm"', 5.3%; Sm"' 3.2%; Sm'"
1.4%; Sm'", 3.8%; Sm'", 14.0%. Some foils were also
prepared using natural samarium oxide (Sm'44, 3.1%).

Irradiations

Bombardments were carried out in the 40-Mev
external helium ion beam of the Brookhaven 60-inch
cyclotron. The bombarding energy was adjusted by
means of aluminum absorber foils, employing for this
purpose the range-energy relation of Aron e$ al. ' The
full energy of helium ions incident on the target stack
was taken to be 40.5 Mev, on the basis of approximate
range measurements.

'Dodson, Graves, Helmholz, Hufford, Potter, and Povelites,
3Eiscellaneous Physical and Chemical TechniqiIes of the Los Alamos
Proj ect, edited by A. C. Graves and D. K. Froman (McGraw-Hill
Book Company, Inc. , New York, 1952), p. 1.

'Aron, Hoffman, and Williams, U. S. Atomic Energy Com-
mission Report AECU-663, May, 1951 (unpublished).


