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In a particular representation where the state vectors are not eigenstates of the Hamiltonian, coupling
terms remain which cause ‘“virtual” or “real’”’ transitions among states. An appropriate choice of representa-
tion depends upon the physical processes involved. The decay of a compound nucleus, expecially by fission,
is considered. The strong coupling representation of the unified model is employed, with surface oscillations
inducing transitions among states of the representation. A diffusion equation is derived to describe the flow of
probability among the states available within constraints. An estimate of the characteristic relaxation
time for arriving at statistical equilibrium is obtained. Only when the relaxation time is short compared
with a basic reaction time are statistical arguments valid to evaluate the reaction rate. As an example the
relevant reaction time in the fission process is a collective vibrational period. The necessary condition
appears to be satisfied for excitation energies more than a few Mev above threshold. Arguments are presented
to show why equilibrium may not be maintained at lower energy. Thus the usual estimate of the number
of open channels, 27Ty/D, would give a number lower than what one would estimate simply from penetrabil-
ity of the fission barrier. This seems to explain, at least in part, the anomalously low numbers of channels
obtained in this manner. Problems relating to the validity of oft made statistical assumptions at scission
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are also discussed.

I. INTRODUCTION

HE compound nucleus of Niels Bohr may be
regarded as an ensemble of intermediate states
in a nuclear reaction, the nature of which is independent
of the manner of formation. The ensemble is, in some
sense, statistical, for the model admits only a few
constants of the motion. These constants include
energy, angular momentum, and parity—the “rigorous”
invariants for nuclear motion—but they may also
include such approximate constants of the motion as
the component of angular momentum along a nuclear
symmetry axis.

If one were able to write down a complete set of
eigenstates of the system, then the wave function
describing some particular process would be a linear
combination, with certain phase relations, of such
eigenstates. The statistical assumption in Bohr’s
model is that all states available within specified
constraints (the constants of motion) are equally
probable, and that the phase relations among the
various components are immaterial. In examining the
development of the system, one might be tempted to
assume, as does Pauli! in somewhat different context,
that the phase relations among the components are
random for all times. However, one must remember
that the phases are intimately related to the mode of
formation, and only after the passage of some character-
istic relaxation time is the “importance’ of these phase
relations lost. The compound nuclear model is useful
only if subsequent decay occurs after this relaxation
time.

An alternative description—that to be employed in
this paper—is one which utilizes some appropriate

* Supported in part by the U. S. Atomic Energy Commission.
LW. Pauli, Festschrift zum 060. Geburstage A. Sommerfelds
(Hirzel, Leipzig, 1928), p. 30.

representation other than eigenstates. As the system
develops in time, off-diagonal matrix elements of the
Hamiltonian induce transitions among various states
of the representation. The transitions are classified as
“real” or “virtual” depending upon whether or not
energy is conserved. The classification is, of course,
dependent upon the choice of representation. Through
real transitions, excitations may pass among many
states and via various paths before returning to the
initial state. In such cases, interference terms are
assumed to drop out. One then speaks in terms of
probabilities rather than amplitudes. The rate of
approach to statistical equilibrium is determined by a
diffusion equation for probability flow.

Both descriptions are manifestly incomplete, as
must be any irreversible description. The question is not
whether one has a complete description of a nuclear
reaction, but rather whether one has an adequate
description for processes of interest. The basic questions
are essentially the same as those which arise generally
in discussing irreversible processes in a microscopically
reversible system. We will not attempt to justify the
procedures here in such detail as has been done for
infinite systems (see Van Hove?), but it must be noted
that whatever validity the description does possess
improves (except for questions related to the validity
of perturbation theory) with increasing size and excita-
tion of the nucleus.

It is evident that a description based on a particular
representation must lead to a characteristic relaxation
time which is dependent upon the choice of representa-
tion, since this choice determines the magnitude of the
off-diagonal matrix elements. Fortunately, the choice of
representation is not completely arbitrary, since it is

2 L. Van Hove, Physica 23, 441 (1957). Further references are
given here.
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SURFACE COUPLING MECHANISM

governed by the physics of the process of interest, and
by the requirement that the off-diagonal matrix
elements not be so large that perturbation theory fails.
Although there is no clear prescription for the choice,
the present example may serve to illustrate some of
the considerations.

We will be particularly interested in decay of the
compound nucleus by fission, and therefore choose the
unified model representation of strong coupling between
particle and collective (surface) modes. This provides a
very convenient framework in which to follow the
fission process. Indeed, any essentially different
representation I can think of requires resolution back
into the strong-coupling representation in order to
discuss the fission process, and this would then require
following phase relations.

If we were interested in decay of the compound
nucleus by neutron emission, we similarly might use
the strong-coupling representation to find how much
energy is concentrated in single particle modes. On the
other hand, we might use a pure independent particle
model for a representation, with “residual” two-body
interactions inducing real transitions among the
independent particle states.

Virtual transitions induced by surface coupling play
an important role in the determination of the mass
parameter in collective rotations and vibrations, as
first demonstrated by Inglis® through his ‘“cranking
model.” In the case of low-energy spectrum, ‘“real”
transitions are not possible, since all transitions involve
an increase in both particle and collective energies.

Hill and Wheeler* discuss in some detail real transi-
tions induced by surface coupling according to the
time-dependent Hamiltonian formulation. They name
the phenomenon ‘slippage,” with reference to the
jump of excitation from one level to another at a near-
crossing. The present paper was influenced considerably
by their work, and is, in part, an attempt to put their
considerations on a quantitative basis for high excita-
tion. The reader is referred to the Hill-Wheeler paper
for a clear physical picture of the mechanism.

The surface coupling mechanism has a thoroughgoing
analogy in atomic and molecular physics. In the
collision of two atoms, for example, the interatomic
(or internuclear) distance plays the role of a collective
coordinate. If the collision is slow, the electronic wave
functions adjust adiabatically to the changing potential.
The adiabatic wave functions form a representation
which for finite interatomic velocities are not solutions
of the Schrédinger equation, although they do satisfy
the equation long before or long after the collision.
Real transitions induced during the collision give rise
to atomic excitations which may persist after the atoms
have separated.

Transitions are computed below using first-order

3D. R. Inglis, Phys. Rev. 96, 1059 (1954); 97, 701 (1955).
4D, L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
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perturbation theory. When the probability of making a
transition becomes large (in a time compared with, say,
a collective period divided by the quantum number of
the collective state), the perturbation approach breaks
down. When this happens, however, the relaxation
time is already short compared with other physical
processes. We are primarily concerned with obtaining
an estimate of the relaxation time to determine if
statistical equilibrium is reached before decay, or other
processes, set in.

II. DERIVATION OF THE DIFFUSION EQUATION
A. The Strong-Coupling Representation

The nuclear system is to be described by a Hamil-
tonian
H=H,+H+H, 1)

where Hp,=H,(X;**X4; Vi1'-:V4) describes the
particle degrees of freedom and H,=H,(3; 0/98) the
collective (or surface or deformation) degrees of
freedom.® There could be several collective coordinates,
but we shall specifically refer to Bohr’s symmetric
quadrupole deformation parameter 8. The interaction
term H'=H'(x;- - -x4; B) is assumed to be independent
of the particle or collective momenta. An alternative
formulation of the problem in terms of a time-dependent
Hamiltonian, such as Hill-Wheeler* and Inglis® have
introduced, has certain conceptual advantages, but
in the present context it would obscure the evaluation
of certain important approximations. The time-
dependent formulation treats B=pg(f) as a classical
variable while treating the particle modes quantum
mechanically. The development can be carried through
in quite a parallel way as for the full quantum-mechan-
ical treatment. The results are identical in the limit
that the collective mass parameter becomes infinite
(and the collective frequency goes to zero).

The strong-coupling representation (not approxima-
tion) is defined by the following equations:

(Hp+H")u;(x; 8) = ¢ (8)u;(x; 8), 2
Lei(8)+H. Jon (8) = Endn(8), 3)

where x= (X;- - -X4). The functions %;(x; 8)¢;(8) form
a complete set in (x,)-space. Thus a general wave
function for the system may be written

V=35 Cin(Du;(x; B)pn(8) exp(—ifiEpl).  (4)
The exponential time variation is introduced for

5 The system possesses redundant variables, since the particle
coordinates are sufficient. In principle subsidiary conditions
should be stated, but we ignore the matter for two reasons. Firstly,
the collective coordinates are few in number compared with the
particle coordinates and the redundancy is relatively unimportant.
Secondly, and perhaps more significantly, is the point that the
particle degrees of freedom are not fully developed, and the
collective coordinates may be regarded as describing the ‘“un-
excited,” but adiabatically deformed, inner nucleonic shells,
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F1c. 1. Nilsson spectra for protons from Z=350 to Z=82
(below) and for neutrons from N =82 to N =126 as functions of
nuclear deformation §=0.95 8 (reproduced from Nilsson, reference
6).

convenience at this point, with the explicit choice of
Ej made in (7) below.
Schrédinger’s equation,

ihr=HY, (5)

can now be written in the equivalent form

Ca= X Cin f n u [ Hoy o 1 jonrd®AxdB
jl)\l _
X exp[ih_l (Ej}\ —Ejf)\') t]. (6)

The diagonal terms in the sum, (3A’) = (s\), have been
removed (hence the prime on ) by choosing

Ep=En+ f S u [ Hsyui 1 pd>4xdp. (7

The treatment to this point [assuming (1)] is exact.
A variety of approximations follow, of course. Although
the nature of the approximations is mentioned in most
cases, a critical discussion is deferred until Sec. IIF
in order to give continuity to the development.
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Some comments about the structure of #;(x;3) and
¢;(8) are appropriate. In an independent-particle
model the single-particle energy level spectrum, as a
function of deformation, would assume a form like
that calculated by Nilsson.® A section of Nilsson’s
spectrum is shown in Fig. 1. The many-particle spectrum
would be similar in nature except that it would be far
denser and include frequent crossings of energy levels
of the same character (spin and parity). This is rep-
resented schematically by the dotted lines in Fig. 2.
The inclusion of residual two-body forces will quite
generally remove the degeneracy of states of the same
character, and therefore we expect no crossings. The
anticipated spectrum is represented schematically by
the solid lines in Fig. 2. The single-particle structure of
the #; (and here j labels a continuous solid line)
changes rather abruptly at a near-crossing. This will
be seen to be of considerable importance when discussing
matrix elements of single-particle operators.

B. Probability Flux and Diffusion

The transition rate from state j to state 7' (all A')
is given by the well-known expression’

. 21 2 d\

R(j; 5 ):; f G u L Hoguy v d*4xdf = ®)

The formula is derived for a continuum (of collective
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F16. 2. A schematic representation of energy levels of an entire
nucleus as a function of deformation. Levels of only one character
(K and ) are considered. The broken lines correspond to an
independent particle model, and exhibit possible level crossings.
The solid lines include the effect of residual two-body interactions,
which prevent level crossings.

6S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd, 29, No. 16 (1955).

7Cf. L. I. Schiff, Quantum Mechanics (McGraw-Hill Book
Company, New York, 1949), Chap. VIII.
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states) and is valid only to first order in perturbation
theory. The factor d\/dE is the level density of collec-
tive states. The transitions conserve energy (at least
approximately in noncontinuum theory), so that
E;n=Ej. (Henceforth, we will replace E; by Ej.)
The transitions are what we call real, and the con-
tinuum approximation will be seen to be valid (Sec. IT
F) only if the lifetime broadening of a state is larger
than the collective level spacing.

We are now in a position to write downanequation
for probability flow. Let the probability that the state
7 is occupied be denoted by (). We need not specify
A, since it is determined by the requirement that Ej
approximately equals the total nuclear excitation energy
E*. Then the net flux, /, of probability from states
with particle energies below ¢;(8) to states above

€;(B) is given by
=2 2 R(G;MGN—2GM] 9

i'<i §'">i

We wish to change from discrete indices (j\) to some
variable which can go over to a continuum description
conveniently. The particle energies ¢;(8) can fill this
requirement, but the g-independence introduces some
ambiguity. Therefore, we will label a particle state, 7,
by the energy e= €;(Bmin), where Bmin is the deformation
where the particle energy is a minimum (equilibrium
value of 8). The collective wave functions ¢, will be
denoted by ¢gs—.. Actually, we are most interested in
what happens near the equilibrium position anyway
since that is where the collective velocity is greatest
and the transition rate fastest. We will often encounter
the difference €;(8) —e¢;(8), which near equilibrium is
a more slowly varying function of 8 than either ¢;(6)
or €(B) ; we will generally set €;(8) —¢;(8) =e— €.

As is made plausible below, R(€’; €'’) is taken to be
of the form R(|e’—¢€'|) and is a generally falling
function of the argument. To first order in the gradient
of , we have

E*

l¢]
(= —Wr(e L

dé’ f 4 (' —)R(e'—¢). (10)
0

By extending the outer limits to ==, we find

0

ap
(=~ W26~ 7R (n)dn, (11)

€79

where the dummy variable % is €’—¢'. Here W (e) is
the particle energy level density and differs from the
total level density. We define the diffusion coefficient
to be

(=T (9 f 7R (n)dn, (12)

and thus

W(e)=—Wa(3p/d¢). (13)
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We now write down a formal equation for the rate
of change of the probability, pWde, that some state
in the energy range e to e+de is occupied. Neglecting
other effects which tend to change the state of the
system (radiation, particle emission, fission, etc.),
we find

(14)

=——= T—.

ap ol 8 ap
W(— 2
9t/ diffusion de OJde de

Integration of (14) over the available energy range
reveals that total probability is conserved, since the
flux must vanish at the end points. The steady state
solution is p=constant, which follows immediately
from the symmetry of the matrix elements.

C. Estimation of the Diffusion Coefficient

The explicit form of the collective Hamiltonian is
taken to be the kinetic energy operator

(15)

with B assumed independent of B. The effective
potential energy for surface vibration is obtained from

€;(8) [see (3)]. Hence,
au_,-r I¢]
42y
a3 a8

#h? 62Mj'

[Ho;]=——
We will drop the first term in the parentheses compared
with the second. Using the notation

2B\ 9p* (16)

(10| )= f 0y OuydAe, (17)

we find

el

= (Gj"—éj')<f"

;—6']">. (18)

By combining (8), (12), (16), and (18), we find for
the diffusion coefficient,

2ah3W > dA .
a(e)= > f—d(e —¢)

0
le¢E*—e"*<6”

Except for details in fluctuation, we assume that the
(¢'|0H’'/9B| €’) do not depend on the energy difference
¢’—¢, and that the ¢, are independent of j. This

2

oH'

9B

(19)

6d> E*—¢
é'> a8
B
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leads to the approximate sum rule

2nhtW oH' I |2
TR P
B2 areN a8 aB
2nhW oH' 2
=~ f ¢A/*(<EH e 6’> ) Hs¢)\’d6
B aB A
2 W

= B [(Gcﬂ)e"e’2]AvHs, (20)

where the abbreviation (3Cg)erer=(¢"'|0H'/dB|€') has
been introduced. 3Cs is, of course, a function of 3. A
term of the form

[ ovsestosca/an) @sv/as)as
has been neglected compared with
f o\ <307 (9% /967 dS.

A factor of one-half appears because the A'’-sum is
only half complete.

If the ¢, were oscillator functions and if the elements
3Cs were independent of 8 and ¢’—¢’, we would have
the selection rule \"’=X\"=1, with (20) holding exactly.
[Indeed, if the 3Cs are constant, no matter what the
¢’s, (20) reduces to the dipole sum rule. ] The selection
rule is broken down both by the anharmonicity of the
¢, and by the nonconstancy of 3Cs. Since dH'/9g is a
sum of single-particle operators, it connects shell-model
states which differ in at most one single particle
constituent. Whenever the relative single-particle
structure between states ¢’ and € changes, as it does
at near-crossings, the matrix element changes (unless
it is zero anyway). Then 3Cs as a function of @ consists
of a series of segments. The shorter the segments, the
less each contributes to (20), but then contributions
come from further away in (¢’—¢€’). For high collective
states, where the WKB approximation is valid, (20)
represents a Fourier analysis of the 3Cs elements, and
then a resumming of the absolute square values of the
Fourier coefficients. This leads to the integral over the
square of the elements.

The derivation of (20) assumes only that the fluctua-
tions in 3Cs are, on the average, independent of ¢’—¢'.
If anything, the fluctuations increase with €’—¢
because there are more opportunities for change, with
B, of the single-particle structure. In that case, (20)
represents a lower estimate of the diffusion coefficient.

In order to estimate (3Cs%)a, we adopt Nilsson’s form
for the particle-deformation interaction:

A
H'=—Bmwi® 3 7,2V 20(0,),

»=1

(21)
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where wo is the shell-model oscillator frequency:
hwo~40 A~ Mev. Then it follows that

OH/3B= —muwo® 3 7,2¥ 20(05), (22)

. and for the mean square average of the matrix elements,

we have

o ((

2

oH

) 552y
~HEN-EY] @

where IV is the number of states, €, joined to states,
¢/, by nonvanishing material elements. Since nonvanish-

ing elements occur between oscillator shells differing in
the major quantum number of 0 or &2, we estimate

N =47V (24)

The quantity in square brackets is, up to a constant,
the mean square fluctuation in the density quadrupole
moment. In an independent-particle model, this is the
sum of fluctuations for each particle, and these can be
calculated easily for the anisotropic harmonic oscillator :

2 (#3527 —3y")")— (F— 50’ =33*)*]
=3 2L, (@' Hix'+iy)= B/T0) AR, (25)

where 4 is the nuclear mass number and R the nuclear
radius. Hence

oH
B

3m2wg3AR4 (DOV()B2

(50;12)sz - ) (26)
224xh 14nW
where
Vo= %’m’(x)oRQ (27)
is the depth of the nuclear potential and
By=(3/87)mAR? (28)

is the irrotational mass parameter for deformations of
second order. We set Bo= B. This gives, finally,

(&)= (1/T)mwoV H,. (29)

D. Selection Rules

Axially symmetric deformations of the type assumed
here preserve the projection, K, of angular momentum
along the nuclear symmetry axis as a good quantum
number. The reflectional symmetry, furthermore,
preserves the parity, r, of particle states as a good
quantum number. The symmetric 8-coupling does not
mix states of different character (here character means
K and 7).

Other coupling mechanisms are available to produce
mixing of the various K-values and the two parity
states. The Coriolis force due to nuclear rotation
produces admixing of K-states with the selection rule?
AK=+1. Coriolis mixing decreases with increasing
deformation, and is further limited by the requirement
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K<I, with I a rigorous constant of the motion.
Second-order non-axially-symmetric vibrations can
produce admixtures of states differing by AK=+2.
The parity states can be mixed by reflectionally non-
invariant potentials (such as pear-shapes) or oscilla-
tions. This in no way violates the invariance of parity
for the entire nucleus.

The expressions obtained for the diffusion coefficient
and the relaxation time (next section) are for diffusion
among the various states of a given character. When
explicit expressions are needed for the level density
(at high excitation), the tacit assumption is made
that sufficiently strong couplings are available to
maintain equilibrium among the sets of levels of
different character (or at least of different K).

E. Relaxation Time

A relaxation time can be estimated if we take
appropriate mean values for the parameters. Consider
the mode

p(e,t) = const exp(—at+-ike). (30)
Insertion into (14) yields
a=ck—i[ W9 (Wa)/denk. (31)

The time dependence shows oscillation as well as decay,
but it is only the decay which interests us here. The
lowest mode, where the energy range is 0 to E*, is with

k=ko=7/E*. (32)
The ¢! folding time is given by
E*
= (Gk?) 1= E*/rl6=— —— —, (33)
3 Vol s wo

which is independent of the level density. Note that
H, is collective kinetic energy, so we set H,=1E,
=1(E*—¢&. We estimate & from the equilibrium
distribution. The density of nucleonic levels is given by
the statistical formula®

W (e)=Wyexp[2(ae)?], (34)

where e=12/Mev for heavy nuclei. The mean particle
energy is thus

“’f i eW‘“/ f ) Wde=E*—(E*/a)+---. (35)

Thus, at high excitations

H,=%(E*/a)}, [E*>a(hw,)], (36a)
but at low excitations we must satisfy
H,>hw,=~3% Mev, (36b)

8 Cf. J. Blatt and V. F. Weisskopf, Tkeoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1952), Chap. VIIIL.
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where w, is the collective vibrational frequency.
Therefore
14 E¥* 1
I, < — ] (373')

w3 Viohw, wo

14 E¥igd 1
be—> — —, [E*>a(hw,)*].

7 Vo wo

(37b)

The important thing to note is that the relaxation
time is short. Indeed, for E*<9 Mev, (37a) yields
t,<wg L. This is nonsense, of course, since the relaxation
time cannot be shorter than the nucleonic period,
which is the minimum time required for information to
be transmitted through the nucleus. For a wide variety
of reasons, the approximations which lead to (37a)
break down for low excitation energy and 9 Mev is a
reasonable lower limit for believing the statistical
assumptions. However, either (37a) or (37b) give
t,<w,~! for E¥*<20 Mev. In general, a mode of wave
number k=7/20 Mev will decay in a time shorter than
wy L.

F. Questions of Validity
1. The Collective Description

Although the collective and unified models have had
great success in describing the low-lying levels of most
nuclei, one might still question the appropriateness of
such a description for high excitation. However, recall
that the shell-model oscillator frequency is of the
order of 6 Mev/% and in heavy nuclei excitation energies
even up to 100 Mev do not involve an appreciable
fraction of nucleons. Thus we may reasonably expect the
collective description to maintain some validity for
such energies.

At high excitations one should re-examine the
evaluation of the collective parameters B, C (the
restoring force constant), and w,= (C/B)*. The excita-
tion process introduces an effect similar to viscosity
which affects the vibrational period even if the param-
eters B and C are unaffected (and we will not attempt
to re-evaluate B and C here).

Some estimate of the viscosity effect can be obtained
in the following way. When the probability of making
a transition within a collective oscillation period is
large, the “path” of the system will tend to diffuse from
one particle state to another, changing both its particle
and collective energies to maintain constant total
energy. The mean particle energy is given by (35) if
we replace E* by E*—3CB2 Thus the effective Hamil-
tonian for collective motion assumes the form

h? 02 1
Hyy=———+-C324-e(8)
2B sz 2

7 02 1 1
~N— ] X-CB*+const,
2B oB* (4eE*)} 2

(38)
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which leads to a vibrational frequency

wor=wy(4aE*)~%, [E¥>a(hw,)%]. (39)

2. Perturbation Theory

The use of first order perturbation theory to deter-
mine the real transition rate requires that the virtual
(energy nonconserving) transition rate be small by
comparison. When the virtual transition rate is large,
the representation becomes inconvenient for following
the development of the system: certain processes of
importance may not be easily describable. For example,
in Sec. IV we will discuss the possibility of rapid
fracture of the nucleus into two fragments, a process
described better in terms of the sudden (impulse)
approximation than as a small deviation from adiabatic.
Indeed, one might well calculate a very high diffusion
rate in terms of the adiabatic representation, but in
fact one is only calculating the virtual transitions
required to describe the true state, and is throwing
away phase relations which could be important in
reanalyzing the wave function into the adiabatic
representation later.

3. “Real” Transitions in Discrete Spectra

The equation for the transition rate (8) is based on
a continuum of (here, collective) final states. The
continuum assures the existence of energy-conserving
final states, a condition not available in general for
discrete spectra. We are therefore faced with energy-
nonconserving transitions which are, therefore, not
“real,” in the sense that they feed back to the original
state. Such “virtual” transitions persist a time of the
order of #/AE, where AE is the energy difference
between initial and final states and in present context,
AE~%w,. The distinction between real and virtual
becomes unimportant if the state has a high probability
of making another transition within the period of its
virtual existence. This is equivalent to saying that its
lifetime-broadening is greater than the level spacing,
so that we have, in effect, a continuum. Let = be the
mean lifetime of a state against decay to all other
states (as calculated). Then the consistency requirement
is

/) T>hw,, or w,r<l.

We estimate (w,7)~! from the considerations of the
previous section:

2W(e) r°9*R
(¢) f n (ﬂ)dm (40)

2

(@mn)*=w1X R(G"; )=
jll

Wy nc n

where 7 is the energy difference |¢’—¢’| and 7. is a
lower cutoff. The factor 72R(n) is a reasonably well-
behaved falling function of 7 (except for fluctuations).
Let us approximate

7R ("7) o« e—’l/”n,

(1),
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where 7o is a mean range; the precise form is of little
importance for a magnitude estimate. Then it follows
that

(o) 20 2wwo Vo, 120 (Mev)?
WyT) = ~——— ~ .
WMo T @y NeNo

42)

NNo

The lower cutoff, n, is given by the closest approach of
single particle levels of the same character which, in
the Nilsson scheme, is 2 or 3 Mev. Thus the require-
ments for validity of continuum theory is

170K50 Mev. (43)

This criterion would seem to be easily satisfied, and
is less restrictive than other (albeit less important)
criteria which also depend upon 7.

4. Energy Range of Single Probability Jumps

Although it does not enter explicitly into the calcula-
tions, it would be well to obtain some estimate of the
range, 7o, of energy differences wherein the transition
rate R(n) is appreciable. This must be small compared
with the wavelength (in energy space) of a relaxation
mode in order that the diffusion formulation make sense.
Also, the estimate of (3Cs%)a was based on the assump-
tion that 79<2%wo.. Both of these are quantitative
questions, rather than questions relating to the general
validity of the approach.

The relevant integral

s
[
B

is appreciable only so long as JCg is appreciably constant
over a distance at least comparable to the reduced
length of ¢a*(3¢2/38),

Re~ (27°Ey/ B)}/n. (44)

This gives an implicit relationship for n=7¢ when Ag
is set equal to the sum of all single particle near-cross-
ings per unit 8 within a (total) particle excitation of #,.
We do not have careful estimates of 7o available, but
indications are that it is of the order of magnitude of
10 Mev, which satisfies our conditions, although a
closer estimate would be desirable.

III. FISSION WIDTHS

We here estimate fission widths in the framework of
the unified model. In Fig. 3 the spectrum of nuclear
levels for an even-even nucleus is shown as a function
of the symmetric deformation parameter, which may
be thought of as 3. The energy surface is actually
many-dimensional in terms of collective parameters
describing the various deformations. We may imagine
that this curve is a cut through the surface at the
minimum values in the energy for the other parameters.

The low-lying energy levels of the system correspond
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to the rotational states of a deformed nucleus. The
2+ level is at about 50 kev. Also indicated are the odd
parity (1—, 3—, --+) levels. At 1 Mev, single particle
excitations appear and the level density increases
exponentially with the square root of the energy. As
the nucleus is deformed, energy is taken up in the
potential energy of deformation. This curve actually
is an envelope of nuclear energy levels. A saddle point
is reached, after which further deformation gives up
energy to either collective or particle modes. Finally
scission takes place and the fragments fly apart.

Near the saddle point, the nucleus is relatively
cool and strongly deformed, and thus collective states
appear. The levels at the saddle point are indicated by
diffuse lines to indicate that the nucleus does not remain
long at the saddle point and, according to the un-
certainty principle, the energies cannot be well defined.
For relatively low energies—near threshold—the
nucleus does spend appreciably more time at the saddle
point than elsewhere.

In the region of the fission saddle point for the jth
particle state, let the collective potential energy be
given by the inverted parabola

€ (8) = ¢ — 3 Bw;*(B—Bin)* (45)

Hill and Wheeler* have shown that the probability of
barrier penetration can then be written

Pj={1+exp[ —2r(E*— &) /A ]}, (46)

where E* is the total (excitation) energy of the system
and ¢ is the “threshold” energy for the jth particle
state. 7wy varies considerably from nuclide to nuclide,
but is of the order of one Mev, so that the penetrability
falls rapidly over a few tenths of a Mev.

There are two times of consequence involved in the
determinaton of fission half-widths. One is the collective
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F1c. 3. Schematic representation of level spectrum of an
even-even nucleus as a function of the symmetric deformation
parameter (8) up to the point of scission. The level structure
indicated beyond the saddle point shows crossings. Levels of the
same character (K and =) will not cross.
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vibrational period 27/w, (or 2w/w,). The other is the
relaxation time, f,, required to establish statistical
equilibrium, and here we mean establishing equilibrium
from a state of the system which is deficient in the
probability that the fissioning channels (et S E*) are
occupied. This point requires special attention, since
the lowest particle states are usually nonstatistical in
some way.

A. Near Threshold

Let us consider the example where a nucleus is
excited to some energy where 10° particle states are
available; for one channel P=1, and for all others
P=0. Further let us assume that the excitation mechan-
ism produces equilibrium, but there is no coupling to
maintain equilibrium. The probability is then 106
that the nucleus will fission promptly—within a time
2m/w,. If the coupling is finite but so small that ¢,>>2r/
wy, then the fission rate is determined by the relaxation
rate, and is equal to ¢71. If, however, ¢,<<2w/w,, the
fission rate is 1078 w,/27r. We take up the latter case in
more detail first.

Let us assume that ¢,<K27/w,, so that even though
the fission channels are depleted in a time 27/cw,,
statistical equilibrium is being maintained. Then the
fission width is given by

%X (effective No. of open channels)

f=
(vibrational period) X (total No. of particle states)

hoon )
—27r/w,, N

where the effective number, 7, of open channels is the
sum over all channels (particle states) weighted by the
penetrability P. The total number, N, of particle
states is not the grand total of states since, in our
representation, each particle state has vibrational states
built upon it. Indeed, for large excitations, most of the
states one sees are excited vibrational states, and so

N=%w,/D, (48)

where D is the observed level spacing at the excitation
energy E* and N is, of course, the number of particle
states with energy less than E*. This leads to the
expression for the effective number of open channels,

n=2xTy/D, (49)

which is identical with the expression first given by
Bohr and Wheeler.#%° For thermal neutrons on
fissionable nuclei, one sometimes finds that #, as given
by (49), is less than unity, even though the excitation

9 N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

10 J. A. Wheeler, Proceedings of the International Conference on
the Peaceful Uses of Atomic Energy, Geneva, 1955 (United Nations,
New York, 1956), Vol. 2; Proceedings of the International Confer-
ence on Nuclear Reactions, Amsterdam, 1956 (Nederlunde Natuur-
kundige Verenigig, Amsterdam, 1956), p. 1103.
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TasiE I. Effective number of open channels in thermal neutron-
induced fission as determined from two prescriptions: 2x1%/D is
the Bohr-Wheelers™ formula based on the magnitude of the
fission widths; experimental errors in this column are of the order
of 35%. The values of » are obtained from the Porter-ThomasP
expression for the statistical distribution of fission widths;
these numbers are meaningful only to within a factor of about 2.
In both cases, the numerical values are averages per spin state.
Because one 1s dealing with two states (Jo#=%, where I, is the
target spin), the analyses should properly be carried out separately
for each. In particular, the Porter-Thomas distribution should be
a composite of two distributionsd characterized by separate sets
of parameters I'y and ». The column labelled = gives the best
available guess as to target parity.

Torw erj/D v
s 54 0.6° 4o
s i— 0.21f 21
Pu i 0.11d 1d

a See reference 4.

b See reference 9.

¢ See reference 10,

d Bollinger, Cote and Thomas, Proceedings of the Second United Nations
International Conference on the Peaceful Uses of Atomic Energy, Geneva,
1958 (United Nations, Geneva, 1959), P/687.

e Fluharty, Moore, and Evans, Proceedings of the Second United Nations
International Conference on the Peaceful Uses of Atomic Energy, Geneva,
1958 (United Nations, Geneva, 1959), P/645. .

f W. W. Havens, Jr. and E. Melkonian, Proceedings of the Second United
Nations International Conference on the Peaceful Uses of Atomic Energy,
Geneva, 1958 (United Nations, Geneva, 1959), P/655.

energy is a Mev or two over the lowest threshold, and
one expects the effective number of channels to be
greater than unity. Table I contains values of =
determined by the Bohr-Wheeler formula (49) for three
nuclides. Also listed are values for the effective number
of open channels determined from statistical fluctua-
tions in the fission widths, according to Porter and
Thomas.!! The Porter-Thomas number is generally
larger than the Bohr-Wheeler number, but this can
be understood by noting that partially open channels
(P<1) can contribute fully to statistical fluctuations,
but only partially to the absolute value of the fission
widths.

The paradox of the small number of open channels,
which has long been noted, can be resolved reasonably
by observing that the coupling is, in all probability,
insufficient to assure the condition #,<<27/w,. Before
delving into this further, let us re-examine an early
(and more general) interpretation® of (49). %/D is the
period of complete nuclear motion, that is, the time
required for the nucleus to pass through all modes and
return to some original configuration. Thus each open
channel decays with the rate of D/h. (The present
derivation is consistent with this interpretation.) We
see that there is the implicit assumption that all
modes are strongly coupled to one another. If, for
example, the lowest fissioning channels are not strongly
coupled to the other modes, the nucleus will not have
equal probability of passing through them during each
period D/h.

The lowest particle states are special in several ways.
The compound nuclei corresponding to thermal neutron
fissioners are even-even, and the lowest fissioning state
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belongs to the K=0-4 band. The first 0+ particle
excitation is separated from the lowest state by an
energy gap of at least a Mev, and probably signif-
icantly more. Although level density does not appear
explicitly in the estimate of relaxation time, it has
dropped out by cancellation. The cancellation was
effected on the assumption that the level density is a
smoothly varying function near the point where flux is
calculated. This is not the case at the bottom end of the
energy spectrum where the level density goes to zero
(and there are no levels below the ground state). The
diffusion coefficient has in the numerator a level density
factor corresponding to the region across which transi-
tions occur, and in the denominator a level density
factor used in computing (3Cs?)a corresponding to the
average over several Ziwo[ (23) and (24) ]. At the bottom
end, the ratio of the level density factors can be very
considerably less than unity.}

One must also consider whether there is sufficient
coupling to states of different K to maintain equilibrium
(see Sec. IL.D). Presumably states are excited with all
K-values up to Jo+3, where I is the target spin. This
consideration becomes progressively more important
with increasing Io. If only a K=0 channel can fission,
insufficient coupling would lead to a small fission width.
Table I does not, however, indicate any systematic
dependence of 27I';/D on target spin.

These effects can be compounded by the failure of the
continuum criterion (Sec. ILF.3) when the lifetimes
of the states are smaller than the collective level
spacings.

It is not surprising, then, that the coupling to the
lowest states of an even-even nucleus should be anomal-
ously small, and that 2#T;/D overestimates the number
of open (defined according to penetrability) channels.

B. High Excitation

At energies which are sufficiently high to employ
statistical considerations (a few Mev above threshold),
we expect [,&2m/w, for most open channels, and
evaluate the number of open channels by the formula

= f W (P (B — e de, (50)

where eth=¢*—¢;(8=0) is assumed to be the same for

1 C. Porter and R. G. Thomas, Phys. Rev. 104, 483 (1956).

12 Bardeen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957).

13 Bohr, Mottelson, and Pines, Phys. Rev. 110, 936 (1958).

1 C. De Dominicis and P. Martin, Bull. Am. Phys. Soc. 3,
224 (1958).

 Note added in proof.—The lowest lying particle states best
fulfill the conditions necessary for enforcement of the selection
rule AN==1: the level structure ¢;(8) is very nearly harmonic
near 3=p8Bmin; the character of the states and hence 3Cs does not
change abruptly with 8. This means that the partial energy jump
during a transition is of order %w,, which is about 1 Mev. If the
energy gap is appreciably greater than 1 Mev, the diffusion of
prﬁti)abigty to the lowest particle state should be significantly
inhibited.
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all particle states, and also represents the lowest
threshold energy. By closely approximating the
integration in (50), it was found that replacing P by
a step function results in only a few percent error at a
few Mev above threshold and progressively less at
higher energies. This is sufficient for present purposes.
Denoting by N(E) the total number of particl states
with energy less than E, we obtain

% ﬁN(E*-—eﬁ‘)
N N(EY

~exp{2[a(E*— ™) '—2[aE¥]H} ; (S1a)

~n]\_7_>eXPl:—e“‘(a/E*)*], (E¥>e™)  (51b)

or

Feoy
ry— P exp[—e®(a/E)], (E*>e®).  (52)
T

The fission width does not increase indefinitely, but
rather approaches the limiting value %w,/2r~150 kev.
It seems hardly necessary to caution the reader to
regard (52) as no more than an order of magnitude
estimate. For one thing, we have already seen that at
high excitation energies w, should be replaced by
wyr (39).

IV. FROM SADDLE TO SCISSION

Once the nucleus has crossed the saddle point (top
of the barrier) configuration, it appears unlikely
(although by no means impossible) for it to return to
a relatively undeformed state, since most nucleonic
states do turn down.

A unique feature which enters the picture beyond the
saddle point is the dominance of the Coulomb field.
Internucleonic forces are of short range, and a nucleonic
period is required to “feel” out the positions of the
various nucleons. The Coulomb field, on the other hand,
is long range and acts instantaneously (as far as the
velocities here are concerned) on all protons. Here, in
principle, is a mechanism capable of disrupting the
nucleus within a time which could be shorter than either
the vibrational or nucleonic periods. The question is
not whether the collective velocities are so slow that
the motion is adiabatic but rather whether they are so
rapid—within a time less than a nucleonic period—that
the nucleus is disrupted impulsively. In the latter case,
the nuclear “path” follows the independent particle
states (dotted lines in Fig. 2; see Hill and Wheeler?).

Three nuclear models have been proposed to describe
the fission process beyond the saddle point. The first
and oldest is the liquid drop model of Bohr and Wheeler.?
The nuclear motion is assumed to be that of an irrota-
tional, viscosity-free liquid, and in the latter sense
the motion is adiabatic.

A second is the statistical model proposed by Fong,!®

15 P, Fong, Phys. Rev. 102, 434 (1956).
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and refined by Newton'® and Cameron.!” In this model,
statistical equilibrium is assumed at the time of scission,
and the probability of fissioning into a particular mass
distribution is determined by statistical weights alone.

The third model proposed by Bohr!'® and Wheeler,?
invokes the unified model and would say that certain
constraints—K and r—are determined by saddle point
considerations. The model has had considerable success
with respect to angular distribution of fragments,¥—2
but without further assumptions does not provide a
real theory of mass distributions. The model is con-
sistent with almost any descent from the saddle—
adiabatic, statistical, or impulsive—so long as the
constraints are maintained. (This means K, since = is
a ‘“‘rigorously’” good quantum number.)

The quantity of interest is the ratio between the
time from saddle to scission and a nucleonic (reduced)
period. This is given by

~ (A d2/55E0011) %,

where E..1 is a mean collective kinetic energy in Mev
and d is the relative distance in fermis, which the
“fragment centers” travel from saddle to scission.
When this ratio is appreciably less than unity, impulsive
tearing at the saddle is likely to take place. For the
thermal fissioners around uranium, E..1, which cannot
exceed the total non-Coulomb energy available at
scission, is <20 Mev. For d a few fermis, the ratio is
greater than unity, but not by a large factor.

Experimental indications are that, for low excitations
at least, the kinetic energy is independent of excitation
energy and probably small in magnitude at scission??;
this is consistent with statistical equilibrium.

Fairhall and Halpern?® have emphasized that the
fissions occurring with symmetric or asymmetric mass
distributions may behave as two distinct “modes,”
with the symmetric mode increasing with energy more
rapidly than the symmetric mode. In some light-heavy
nuclei, such as radium, three distinct peaks in the
mass distribution have been observed.?? The relative

16T, D. Newton, Proceedings of the Symposium on the Physics of
Fission, Chalk River Report CRP-642-A (unpublished); Atomic
Ense;%y of Canada Limited Report AECL-329, 1956 (unpublished),
p. .

17 A. G. W. Cameron, Proceedings of the Second United Nations
International Conference on the Peaceful Uses of Atomic Energy,
Geneva, 1958 (United Nations, Geneva, 1959), P/198.

18 A. Bohr, Proceedings of the International Conference on the
Peaceful Uses of Atomic Energy, Geneva, 1955 (United Nations,
New York, 1956), Vol. 2, p. 151,

L. Wilets and D. M. Chase, Phys. Rev. 103, 1296 (1956).

27. Halpern and V. M. Strutinskii, Proceedings of the Second
United Nations International Conference on the Peaceful Uses of
A;orgtfg Energy, Geneva, 1958 (United Nations, Geneva, 1959),
P/1513.

2 J. J. Griffin, Bull. Am. Phys. Soc. 3, 337 (1958), and Phys.
Rev. 116, 107 (1959).

2 A comprehensive review of experimental results with theoreti-
cal interpretation is given by I. Halpern, 4 nnual Review of Nuclear
Scilmge [Annual Reviews, Inc., Palo Alto (to be published)],
Vol. 59.

% A. Fairhall and I. Halpern, University of Washington,
Seattle (private communication).
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energy dependence of the two modes can be understood

in a qualitative way if one is willing to assume that the
" saddle point favors equal distribution in mass between
the undivided lobes, as the simple liquid drop model
predicts, while at scission an asymmetric division is
favored as far as phase space is concerned, as Fong
predicts from shell structure considerations. At low
energies, then, statistical equilibrium is expected to
obtain for just the reasons given above. At higher
energies, however, the collective motion may develop
sufficient velocity to produce impulsive tearing soon
after the symmetric saddle point is passed, with the
result that symmetric fission obtains.

A test of this interpretation of symmetric and
asymmetric fission can be sought in the kinetic energies
of the fragments. As stated above, low-energy (asym-
metric) fissions probably possess small kinetic energy
at scission, consistent with equilibrium. If symmetric
fission originates in the nonstatistical tearing process,
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the kinetic energy of such fragments should be consider-
ably larger. This could be detected by separate measure-
ment of the kinetic energies of the fragments from each
mode, or by an examination of the mean kinetic energy
when the relative intensities of the two modes are
varying appreciably with excitation. These questions
are currently being investigated by Nicholson and
Halpern.?*
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Cross sections and excitation functions have been determined
for spallation and fission products from bombardments of Th*?
with helium ions (15 to 46 Mev) and U?3 with deuterons (9 to
24 Mev). This work extends a series of investigations of charged
particle (, d, and ) induced reactions in heavy elements (Z >88).
Radiochemical methods were employed to isolate products
corresponding to the following spallation reactions: neutron
emission, (a,4n), (a,5%), (d,n), (d,2n), and (d,3%) ; emission of one
proton and neutrons (a,p), (a,pn), (a,p2n), and (a,p3n); and
emission of two protons and neutrons, (@,2p), (a,2pn), and
(a,0m), and (d,om). In addition, the following fission products were
isolated from one or more bombardments: Zn?, Ge”, As7”,
Bré2ss, Rbs6, Sre99, Y9, Zrd5.97 Nb9, Mo®, Ruy!l03.105.10, P12,
Aglll’ Cd115,115m,117’ 1131,133’ CSHG, BaISQ,MO, La140’ Cel41,143,l44’ Nd147,
Eus?, and Gd'¥. :

The results show that fission is the predominant reaction at all
energies for Th?? and to an even greater extent for U?*. The data
for the surviving spallation products are consistent with several
mechanisms of reaction, including compound-nucleus formation
and evaporation, direct interactions between nucleons of the
incoming helium ion or deuteron and nucleons of the nucleus,
and a combination of these types of processes (direct interaction
followed by evaporation). In general, the results confirm and
extend previously established concepts.

The neutron-emission spallation reactions as well as fission are
best explained as proceeding through compound-nucleus forma-

* This work was performed under the auspices of the U. S.
Atomic Energy Commission. It is based in part on the Ph.D.
theses of Bruce M. Foreman, Jr., University of California, June,
1958, and Walter M. Gibson, University of California, June,
1957. One of us (W. M. G.) wishes to acknowledge the support
of the U. S. Air Force Institute of Technology during this research.

tion. The shapes and magnitudes of (a,4n), (d,2n), and (d,3%)
excitation functions correlate well with a compound-nucleus
treatment modified to include fission competition. According to
this treatment, ratios of neutron to total-reaction level width,
T/ 2: Ty, are 0.49 for U628 [from Th?2(a,4%)], 0.17 for Np235-234
[from U*3(d,2%)], and 0.20 for Np%28 [from U2%(d,3%)]. In
addition the total-reaction excitation functions (consisting mostly
of the fission excitation functions) are consistent with theoretical
cross sections for compound-nucleus formation calculated with
a nuclear radius parameter 7o=1.5X10718 43,

The fission mass-yield curves are similar to those found for
other heavy target isotopes (for elements from thorium to plu-
tonium). The minimum in the curves in the region of mass 120
tends to disappear as helium-ion or deuteron energy is increased.

The (a,pxn), (a,2pan), (e,an), (d,n), and (d,an) products are
attributed to direct interactions, with complex particles emitted in
preference to a series of protons and neutrons. Thus («,d), (a,f),
and (e,tn) mechanisms would account for most of the (a,pn),
(o,p2m), and (a,p3n) products, respectively. In the case of the
(e,t) and (/1) reactions, analysis of the ratio o (a,tz) /o (a,t) leads
one to the conclusion that with 35-Mev helium ions only 9% of
outgoing tritons leave the residual nucleus with sufficient energy
to evaporate a neutron or undergo fission, and with 44-Mev
helium ions only 20%, do so. The (d,%) product probably results
from the stripping reaction.
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