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The frequency distributions of hydrogen lines broadened by the local fields of both ions and electrons in a
plasma are calculated in the classical path approximation. The electron collisions are treated by an impact
theory which takes into account the Stark splitting caused by the quasi-static ion fields. The ion field-
strength distribution function used includes the effect of electron shielding and ion-ion correlations. The
various approximations that were employed are examined for self-consistency and an accuracy of about 20/o
in the resulting line profiles is expected. Good agreement with experimental Hp profiles is obtained while
there are deviations of factors of two with the usual Holtsmark theory. Asymptotic distributions for the line
wings are given for astrophysical applications. Also here the electron effects are generally as important as
the ion effects for all values of the electron density and in some cases the electron broadening is larger than
the ion broadening.

INTRODUCTION

S INCE atomic hydrogen is subject to a large linear
Stark e&ect, the principal cause of broadening of

hydrogen lines in plasmas is the interaction of the
emitting atoms with the local electric fields of the ions
and electrons. Even at low degrees of ionization and
low densities, Stark effect broadening is usually domi-
nant, but if at high temperatures Doppler broadening
becomes significant in the cores of the lines it can
easily be taken into account by the usual folding
procedure. But under most conditions the spectral
distribution will depend mainly on the electron and
ion density and only slightly on temperature or neutral
density. With the aid of an adequate line broadening
theory one can therefore use experimentally determined
hydrogen line profiles to measure the densities of the
perturbing ions and electrons in a partially ionized gas.

Detailed calculations of the broadening of Ly-n,
Ly-P, H, Hp, H~, and H& by both ions and electrons
in a plasma have been carried out using an IBM 704.
The sects of electron shielding and ion-ion correlations
on the statistical theory for the broadening by ions
have been incorporated using Ecker's' distribution
functions. The broadening due to electrons is calculated
by means of a generalized impact theory which takes
into account the Stark splitting caused by the ion
fields. Large corrections to the usual Holtsmark' theory
have been obtained which aGect much of the previous
work on the composition and structure of stellar atmos-
pheres which was based on the Holtsmark distribution.

In the present calculation, the various approximations
which are introduced into the numerical evaluation of
the spectral distribution function have been investi-
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gated and an over-all accuracy of about 10% is indi-
cated. This is borne out by a comparison with recent
precise measurements of the Hp profile in a plasma by
Bogen. ' The theoretical and experimental profiles are
in close agreement over an intensity range of two
decades.

ELECTRON BROADENING

Because of the characteristically high velocities of
electrons in a plasma, their influence on line broadening
can be calculated with the impact approximation, as
will be shown at the end of this section. A generalized
impact theory is used that has been developed by the
authors4 and independently by Baranger. ' It treats
the case of overlapping lines in a multiplet and leads to
new terms in the spectral distribution; i.e., asymmetric
terms in addition to the usual Lorentz-dispersion terms.
For the problem under consideration, the hydrogenic
energy levels are split by the quasi-static ion fields.
The lines which arise from transitions between these
split levels are then broadened and overlap because of
the electron collisions. '

The general problem of overlapping lines was solved
explicitly when perturbations of the upper state are
large compared to perturbations of the lower state. 4

The method of calculation when both states are per-
turbed was only indicated and is given below using a
generalization of "3~lethod II" of the earlier theory.

The spectral distribution function is found from the
trace of the thermal average (denoted by ( ) T) of the

'P. Bogen, Z. Physik 149, 62 (1957).
4 A. C. Kolb and H. Griem, Phys. Rev. 111,514 (1958).' M. Baranger, Phys. Rev. 111,494 (1958).

A more complete discussion of the general aspects of the
problem and a survey of earlier theories of hydrogen line broaden-
ing can be found in A. C. Kolb, dissertation, University of
Michigan, 1947; University of Michigan Engineering Research
Institute, ASTIA Document No. AD 115040 (unpublished). See
also H. Margenau, Revs. Modern Phys. 31, 569 (1959).
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Fourier transform of the dipole-dipole correlation
function

{/i($)/i(0) }&,
—{T t (f 0)piHpt/0+(0) p iH—ot///t

X Tb(t,o)/tb(0)} P, (1)

where /i(0) is the dipole operator at the time 1=0, Ho is
th'e unperturbed Hamiltonian of the radiating atom
and T b(t, o) is the usual time development operator
which satisfies the Schrodinger equation

ih—T, (t,o) =e'~"/"V(t)e "Hb""T', b(t, o),
dt

where V(t) is the perturbation. The a and b indices
denote the principal quantum numbers of the initial
and final states and the operator T, (/l, o), say, has
matrix elements between states with the same principal
quantum number a. The dipole-dipole correlation func-
tion can be written in this way because we do not
consider collision induced transitions between states
with different principal quantum numbers and also
neglect the dipole radiation arising from transitions
between substates of a level with a given principal
quantum number. Neglecting these transitions can be
fully justihed for low-energy electron collisions in a
plasma and for optical line radiation.

Consider now the matrix elements

{( 'I/ (&)/ (0) I
'&}

={(n'I T t(t,o) ln"& exp(i&a ~ t)(a" Ip, (0) IP'&

x exp(i(up t) (p'
I T p(t, o) I

p"&(p"
I /tb(0) In'&} r

p(' " t)( "l„(o)
I

p'&(p" I/b(0) ')
x &~'I &p'I {r.t(/, 0)rb(/, 0)}rl~"&

I
p"&, (3)

where we have chosen a representation in which II0 is
diagonalandor "p =&a —

&op —= (E Ep.)/h. Theprob--
lem is so reduced to finding the thermal average of the
product T,t(t,o)rb(t, o). Consider now the change in
this quantity during a time interval ht:

a{T.t(t,o)T,(t,o)}r
= {T,t (t+ht, 0)Tb(t+At, 0)—T,t(3,0)Tb(t, o)}r
= {[T.t(/+at, /) Tb(t+at, t) —1]

XT t(t,o)rb(t, o)}P. (4)

where

{r.»—b}r =4.b{T.'»}r,
Ch;

if', b= Q,—P,[r,trp, 1], —

(6)

which has a solution

{Ta, Tb}r= exp(p~b/),

with T,t(0,0)Tb(0,0)=1. This result follows because
T„(t;)X Tb;(t, ) due to a single collision is independent
of the time t, of the collision when At, is large compared
to the collision time. Then we have Ti, , b» (/!;)= Ti, b» (0)—= T& b»., and i', b is independent of t;. Substitution of
(8) into the expression for {/ti(t)/i(0)}z and Fourier
transformation yields the spectral distribution

1 00

J,b(~) =—Re Tr ' dte '"'p{/i(t)/i(0)}z
7r 0

e
—Erp/k F

n Z(T)
Re P P (a'I/ti(0) IP'&&P" I/i(0) In' )

~/~I I pl pl I

x «(~'l &p'I exp[( —~~~. p+y. b)~) l~"&IP"&, (9)
0

where id —id ~ p —=h~ p, and Z(T) is the partition
function.

Finally we have

approximation), the two factors on the right side can
be averaged separately and one has

a{T.t(/, 0)Tb(/, ,0)},=P;P;[r.;t(&;)T„(/,;)—1]a&;
X{Tat(/l, o) Tb(/!,0)}r, (5)

where we denote the change in T(t,o) by a collision
during the time interval ht;, by T(t,); P; is the prob-
ability per unit time that there is a collision of the
type j. The time interval At, has been chosen to be
large compared to the duration of a collision but
suKciently short so that there is only a small deviation
in T, (/, 0)Tb(t, o) during the time interval. This assump-
tion will be examined later for self-consistency. In that
case one obtains the differential equation

If there is only one collision' in the time interval At that
is not correlated with previous collisions (impact J.b(~) =

mZ(r)
Re Z 2 (~'I/(0)IP'&

~1~/ I pl pI I

7 In the case of hydrogen, most of the electron broadening is due
to distant, i.e., weak collisions, which overlap in time. If the com-
bined effect of such weak collisions in Dt is small, T (t+ht, t)
XTb(t+ht, t) will be given by the first terms of the iterated
solution of the Schrodinger equation. The linear superposition is
still valid in that case because terms due to the perturbations
produced by several different electrons will average out since the
perturbation energy is an odd function of the perturber coordi-
nates. This is only true up to the third iteration and the validity
criterium for the impact theory may therefore be reformulated
as follows: There must be either only one strong collison or
several weak collisions which cause together only a small deviation
in the matrix elements of the T, Tb operator, in a time interval
characteristic for the correlations of the perturbations.

x( 'I &e'I l~"&Ip"&
(idion" p' 4'u b)

x &p" I/ (0) l~'&. (1o)

In obtaining this formula we have taken the matrix
elements of the density operator

&~'Ipl ~'&

= &n'I exp( —Hb/kr) Ici'&/z(r) e~ /" /z(T)—
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to be independent of the splitting. This is a good
approximation for the optical region where the perturba-
tion energies are small compared with the mean thermal
energy.

In order to calculate the spectral distribution with
(7) and (10) it is necessary to solve the Schrodinger
equation for the time-development operator. We now
make the classical path assumption and take the field
produced by the perturbing electron to be uniform over
the atom. The classical Hamiltonian for a single electron
collision of type j is

r r; e'r (ti,+v, t)
V, (t)= '

I
r,

I

' (p '+ v 'tP) i

Here r is the position vector of the atomic electron; y;
and v; are the impact parameter and velocity, re-
spectively, of the perturbing electron at the time of
closest approach t=0. For rapidly varying perturbations
the exponentials in (2) can be replaced by unity. This
can be seen as follows: The average Stark effect splitting
within a level of principal quantum number c will be

e'a'ao/hp;2 in angular frequency units with the
Bohr radius ao ——h'/me' and a typical distance p, between
the radiating atom and the nearest ion. t The duration
of an electron collision is of order Ar, =p,/v„p, being a
typical impact parameter and 8, the average velocity of
the electrons. Now p; and p, will both be of the order
N: if N is the number of electrons per unit volume.
The exponents are of the order A&vAr„ i.e., a'X1h/vs, .
When this quantity is small compared to unity, the
exponentials are not important. This limits the theory
to densities that are not too high but still covers most
of the range of practical interest as can be seen from
Table I.

Now we can extend all time integrals from —~ to
+~ and obtain the following expression for the operator
T, from the iterated solution of the Schrodinger equa-
tion (2) using (11):

which is most easily polarized; i e., we can take
Tb(t,0)=1 if perturbations of the final state are nu-
merically unimportant. This is rigorous for the Lyman
series since the ground state is nondegenerate and is an
excellent approximation for the higher members of the
Halmer series as is shown later. Calculations of spectral
line intensities where perturbations of both the initial
and final states must be considered, using the general
formulas given here, will be the subject of future
publications.

For the present purposes we need only to calculate the
quantity j'do;P, (T„. 1), w.—hich involves an average
over the directions defined by y, and v, . All odd terms
in (12) drop out and one obtains

t
e2) t-" r. r;(t)

I
r, (t) I'

r. r;(t')X' dt' +
I
r'(t') I'

On evaluation of the double integral all terms containing
components of both v; and Io; will average out, and the
terms of the form e, v;„give no contribution because
they are multiplied by odd functions of t and the double
integral is consequently zero. With these simplifications
we have

(e2 p
' t." dt

T- —1=—
I

—
I (r. t.)'

(p'+v 't')'

All terms of the type p, p, „will again average out and
the quantities (p,,)', (p;„)', (p;,)' can be replaced by
3p for an isotropic distribution of electrons. The
integrals then reduce to

e' t" r, r, (t) (e')' t" r, r, (t)

ih „ Ir, (t) I' Eh) & „ Ir;(t) I'

r..r, (t')
x ««' + . (12)

f r, (t') f'

and we find

2e4r r
T —1 ————

3 A' (p,v,)'

da. ;P;(T„1).—
It can also be shown for many lines of interest that we
need only consider @ instead of p b, since the broaden-
ing arises mainly from perturbations of the upper state

2e4r r=-2.X I' I'd,d. y(,) ——
J J 3A' (pv)' . (16)

TABLE I. Limiting values of 5or 67', for T= 10 000'K.

Ly-a Ly-P Ha H p

where f(v) is the velocity distribution which is assumed
to be Maxwellian:

E(cm-3)
AcoAv,

10" 10" 10" 10"
0.2 0.2 0.2 0.15

1017
0.25

1016
0.15

(17)

Evidently the p integration leads to logarithmicThe subscripts i and e denote ions and electrons and should
be distinguished from the collision index j. divergencies for both small and large impact param-
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eters. At small impact parameters higher order terms
in the iterated solution of the Schrodinger equation
become of importance. But it will turn out that close
collisions are relatively unimportant compared to the
more distant collisions. We can estimate their eGects
from the Lorentz-Weisskopf collision frequency Sm p„'v,
where the cross section op„' is defined by the condition
that the leading terms in (13) approach unity, i.e., by

8 1'~' I'g '
u-=(p)'—

'v

(18)

Then the collisions are strong and completely disrupt
the radiation process. To estimate the magnitude of
p„ it is sufficient to replace the matrix element (r, r,)
by a mean value for a given principal quantum number
a, which will be of the order a'ao', then

p„(-',) l(k/mv)a'. (19)

The divergence at large impact parameters corre-
sponds to the breakdown of all binary collision theories
for the case of Coulomb interactions. Actually the
distant collisions outside the Debye radius will be
screened in a neutral plasma and one can cut off the
integral at the Debye radius pD given by

pi) = (kT/47rXe') i (20)

The first term in the bracket determines the relative
contribution of strong collisions and the logarithmic
term represents the contribution of weak collisions.
Comparison with (18) shows that the coefficient of the
logarithm is 2p '. The ratio of the weak- to strong-
collision contributions is therefore given by

By dividing the collisions into three classes, strong
collisions inside p„, weak collisions between p„and p~
and screened collisions outside pD, the p integration can
be performed and (16) becomes

4e'r, r, (pn)
y, = —vQ dv vf(v) p„'+—— lnl —

l
. (21)

3fiP v' (p„)

radius correspon. d to angular momenta larger by one
order of magnitude. Errors due to the classical path
assumption are therefore entirely negligible for hydrogen
because of the large angular momentum quantum
numbers. ' This also shows that the field strength pro-
duced by the perturbing electron is practically constant
over the atom because

g2

p = (-', )l—a'ap&3a'ap,
Av

(24)

dv p
—mv')

+ ~
—expl l

r r,. (25)~e;„v 0 2kT ]
For the very small velocities the limiting impact
parameter for weak collisions p„(v) is larger than the
Debye radius pz. The eGect of these slow electrons can
so be estimated with the Lorentz-Weisskopf formula
and turns out to be entirely negligible because only
very few electrons are in this velocity range. We
will therefore proceed by cutting o6 the integral
at a minimum velocity v;„defined by the relation
p„(v;„)=pD or with (19) and (20):

v;„=(Serene'/3kT):(ka'/m). (26)

Then the first term in (25) vanishes and we have, with
the substitutions

and
y= mv'/2kT, (27)

for the most probable electron velocities. Since the most
effective impacts occur at impact parameters several
times larger than p„ it can be concluded that the
assumption of a homogeneous perturbing field, i.e., the
choice of the perturbation Hamiltonian (11), is justified
for the majority of effective collisions which take place
at distances large compared to the Bohr radius.

Neglecting the strong-collision term, we finally obtain
after a partial integration

4 e' ]2v.my
-*'

(pDq (—mv'y "
—»I —

l expl3e( kT i

y /y, =2 ln(pn/p„), (22) y;„=mv;„'/2kT = (4vN/3m) (eka'/kT)', (28)

or if we express pD by (20) and p„by (19) and use the
mean velocity v = (3kT/m) ~, the ratio

the final expression for the g operator which we have
used in the numerical calculations

3kT( m—"=2 ln
2AaP (27riYeP)

(23)

1 (Sv.m) l e' p" exp( —y)
lX—r. r. ' dy — . (29)

3E kT ) fi' &,„;„y
is 5 or larger for the range of densities and temperatures
considered in this paper. The contribution of close
collisions to the P matrix will therefore be less than 20%

This result has some bearing on the validity of the
classical path assumption also, because we can now see
from (19) that the angular momentum of electrons
giving significant contributions is (—,)&ha' or larger. The
most effective impacts which take place near the Debye

The values of y„„„aremostly smaller than 0.1 so that
the exponential integral may often be approximated by

exp( —y)
dy —lny;„—0.577, (30)

~ 'tImin y
'It was shown earlier in reference 6 that for hydrogen the

quantum mechanical and classical path calculations lead to
identical results for the matrix elements of the perturbation if the
relative angular momenta are large and the interaction is weak.
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and @ is only a very weak function of y;„which
justifies the cuto6 procedures, The major uncertainties
in g are due to the neglect of the exponentials, s the
extension of the time integrals in (12) and the neglect
of strong collisions in (25). These various approxima-
tions introduce errors of the order 10—20%. But these
errors will partially compensate each other and Eq. (25)
is accurate to about 10%." The errors due to the
approximate nature of the perturbation Hamiltonian,
i.e., the assumption of classical path and homogeneous
perturbing field, are of lesser importance. They essen-
tially only cause an uncertainty in y;„, the exact value
of which is not very critical.

This does not yet mean that the line profiles calcu-
lated with these approximations for p, will be of corre-
sponding accuracy. The validity of the impact assump-
tion must first be determined. This requires for weak
collisions an estimate of the change &AT ) of the
matrix elements of the transition operator in a time
interval Av, characteristic for the correlations of the
perturbations. Now the correlation time A~, is of the
order of po/v or smaller, (AT,) P,Ar„an—d using (29)
with (r, r,&~a'as' and also (20), we find

1 (2') lh' (" exp( —y)
I
&».& I

=-I
I

o' ' dy (31)
3 &me') m8 &;„y

For the lines considered in this paper this quantity is
0.1 or smaller. Therefore, the impacts only cause a
small change in the operator T(t,0) in a time where the
perturbations are correlated, and the impact assump-
tion is accordingly justified.

Using standard perturbation theory for the linea, r
Stark eGect for a field strength Ii which is here produced
by the ions and is taken to be in the s direction, we
obtain the usual expression in terms of pa, rabolic wave
functions:

~~--e= ~~.s (eF/k) (&~"—
I
s

I

~"
& &0 I

s l(3&),
—(32)

where Ate, s= cp —tp, +cos is the frequency measured
from the frequency of the unperturbed line.

Substitution of (29) and (32) into the general ex-
pression (10) for the spectral intensity yields the final
formula for the impact profile used in our numerical
calculations:

9 By expanding the exponentials in (2) one can show that the
errors introduced are of the order

J s(tp, F)
j.

Re&/
I p(0) ln')

g ct'cx"p

n' i ~o).g
—eIl A a" s n" — s

exp( —y)
n

X &~"
I
~(0) IP&, (33)

where we drop [exp(E,/kT)]/Z(T) for convenience.
This describes the influence of the electron perturba-
tions on the Lyman lines within a 10% numerical
accuracy as discussed previously. For the Balmer lines
the broadening of the b= 2 state by electron impacts is
neglected. But again this will only introduce small
errors because the p-matrix elements vary as a' and the
number of elements contributing to the electron
broadening of a Stark component varies with u. The
relative contribution of the broadening of the b= 2
state to the broadening of the initial state for the Balmer
lines is therefore of the order (2/a)s and consequently
is negligible except perhaps in the case of H„.

ION BROADENING

Since the ions move slowly relative to the electrons,
the impact approximation cannot be used to describe
the ion broadening except in a. narrow frequency
interval near the line center. ' Instead it is necessary
to treat the ion field in the static approximation and
to obtain the ion-held distribution function.

The instantaneous shift in the position of a particular
Stark level Rv p corresponding to the ion field strength
F is given by time-independent perturbation theory:

8co. e
——(e/k)(&tr'I eltr'& —(PI eIP))F=C. eF. (34)—

The spectral distribution is found from the distribution
of Stark splittings, which can be expressed in terms of
the field-strength distribution function W (F), describing
the probability of hnding the ion held between F and
F+dF as W(F)dF. With this, the spectral distribution
iii the statistical approximation is

J s(~ )=& l&~'l~(0)IP&l'iI"(F)
n'p d6COexr p

AQPATe Lerp(-3) /33«3,
4 dmin

which is never larger than 0.1 (see Table I).' If the time integrations in (12) are extended only to a finite
time given by p +@~I' =p~, one obtains instead of (21)

4 e'r. r. (pn)
4 = —~)V ~«»f(s) (p-/pD)'p-'+

J 3k' v' (,p )
i.e., the errors are smaller by a factor (p„./p&)' than estimated for.
strong collisions above. [see I':q. (21)g.

The sum is over all the Stark components contributing
to a line.

Lenz, "Burkhardt, '~ Spitzer, "and Holstein' pointed
". A. W. Lenz, Z. Physik 83, 139 (1933).

. Burkhardt, Z. Physik 115, 592 (1940)."I.. Spitzer, Phys. Rev. 58, 348 (1940)."T.Holstein, Phys. Rev. 79, 744 (1950).
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F0——2.61''*, (39)

the field-strength distribution function for any density
can be expressed in terms of a universal distribution
function Wli(F/Fo) as follows:

W(F) = (1/Fo) Wll (F/Fo), (40)

and the spectral distribution can be conveniently
written as

1 f bpi~~p )—1(n'I ~ IP) I
'W-I I, (41)

~'p C pF p t C .pFo)

where we put p—=p(0) for simplicity.
It is now customary to introduce a reduced wave-

length scale" n =DX/F o. With DXi= (Dpi/2orc)X' (AX«X),
(41) finally reduces to

tLSIr (n)].pdn =J.b(hpo) dhpi

=2 It- p 'I &n'I ~ II) I'W (n/It- p)dn, (42)

where the constants E p are defined by

eX'
C- p=—(&n'I «In'& —

&0 I
«I &&) (43)

2~c 2m-cA

The functions SH(n) for the first four Balmer lines
were calculated by Verweij" and simultaneously by

'~ The variable o. and S(a) are introduced in conformity with
standard astrophysical notation. The quantity 0, is not to be con-
fused with the quantum numbers 0.'.

'6 S. Verweij, Publ. Astronomical Inst. Amsterdam, No. 5
(1936);dissertation, Amsterdam, '1936.

out that the statistical theory is valid only when

pAr;))1.

Here A~; is a time characteristic for the ion field varia-
tions. For an ion passing by with an impact parameter p;
with a velocity v, this time will be of the order p;/v, . The
corresponding field strength is e/pP, and with (34) we
can rewrite the validity criterion:

(eC philo p/v;)'))1. (37)

If we introduce a mean value C p= (Ii/me)(a' b') —for
the Stark coefficients of a line whose initial and final
states have principal quantum numbers u and b, this
gives finally

(kbpr, p(u' —'b)/ mvP) *))1. (38)

This condition is generally satisfied for the ions except
near the very core of the lines.

Holtsmark' derived the field-strength distribution by
neglecting all correlations between the ions. Then a
dimensional analysis showed that distribution functions
for different ion densities E have the same shape and
that they scale with E'. If one introduces the normal
field strength Fo defined by

1.50
I:SH(n) j p=—,2 I~- p'1&n'Is IP& I'.

cx'P
(46)

The most complete tables for the S~(n) were calculated
by Underhill and Waddell" for the lines forming the
diferent series of the hydrogen spectrum.

Using the 3/larkoff method, Holtsmark also derived
the distribution function t/t/'~ for smaller values of
F/F p, taking into account t.he fields of all the ions, not
just the nearest neighbor. However, in calculating the
probability of weak fields, the assumption that the ions
are statistically independent becomes questionable
because it is usually the case that the thermal energies
are not very large compared with the Coulomb inter-
action energies. Furthermore, the ion fields will be
partially shielded by the electron clouds surrounding
the ions. These efI'ects can be accounted for approxi-
mately by using Debye screened fields instead of
Coulomb fields for the contribution of individual ions
to the field at the radiating atom. This procedure is
valid only if the number of particles within the Deybe
sphere is not too small. The distribution function ob-
tained in this way will depend on lVD, the average
number of particles within the Debye sphere. From
(20) we find

4v. 1 (kT) '*

I PX=—
3 6+ort e') (4I)

Kcker' has calculated the field-strength distribution
function We(F/F p) as a function of a parameter
8=—2 &ED using a Coulomb field with a cutoff at the

' P. Schmaljohann, State examination work, 1936 (unpub-
lished); see also A. Unsold, I'lzyszk der Sternatmosphiiren (Springer-
Verlag, Berlin, 1955), Second edition, Chap. XI."A. Underhill and J. Waddell, National Bureau of Standards
Circular No. 603 (U. S. Government Printing Office, Washington,
D. C., 1959).

Schmaljohann, ' who properly took into account the
average over the polarization of the radiation. Asymp-
totic relations for the wing distributions were also
obtained by these authors. Here the corresponding
field-strengths are high and are therefore caused by an
ion very close to the radiating atom. Then the effect
of the other more distant ions can be neglected and the
distribution function will be proportional to the prob-
ability of finding the ion inside a certain shell between
r and r+dr:

W (F)dF=47rr'dr/ V, (44)

where F= e/r' and the volume V available for one ion
is V=X '. It follows that

W (F)=2« IVe'F
or

WIr(F/Fp)=1. 50(F/Fp) '. (45b)

With Eqs. (42) and (45b) one finally obtains for the
line wings:
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radius pD/K2, instead of the exact Debye screened field.
'Ihe factor VZ arises from the ion-ion correlations, i.e.,
an additional Boltzmann factor for the ions in the
Poisson equation normally used to derive the screened
Debye potential. The use of the usual Debye length
as a cutoff takes into account only the screening and is
appropriate as a cutoff parameter for electrons moving
in a static ion field. Then the ion-ion correlations are
irrelevant and the cutoff is larger by the factor V2.

The Ecker procedure can only be expected to yield
satisfactory results when the ion fields are larger than
the field produced by an ion at the Debye radius.

F/Fo)&FD/F p ED '. ——

For smaller values of F/Fo one obtains sufficiently
accurate distribution functions by extrapolation from
F/F0=8 *'to F/Fo=0, maintaining the normalization
Jq" W(F/Fo)dF/FO=1. We used curves which were
determined by Ecker by an extrapolation preserving
the general character of the Holtsmark function, which
is equivalent to drawing smooth curves from the origin
to a point F/FO=28 *. The extrapolation procedure
actually employed is not critical. If one replaces
Ecker's smooth distribution functions in Fig. 1 for

F/ Fo(1.55 ' by a step function determined by the
normalization condition, the difference in the resulting
line profiles is less than 10% under practically all
circumstances even at the line center. This was shown

numerically for Hp (see the following section) and is a
consequence of the relative importance of the electron

broadening. The lines with a central component, i,e.,
I.y-n, H and H~ will be will be less affected and also

Hq, which has no central Stark component, is not
seriously affected because its central dip is smaller than
that of Hs. The only exception might be I.y-P so that

measurements of this line could give direct information
on the ion field-strength distribution function.

Theimer and Hoffman' and Ecker and Muller" also
computed distribution functions using the complete
Debye field. For large 8, these functions agree with
Ecker's earlier results but for 6 near unity the new
distributions are still narrower. This is due to the
shielding action of the electrons inside the Debye sphere.
These electrons, however, give rise to impact broadening
and it is more appropriate to omit them here, i.e., to
use the cutoff method, so as not to use the electrons
inside the Debye sphere twice in the calculation of the
line profile.

Baranger and Mozer" have recently derived distri-
bution functions using cluster integral expansions. For
fields produced at a neutral point they essentially
confirm the screened field results. Their curves are in
between those obtained with pn and po/V2 as screening
parameter, the actual value of which is usually not
critical. Therefore, this is additional evidence that the
field-strength distribution functions used here are
suKciently accurate where their behavior is reAected
in the resulting line profiles which include electron
broadening.

ION AND ELECTRON BROADENING

The motion of the "fast" electrons and "slow" ions
produces an electric field which behaves like a random
function having rapid variations superimposed on a
slowly varying component of comparable amplitude.
The ion field will stay nearly constant in times which
contain a number of electron collisions. This number
is approximately the ratio of electron velocity to the
ion velocity, i,/v, . In calculating the spectral distribu-
tion we now have to consider a sum of Fourier integrals
of the following type:

p &i+I

Jx(~)=P dt exp[ —(ihcu —iCF;(E)+y)t]
, Ji,

exp[ —(id'& —iCF,(E)+p) t,]—exp[ —(iD&u+i CF, (K)+y) t,+i]
(49)

i (d (o CF,(E))+y—

Here Ace stands for the frequency measured from the
unperturbed line; C is a Stark-effect coefficient. F,(K)
is the ion field strength at the Eth radiating atom in the
time between t; and t;+~ and y is the electron damping
constant. We 'have dropped the cy', P indices for sim-

plicity. The time interval t;+&—t; is taken to be long
enough to include many electron collisions but short
compared to times in which the ion field changes
appreciably. This permits the evaluation of the in-

tegrals. The observable profile is found from the sum
over Jx(co), averaging over F,(K). If the damping is

large in times characteristic for the time variations of
the ion field, only the term with t, =o contributes and

the resulting profile is given by

~(FO(E))
J(co) =Re P

x ifAco CFO(E)]+y—
(50)

where W(F) is the field-strength distribution function.
We conclude that the statistical theory for ions can be
applied to the entire line profile if yt~ is large compared

» 0. Theimer and H. Hoffman, Astrophys J. 127, 477 (1958).
20 G. Ecker and K. G. Muller, Z. Physik 153, 317 (1958).
~I M. Baranger and B.Mozer, Carnegie Institute of Technology,

Pittsburgh, Pennsylvania, Technical Report No. 2, Nonr-760(15),
0%ce of Naval Research (1959) (to be published).
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(m)'(5)
I,kT) (mj

exp( —y)
dy . (51)

The time ti will be of the order p/v, =iV l(m, /kT)l, the
duration of an ion collision, so that we have

(m, ) &

(gati) „=cVl
l

—
l

a'
mkT (m 3 4y

exp( y)
dy . (52)

with unity. Now y is of the order of the p matrix
elements multiplied by the number of interacting
states, i.e., with (29), (r r,)—a'(k'/me')' and the
number of interacting states a

TAsz, K II. Minimal values of (yti)a, and (CF;(IC)tl)A„.

X; Icm 'g
4~i)AV
(CF;(E)t1)A„

Lya LyP H~ Hp H& EIg

1P17 1016 ' 1P16 1015 1P15 1Q14

0.6 0.9 0.9 0.8 2.5 1.2
1.1 1.2 1.2 1.0 1.5 1.0

(54)

line center. "But in our case the effects of the ions can
be taken into account by summing up the impact
profiles calculated for constant ion fields. With the
field-strength distribution function W(F), this pro-
cedure yields the resultant line profile J,&(cu):

For ion collisions for which pter = 1, the remaining terms
in (49) cannot be neglected because of this amplitude
argument. But after summation over the diferent
atoms K they will still drop out if the phases CF, (K)ti
due to the static ion shifts are sufFiciently large, because
the F;(K) are random. F,(K) is of the order eS', C is

typically a'k/me, so that with t i =X l (m;/k T) '* one
finally has

S,g(n) =J,g(co(n))da)/dn, (55)

which with hX= (Are/2irc)X' and (33), (54), and (55)
gives finally with Ecker s distribution WE(F)

fm, yah
(CF,(K)t,).,= l l

—a'X:.
(kT) m

(53)
S g(n)= —Q df WE(f) Re(PltilQ m)

where J,~(co,F) is the electron impact profile determined
by (33). It is again convenient to introduce a=M/Fo
as a measure of the distance from the line center and
to write

Inspection of Table II shows that (gati) A„and
(CF,(K)ti)&„are close to unity for the highest tempera-
tures and lowest densities considered in this paper. The
statistical theory therefore appears to be applicable for
the ions in most cases even in the cores of the lines. It
should be noted that this is only true if damping due to
electrons is present, so that the summations over i and
E can be interchanged. If this were not the case one
could use the statistical theory only if the phases Acct&

are large, i.e., one would arrive at the well-known

validity criterion discussed in the previous section and
the statistical theory would not be valid close to the

0.5—

0.4

O
u-lu- 03

0.2

O.I

0 0.5 IQ 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
F/&

FIG, 1. Ecker's distribution function for the ion field for various
values of 8 which determines the average number of ions within
a Debye sphere. W(F/Fo, ~) corresponds to the Holtsmark
distribution.

x(.-

with p, defined by

z(n K,f)+—7.
x( "mlt

I p), (56)

3X'k'1V*'( 2m q ' r r,

2.6ecm' &7ckT) ao2 "y

exp( y)
(57)

The integrands are even functions of f=F/Fo and the
integration needs only be carried from 0 to ~. Within
our approximations the line profiles are symmetrical, "
that is, it is sufficient to consider only positive values
of o.. The sum over the magnetic quantum number m is
indicated, because states with diGerent m are not mixed
by the isotropic electron perturbation and can be
treated separately. The quantum numbers n', o.

"are now
the usual parabolic quantum numbers ki', k~' and
k&",k2". The calculations necessary, therefore, only in-
volve matrix inversions of order a or smaller. The trace
must be performed for each reduced wavelength n for
a sufficient number of f values, so that the integration
involving Wz(f) can be performed numerically. Then
the real parts are summed over the magnetic quantum
numbers of the initial states and over all final states.

22 This point is not of numerical importance, however, because
the line profiles are not sensitive to the form of the ion-6eld
distribution for small 6eld strengths (see next section and Fig. 6).

"Slight asymmetries actually do occur and were discussed in
H. Griem, Z. Physik 137, 280 (1954).
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wavelength range was extended to 0. values for which the
asymptotic formulas derived in the last section of this
paper could be used without introducing errors of more
than 20%

Figures 2, 3, and 4 show some of the profiles of Ly-o. ,
H and H& calculated in this way, The central com-
ponent of H was corrected for the electron broadening
of the b= 2 states. The temperature dependence is quite
small. The fact that t:he S(rr) curves do not depend
drastically on the density shows that the profiles still
scale approximately with lV'', as in the Holtsmark
theory. The deviations from the Holtsmark curves for
H and H~ are always appreciable and are even larger
for Ly-n, since these lines have a central component that
is not shifted in a static field.

0.6
~ ~

0

l.25
~ W

04

l.OOp l2

lQ a
l6

I 'I

20 24 28
0.2

Fto. 2. Pro61e of the I.y-n line as a function of n=hX(A)/Fo(cgs). O.O

Only positive m need to be considered and also only
radiation polarized in the x and s direction, if proper
weight factors are introduced.

The profiles of the first two Lyman lines and the first
four Balmer lines were calculated from (56) for the
temperatures T= 10' 'K, 2X10' 'K and 4X10' 'K and
for a range of electron densities 3~, which are sufhciently
large that the Doppler broadening is negligible and
suKciently small that the lines were still separated. The

- 0.2
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—I.O
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I

, I

, I
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N = IO crn ~, T = 40000K
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Fio. 4. Profile of Hh.
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FIG. 3. Pro6le of H„.

1 w t

20 24

In Fig. 5 the Holtsmark curve for Hp is compared
with the statistical theory of Ecker in which the ion
field strength distribution function is corrected for
correlation and screening effects. For comparison, two
other curves are shown which include the electron
broadening; one being calculated with the Holtsmark
field-strength distribution function and the other with
the Ecker distribution. It is apparent that the eGect of
the electron broadening on the half-width is compen-
sated to some extent by the electron shielding of the
ion field and by ion-ion correlations. But otherwise the
profiles are quite different. At large distances from the
line center the two curves which were calculated by
considering the e8ects of both electrons and ions agree
quite well as expected, but are significantly higher than
the two statistical curves which, of course, also approach
one another for large values of n. It should be noted
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that this comparison is only for one condition, namely
T=10 000 'K and X=10"cm ', but the general con-
clusions also apply to other cases because the general
shape of the X S(rr) curves do not depend sensitively on
either temperature or density in the range of interest. '4

That the behavior of the field-strength distribution
function for small field strengths is not critical is shown
in Fig. 6, where two Hp profiles are compared which
were obtained using the extreme possibilities for the
extrapolated part of the field-strength distribution
functions.

COMPARISON WITH EXPERIMENT

I

S () W (FiFo)

5.Q -0.75

2.5

2.0 3.0
FyF

4.0
.125

5.0

9

STATISTICAL THEORY FOR IONS8-
l

STATISTICAL THEORY FOR IONS7-
AND IMPACT THEORY FOR

I ELECTRONS

6-'
I

5-I
I

S (o}
a

~ ~ ~ -~ ~ ~ ~ WITHOUT CORRELATIONS

WITH CORRELATIONS

WITHOUT CORRELATION

WITH CORRELATIONS

N = IO" em '
T a IOOOOoK

The most recent experimental data on Balmer-line
profiles were obtained by Bogen, ' who used a water-
stabilized arc and made precision measurements of the
Hp line profile with both photographic and photo-
electric methods. The plasma densities and tempera-
tures were calculated from measured absolute line

FIG. 6. Profiles S(a) for Hs using two extreme possibilities for the
extrapolated part of the ion Iield strength distribution W(F/F0).

arcs, but is quite pronounced in shock tube spectra"
where density gradients are not significant. Unfor-
tunately, experimental profiles of comparable accuracy
are not available for other than the Balmer series of
hydrogen. A measurement of the first two lines of the
I yman series would be especially significant. Because
the strong central Stark component is affected by
electrons only, Ly-o. would serve as a test case for the
electron broadening theory. The Ly-P line, on the other
hand, has no central component, so that the shape near
the line center is only slightly inQuenced by electrons.
It could, therefore, be used to determine the microfield
distribution of the ions and to check the theory of the
ion broadening.

0.00

I:
0 0.05

I

O.IO

I

O.I5
I

O. 20 0.25

-0.25—

-050

IQ Cm

Fio. 5. Comparison of the various approximations
for the Hp pro6le.

intensities assuming thermal equilibrium. The assump-
tion of local equilibrium is justified by the high densities
and long experimental times. Figure 7 shows an experi-
mental Hp line profile with T= 10 400 'K, Ã= 2.2)& 10"
cm ' and the corresponding theoretical curves. While
the Holtsmark theory does not account for the spectral
distribution, the complete theoretical and experimental
curves agree within 1&% over the whole intensity
range of two orders of magnitude, i.e., within the nu-
merical accuracy of the calculation and the experi-
mental error.

The dip in the center of the experimental Hp curve is
smaller than in the theoretical curve, which may be
partly due to inhomogenieties that are present in an arc.
This is borne out by the fact that the central dip in H&

does not show up in the spectra from water-stabilized

'4 A complete set of curves for densities in the range 8=10"—10"cm ' will be published as a Naval Research Laboratory
report.
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FIG, 7. Comparison between the theory for Hp and
the experimental profile of Bogen.

25K. B. Turner, dissertation, University of Michigan, 1956;
University of Michigan Engineering Research Institute, ASTIA
Document No. AD 86309 (unpublished).



14 GICIEM, KOLB, AND SHEN

The excellent agreement between the present theory
and Bogen's data for Hp encourages the application of
these results to deduce electron densities from measured
hydrogen-line profiles. While the Holtsmark theory
could be expected to yield electron densities only within
a factor of two, the line-broadening theory may now be
used to determine densities with relatively small errors.
The accuracy now possible is quite adequate for most
plasma experiments and astrophysical applications.

ASTROPHYSICAL APPLICATIONS

The Holtsmark theory has been used extensively in
astrophysical applications to deduce electron densities
and pressures from the profiles of the early members of
the Balrner series, using temperatures obtained from
relative line intensities. Since the observed radiation
comes from layers with densities that vary with optical
depth, a, comparison between a line broadening theory
and astrophysical observations is only possible after
involved model atmosphere calculations. Verweij" was
the first to employ this method, using the Holtsmark
theory to deduce the structure of a stellar atmosphere.
His theoretical line profiles did not agree too well in
detail with the observational data, but he was able to
explain qualitatively the absolute-magnitude effects in
spectral classes 8, A, and F. More recent calculations"
indicate that the observed profiles can be forced to fit
Holtsmark curves in the far wings, but that there are
discrepancies between the theory and observations
near the core of the lines and that the densities and
therefore the surface gravities obtained from the line
profiles are larger than those indicated by the mass and
radius of the star. It was suggested'7 that the electrons
might give a significant contribution to the line broaden-
ing and that the densities are accordingly smaller than
those deduced using the Holtsmark theory. Recently a
number of investigators ' 3 applied a, revised line
broadening theory' to the H~ line emitted by 8 stars
and found that consistent surface gravities resulted, if
the contribution of the electrons to the absorption
coefFicient was taken into account. They estimated that
the line absorption coeflicient was raised by around 50%
and found that one could calculate the shape function
near the line core as well as in the far wing. The theory
that they used can be obtained as an asymptotic limit
of the present theory, but only the diagonal matrix
elements of the perturbation were calculated in detail.
The broadening caused by collision induced transitions
was based on estimates of the magnitude of the off-
diagonal matrix elements. In this section an explicit

calculation, taking into account properly the e8ect of
collision induced transitions, will be presented. The
absorption coefFicient for H~ and the residual line in-
tensity in 8-type stars is found" to be slightly larger
than that given previously by the approximate theory,
but the general line shape is the same.

Because of the long optical paths encountered in
stellar atmospheres the observed Balmer line profiles
are only determined by the form of the wing of the
theoretical absorption coefficients. The wing distribu-
tion follows from the general formula for the resultant
line profile if we consider large values of 0,. Then only
two ranges of f values contribute to the integral over f.
At small f the factor W(f) is large and the remaining
factor in the integrand is nearly constant as a function
of f. At f values given by f=n/K p on the other
hand, the second factor is large and the first factor is
nearly constant. By splitting the integral and taking
out the nearly constant terms, one can approximate
~.s(n) by"

pf1
~.s(n)=- 2 «

l I
W(f)df i&pl~In'm&)~ m~'~r"P (+ p

x (n'ml (~+y) 'ln"m)(n"mliil p)

+Wl l) Re&pl pin'm&
s fi

X ( 'm
l [i( K. .—,y)+. ~] l

"m-)

X &n"mls
l p&dy . (5~)

If now the limiting value fi is sufhciently large the first
integral is unity because of the normalization, and if
f, is still small compared to f=n/K, p the second
integral becomes

( /K. "„,)W( /K.-.,) I &Pl&l "m)
I
. (6O)

It is now consistent with these approximations to use
the asymptotic expression for W(f) given by (45) and
to expand the electron impact contribution in powers
of p/n, retaining only the leading term. So finally we
obta, in

1.5
S.s(n)—= , 2 K-"-s' &p l ln"m&l'

e"mP

"For example, see the discussion in L. H. Aller aud J. Jugaku,
Astrophys. J. 128, 616 (1958); also G. Traving, Z. Astrophys. 36,
1 (1955);41, 215 (1957)."G. J. Odgers, Astrophys. J. 116, 445 (1952).

Elste, Aller, and Jugaku, Pubis. Astron. Soc. Paci6c 68, 23
(1956).' K. Osawa, Astrophys. J. 123, 512 (1956).

"H. Van Regemorter, dissertation, Paris Institute O'Astro-
physique, 1958 (unpublished).

+ 2 &plIn'm&
rx'Ot" mP

x(n'mlyln"m)(n"mls, lp), (61)

3' L. H. Aller and J. Jugaku, Astrophys. J. 130, 469 (1959),
"This result agrees with the erst terms of an asymptotic series

obtained earlier. '
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TABLE III. Ratio R(N, T) pA j of electron to ion contribution to the absorption coefficient for the wings of the Balmer lines.

Nfcm g]QTf'Kg

10'0
1011
1012
1013
10'4
1Q15
10'6
10'7
1018

1P10

1Pll
1P12
1013
10'4
10'5
1016
1017
1P18

$ ya04

1.50
1.34
1.17
1.01
0.85
0.68
0.52
0.35

1.79
1.56
1.32
1.08
0.84
0.61
0.38

104

1.05
0.93
0.82
0.70
0.59
0.47
0.35
0.24
0.12

1.37
1.20
1.03
0.87
0.70
0.53
0.36
0.20

H„

2 )(104

0.79
0.71
0.63
0.54
0.46
0.38
0.30
0.22
0.14

1.04
0.92
0.80
0.68
0.57
0.45
0.33
0.21

4 X104

0.60
0.54
0.48
0.42
0.36
0.30
0.25
0.19
0.13

0.79
0.70
0.62
0.53
0.45
0.37
0.28
0.20

) X1O4

1.39
1.21
1.04
0.86
0.69
0.51
0.34
0.17

2.17
1.87
1.57
1.27
0.97
0.67
0.37

104

1.05
0.93
0.81
0.68
0.56
0.44
0.31
0.19
0.07

1.66
1.45
1.24
1.03
0.81
0.60
0.39

Hp

Hg

2 X104

0.80
0.71
0.62
0.54
0.45
0.36
0.27
0.19
0.10

1.27
1.12
0.97
0.82
0.67
0.52
0.37

~ ~ ~

4 X104

0.60
0.54
0.48
0.42
0.35
0.29
0.23
0.17
0.11

0.96
0.85
0.75
0.64
0.54
0.43
0.32

or in terms of AX=P'~,

1.5J.s(AX) = P (FpE. p)i~ (Pip~n"m) ~'
(A)(,) ' ae e

cap

The erst term J; corresponds to the ion contribution
and the second term J, is due to the electron impacts.
By factoring out the ion contribution, we can write
the absorption coeKcient in the form

a(AX) =a, (A)()L1+R(N, T) (A)() Ij. (63)
+ Q (p~ p~n'm)(n'm~yFpin"m)

'r(A)t) a'a" cap The coefficient R(N, T), which is the ratio of the electron
to ion contribution at a distance of one wavelength unit

X(n"m~(fry(P)=&e+Je (62) from the line center, is defined by

1 a, (&X) 2()tt)()'(m/2prkT) l
R(sV, T)= —=

i dy
(&X)' a, (AX) 3(2 6e)'m'c. ~ ((;„

exp( —X)

1 ra r~
(e~le~l 'm) 'm "m)( "m~~e~~(()

g n'a" mP Cp

X
1.5 P (E.-.p)'i(Pi&in"m)is

(64)

Values of this coeKcient calculated for the erst four
Balmer lines and for Ly-n and Ly-P are listed in Tables
III and IV. An inspection of the tables shows that for
values of astrophysical interest the term R(iV, T)(A)()f
is practically always of order unity and the absorption

coeScients in the line wings are accordingly larger by
a factor around two for a given electron density com-
pared with the predictions of the Holtsmark theory.
As mentioned earlier, this result removes an existing
diS.culty in the theory of stellar atmospheres.

TABLE IV. Ratio R(N, T) [A ) of electron to ion contribution to the absorption coefficient for the wings of the I yman lines.

L y104 104
Ly-n

2 X104 4 X104 g &&104
~y-P

104 2 X104 4 )&104

1P10
10"
10'4
1P16

1017
1018

2.11
2.01
1.45
0.88
0.60
0.32

1.93
1.54
1.14
0.74
0.55
0.35

1.45
1.17
0.89
0.61
0.47
0.33

1.09
0.89
0.69
0.49
0.39
0.29

4.30
3.31
2.29
1.26
0.74

3.29
2.56
1.83
1.11
0.74
0.38

2.47
1.96
1.45
0.94
0.68
0.42

1.86
1.50
1.14
0.77
0.59
0.41



G RI EM, KOI. B, Alb 0 SHEN

The coefficients R(tV, T) vary slowly with tempera-
ture and density. - Values of this constant for conditions
not represented in the table can therefore be easily
found by interpolation or extrapolation. Correspond-
ing calculations for higher series members of the Balmer
lines are not yet available, but since the R(X,T) de-

pend smoothly on the principal quantum number of
the upper state for Hp, H„and H~, the absorption

coeKcients for other Balmer lines can be estimated by
extrapolation.
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A theory for obtaining the conductivity of a uniform plasma as a function of frequency and temperature is
presented and compared with a number of recent treatments.

INTRODUCTION

ECENTLY, several different treatments of the
high-frequency properties of an anisotropic plasma

have appeared. ' ' In each case the time-dependent part
of the electron distribution function is obtained and
then used to determine either the conductivity tensor
or the propagation constant for a plane electromagnetic
wave within the plasma. The forms of the conductivity
tensor reported by these authors differ and the cause
of the differences is not clear. It is the purpose of this
discussion to indicate the nature of the differences or
similarities in the various treatments.

FORMULATION OF THE PROBLEM

We consider the plasma to consist of electrons, posi-
tive ions, and neutral particles. In the absence of any
electromagnetic disturbance, the plasma has a uniform
density and is electrically neutral. For simplicity, we
assume that in the presence of an electromagnetic Geld

only the motion of the electrons is affected. The pro-
cedure for determining the properties of the plasma can
be applied equally well when the motion of the ions is

included; the contribution of the ions can be inferred
from the results for electrons by noting the change of
mass and charge. Within the plasma the electrons are
described by their kinetic properties. Thus, the number
of electrons at time I whose position and range of
velocities lie within the interval r and r+dr and v and

*This work was supported in part by the U. S. Atomic Energy
Commission.

'A. G. Sitenko and K. N. Stepanov, J. Exptl. Theoret. Phys.
U.S.S.R. 51, 642 (1956) Ltranslation: Soviet Phys. JFTP 4, 512
(1957)j.

2 T. Pradham, Phys. Rev. 107, 1222 (1957).' I. B.Bernstein, Phys. Rev. 109, 10 (1958).
J. E. Drummond, Phys. Rev. 110 .293 (1958).

f(r, v, t) fs(v')+fr(r, v, t),

E(r, t) E,(r,t),
H(r, t) Hos+Hi(r, t),

(2)

where fo(v ), the distribution function in the absence
of the electromagnetic disturbance, is chosen to be the
Maxwell-Soltzmann distribution

fo(v') = rt(rrt/2srET)& exp —(ntv'/2ET). (3)

Here E and T are, respectively, Boltzmann's constant

' S. Chapman and T. G. Cowling, The Mathematical Theory of
Xonuniform Gases (Cambridge University Press, London, 1939}.

'W. P. Allis, Ilandbuch der P/sysik (Springer-Verlag, Berlin,
1957), Vol. 21.

v+dv is given by f(r, v, t)d'rd'v. The electron distribu-
tion function, f(r, v, t), must satisfy the Boltzmann
equation'

I)f/Ilt+v V„f+(q/rrt)(E+ttsvXH) V„f
o(f fo) —(&)-

Here E(r,t) and H(r, t) are the electric field and mag-
netic intensity, respectively. The quantities q= —

~q~

and m are the charge and mass of an electron, respec-
tively. In MES units, which will be used here, ~p and

pp are the characteristic constants of free space. The
loss term, —u(f—fs), is included to conserve number
density and momentum. For simplicity, the collision
frequency, v, is assumed to be independent of velocity.
The removal of both this assumption and the limited
loss term can be accomplished by following the method
of Allis. '

We consider a plasma that is close to thermal equi-
librium within which the following linearization condi-
tion holds:


