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have been uniformly divided by a speed of 8X10'
cm/sec; the actual velocity range of the accepted 25
atoms is from 5.5 to 10X10' cm/sec.

The eGectiveness of water in quenching the meta-
stable 2S hydrogen atom is quite striking. Its large
cross section may be related to the strong electric
dipole moment of the water molecule.

V. RESULTS AND DISCUSSION

For residual gas pressures from 7 to 9)&10 ' mm Hg,
the average rate of single-quantum decay of the 2$
hydrogen atom was found to be 930 sec '. Of this, 510
sec ' is ascribable to collision quenching by the four
most abundant gases present in the vacuum chamber.
Thus, the final result of this measurement is that the
apparent natural lifetime of the metastable hydrogen
atom is 2.4 msec, with an estimated over-all probable
error of 50%

This figure can be regarded only as a lower limit on
the true natural lifetime for two reasons. First, stray
electric fields within the quenching region directed
other than normal to the quench plates may have been
present. Although a field of only 0.4 v/cm would
completely account for the apparent natural decay, in
view of the geometry of the quench region and the care

taken to avoid contact potentials and surface charging
it is very doubtful that the observed decay arose solely
from stray field quenching. Second, gas collision
quenching corrections were made for only the four most
prominent background gases; gas collision quenching
by both trace gases and ground-state hydrogen atoms
accompanying the metastable atoms may have con-
tributed substantially to the decay rate.

From the measured lower limit of the metastable
atom lifetime, it follows that an upper limit on the
admixture (amplitudes squared) of the 2Ei state with

the 25., state is 7)&10 ~. By applying the result of this
measurement in the formulas of Salpeter relating the
lifetime of the H(25) atom and the strength of an
electronic electric dipole moment, it follows that the
dipole moment strength cannot exceed 0.0045eIt/srtc.
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A scattering process in which an incoming bound particle can split up into its component parts when
its total energy is above a threshold is of considerable interest physically (deuteron stripping, etc.) and
mathematically (analytic properties of the S-matrix, etc.). For such complicated problems it is obviously
convenient to have a simple, analytically soluble model for reference, but although many models have been
suggested in the past none have proved analytically tractable. In this paper we propose and completely
solve a one-dimensional model which, although it is not very physical, has all the desired characteristics.
The problem is not mathematically trivial, however, and leads to a Wiener-Hopf integral equation.

K have to begin by apologizing for the presump-

~ ~

~

tuous title of the paper, our excuse being that
a similar title has already been used, for the same
purpose. ' The mathematical model treated in this
paper has only one feature in common with the stripping
reaction: It describes a scattering process in which an
incoming complex particle might re-emerge as a
complex particle or might be split into its components.
Problems of this type lead to di%culties since they
cannot be treated in the convenient interaction rep-
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resentation. Therefore, there has been some desire for
a simple mathematical model of such a reaction, and
as such the problem has a minor history.

Heisenberg proposed an investigation of the Hamil-
tonian f.

1 it'ter 1 8'ter

fAtf(te) +AS (w) +—2' (I v) )P=EP—
2 BQ~ 2 O'V~

This can be interpreted as describing two particles
moving in one dimension and interacting with each
other as well as with a fixed scattering potential at
the origin. (They can be bound together with an

1, Throughout we use units in which h=rrt = 1.
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energy, —C', or separately bound to the origin with an
energy, —A'. ) This Hamiltonian looks very simple
and symmetrical; however, it turned out to be quite
unmanageable. Wildermuth' investigated it in two
papers, but he could not give a solution in closed form.

Danos' considered the same Hamiltonian together
with the boundary conditions /=0 for si=O and v=0,
(which is equivalent to A= —oo). This means that a
linear deuteron is smashed against a wall at the origin.
Astonishingly, this has a very simple solution: (x=I+v;
y=u —v; E=k' —C')

C—ik
p —e—olyl —i&z e

—&y—i&lyl {e—&lyl+i&y e ca+i&lyl)

C+sk

Asymptotically, this represents an incoming and an
outgoing deuteron wave, both with unit amplitude.
Xo fragments can occur, which is of course quite
unexpected.

Therefore, Danos' tried a modification of the problem
by relaxing the boundary conditions to /=0 for v=O
only. This could be interpreted as a deuteron running
against a potential wall which repels the proton and
does not affect the neutron, so that at least at high
energies there should be the possibility that the deuteron
breaks up. But this modification destroys the symmetry
of the original equation and leads again to considerable
mathematical difficulties. Jost showed that the problem
could be reduced to a diA'erence-equation. ' (In a
previous paper4 he had shown that this difference-
equation can be solved in principle. ) The actual
solution is not given, since its construction "might be
manageable, though tedious. " An essential point of
the first paper of Jost is that he uses the Wiener-Hopf
technique, which is obviously the appropriate tool
for problems of this kind.

In this paper, we investigate a problem which is
even more artificial, if somewhat similar to the Danos-
Jost problem. We consider the equation

1 &P 18'P
2C8 (si+ v) 6 (si v)—Q =EQ, —

2 BN' 2 85'

8(x) =1, x&0

=0, K(0.

CALCULATION

Transforming to x=si+v, y=l —v, Eq. (1) becomes

(82 82

+ +& l~=-2C8(y»(*)~
(8x' ay' ) (2)

I.O
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of Xs or of X&+V. Consequently, if the incoming
deuteron has negative total energy (E=k' —C'), i.e.,
below the stripping threshold, it can only be reQected
from the origin as a deuteron. But if E ~&0 the deuteron
can either be reQected or break up into two free particles.
Alternatively, Eq. (1) can be looked upon as the
Hamiltonian of a particle rolling down a semi-infinite
groove in two dimensions. If E~&0 the particle can
"hop" out of the groove, but if E(0 it cannot do so
and must be reQected. It is interesting to note that
classically the reQection probability is zero for E&0
but that quantum mechanically it is not zero (of course
it approaches zero as E +~);—see Fig. (1).

Thus, the whole interest in the problem lies in the
fact that for E=O new channels suddenly open up in
the 5-matrix. Since there is presently much interest
in the analytic properties of S-matrices, this problem
may be taken as an analytically soluble model. Alterna-
tively, it may be used to try out approximation schemes.
As an illustration the following point, although not
unexpected, may be mentioned. If the Born approxima-
tion is tried on Eq. (1), one finds that for E)0 a
fairly good approximation is obtained for the probability
of production of free particles, even for low energies in
first Born approximation. However, to any order one
finds that the probability of a reQected deuteron is zero.
This is because a reQected deuteron must appear as a
pole in the S-matrix, and one simply cannot obtain
the pole by a power series expansion.

In the remainder of this paper we show how Eq. (1)
can be solved in closed form using Wiener-Hopf
techniques. The amplitudes for the various channels
are quite complicated, but the probabilities turn out to
be simple functions which we explicitly calculate.

The interaction between the two particles vanishes if
either of them has a negative coordinate. This could
be interpreted as a situation in which at N=O there is
a potential wall which does not act on the neutron or
proton, but excludes the mesons which are responsible
for the interaction between the nucleons. Of course it
is not necessary to enter into such speculations;
V(g, v) = —2C8(si+v)8(si —v) is simply a potential which
has the property that outgoing waves can be eigenstates

' K. Wildermuth, Z. Physik 127, 92 (1949).
s J. H. D. Jensen (private communication mentioned Danos'

vt Ork).
4 R. Jost, Comm. Math. Helv. 28, 173 (1934l.
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P(x,y) = —2C dx' G(x,y ~

x',0)P(x', 0),
0

(5)

where G is the Green's function of the left-hand side of
(2) and is given by

&i~(~—~r)+iq(&—1j~)f
G(x,y I

x',y') = —(2~)—' dpdq
p2+g2

(6)

Putting y=O in Eq. (5) leads to the homogeneous
Wiener-Hopf equation,

f(x) = 2C ~ M(x x') f(x')dx—', (7)

where f(x) =$(x,0) and M(x —x') = —G(x,0~ x',0). This
is an equation for the values of tP along the positive
x axis, from which one can calculate |t(x,y) with the
help of (5).

Ordinarily, to solve the Schrodinger equation, (2),
one would write P=g; +outgoing wave. This is the
prescription of formal scattering theory and would
lead to an inhomogeneous version of (5) and con-
sequently of (7). In principle there is no difhculty,
but in fact an inhomogeneous %iener-Hopf equation
with kernel M is exceedingly intractable. On the other
hand, all solutions of Eq. (5), if there are any, must
have incoming parts since there is no solution to
Eq. (2) which is purely outgoing. In view of the fact
that Eq. (5) expresses tp as an integral over an outgoing
Green's function, it seems at first sight surprising that
f can have an incoming part. Nevertheless, it is well
known from Wiener-Hopf theory that precisely because
M behaves as exp( —c

~

x—x'
~
) for large x', P can behave

as exp (+c'
~

x'
~
) and the integral in Eq. (5) will converge

if e'(e. In other words, the convergence factor in 6

The 8 function has one bound state, with energy —C',
which we shall call a deuteron. The wave function of
the incoming deuteron (travelling a,long the x axis
from x=+ ~ to x=0) with momentum —k is

tP; =exp( —C[y[ —~kx); E=k' —C'.

Of course there can be no deuteron for @&0 and
therefore the problem is to find the outgoing wave
which cancels P;„for x &0. In order to separate incoming
and outgoing waves it is convenient to suppose that E
has a small positive imaginary part, E=~'+i2c~, and
to take the limit e —+ 0. Since C is real, k, as defined by
Eq. (3), will also have a positive imaginary part:

k —IC+jelcIC 1. —~2 C2 K2 go (e~)

where E' is the real part of k. Hence f;„diver ges for
large x whereas outgoing waves, including an outgoing
deuteron, are square integrable.

We can rewrite Eq. (2) as a homogeneous integral
equation:

p-Plonk

JE =pic t2Kei

xk

FIG. 2. Pertinent singularities and contours in the
p-plane. Dashed lines are cuts.

allows tP to diverge. It is in fact the case that Eq. (7),
and hence Eq. (5), have a solution of the required form.

In the standard way' we write f(x) =f+(x)+f (x);
F(p) =F+(p)+F (p), where F+ is the Fourier transform
of f+, etc. , and f+(x) —=0 for x&0, f (x) —=0 for x &~ 0:

F+(p) = j dx e'&*f+(x) =
—00 0

e'& f(x)dx. (8)

where P+ is regular and nonzero for I(p)) —e and P
is regular and nonzero for I(p)&e. We shall exhibit
1+ and F later, and it will be obvious that they are

' For an exposition of Wiener-Hopf theory, see for example
P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 978;
B. Noble, methods Bused on the keener-IJopf Technique for the
Solution of Partial

Differential

Equations (Pergamon Press,
New York, 1959).

The Fourier transform of M [obtained from Eq. (6)j is

M(P) =k[p' —Ej '. (9)
Consequently,

(P' E)' CP—' k' —(O' E)'— —
—F- F+—— F+. (10)

(p E)* p E (p E)'+C

A word about the square root in M: It has two cuts
which must lie outside the strip ~I(p) ~

&e and are
chosen so that R[(p' —E)'*]~&0 for all p. This choice
is the most convenient; the cuts are shown in Fig. 2.

Since (p' —E)'((p' —E)'*+C) ' is regular and free
from zeros in the strip

~
I(p)

~

& c, we can write

(O' E)' I"+(P)——=P(p),
(P' E)'*+C P-(P)—
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asymptotically equal to one for large
~ p~. Since F+

and F go to zero for large ~p~, there is only one
solution to Eq. (7)

F.(p) =~(p+4~)C:r.(p)(p'-k')3-', (» )

F-(P) = —All'-(P) (P—v'&)3 ',

where A is a constant. f~(x) is given by

(12b)

2K co+jg

(13)

where eKE' '&a& e. It will be seen from (12a) and (13)
.that the pole in F+ at p=k adds an outgoing part to
f+(~).

If we choose A to be

dp exp{—
ipse

—(p' —E)i ~y) }

e—ikz —c[o[+fleikx c[y[—
F+(p)

X 15a
(ps —g)i

C,p
dp exp{—ip*—(p' —&)-:Iyl}

F+(p)
x&0 (15b)

(O' —F)'
C r

dp exp{ ipse (p—' F)—'lyl }-
2~~ c,

p+(P)X, @&0. (15c)
(p'-~)'

The contours, C~ and C2 are shown in Fig. 2. A was
chosen to make the coefficient of the incoming deuteron
uiuty.

~
0

~

' is then the probability of finding an outgoing
deuteron. By evaluating the residue at p= —k, 0 is

found to be

II= 2(k —v'&) LI'+(k) 3'(k+v'&) '. (16)

Finally, we must evaluate the integrals around the
contours Ci and Cs in (15a) and (15b). Firstly, it is
clear that these integrals yield only outgoing waves
(square integrable). Secondly, for very small e the cuts
and the contours will become I.-shaped and it is clear
that the only part of Ci which is important is the line

K&p&0 lying between the cut and the real axis.
The rest of C& gives only damped waves. Similarly, the
important part of C, is the line 0&p&a below the cut.
If we transform to two-dimensional polar coordinates
and put

x=8 cos0, y=E sino, (17)

A=2ikp~(k)Lk+QFj ',

insert (6), (12a), and (13) into the right-hand side of
Eq. (5), and integrate over g and x', we find that

we are interested in evaluating these integrals for
large E.. We know that these integrals must be of the
form

in the limit e —+ 0. The easiest way to do these integrals
is by the method of stationary phase; for both C& and
Cs the stationary phase point is p= —(E)' cos8. There
is one caveat Althoug. h F+(p) will turn out to be zero
for p= QF [—see Eq. (12a)j this is not so for p=+gE.
Consequently, the integr and in (15) will have a
singularity at the end point p=+gF. . However, a
careful analysis of the integrand and of the stationary
phase procedure will show that the contribution from
the end point is of higher order than the contribution
from the stationary phase point. Hence we find that

C (8) =iC(2n. [r) ~F+(—K cos8) Ep=K'&0. (19)

For So&0 the outgoing waves are, of course, all

damped.
Equations (16) and (19) are the answers to the

problem. However, since we are interested only in
probabilities, viz. , (Q~' and o (8) = ~C (8) ~s, we see from

Eq. (12a) that it is necessary to know only
~

I"+(p) ~',

and that only for —[i&p&x and P=IC. Hence the
reason for doing the formalism first; although I'+(p)
will turn out to be a very complicated function, its
modulus for the values of p indicated above is expres-
sible in terms of elementary functions.

In the usual way we write

I'+(P) = expLP+(P) 3 (20)

where p+ is analytic for I(p)) —c t which implies that
I'+ is analytic and nonzero for I(p))—ej and is given

by

p (p)=,~dtD r(t)j(t —p)-'.
2'~ D

(21)

The contour, D, is defined in the following way: if
I(p))0, D is the line (—eo, ~); if I(p)&0, D is a
deformation of the line (—~, ~) into the lower half

plane which does not cross any of the singularities of
I' but which goes under the point t= p.

Now, since we are interested only in ~1"+(p) ~' for
the values of p indicated above, we need calculate only

RP+(p) j for those values. It is this point that simplifies

the calculation. p+(p) itself is a complicated function
involving Eulerian Dilogarithms (Spence functions).

The evaluation of RP+(p)j is a straightforward
exercise involving a certain amount of juggling and
integrations by parts. One must, however, take some
care in passing to the limit e~ 0. The results are as

See A. Erdelyi, Asymptotic Expansions (Dover Publications,
New York, 1956), p. 51.

~8()+( lt1 —8()1([ l
~2 (c) (c&

=X(R,8) =R lC (8) exp(i[iR+ior/4), (R large) (18)
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follows for Ep=E —C %0:

k —~ (C)'
zo&o.

k+x &k)
(23)

For ED&0 Eq. (22a) must be modiled. One finds
easil that

»m Idyll'=1, ~«0, (23a)
C~

a result which is easily anticipated.
Similarly, inserting (22b) into Eq. (12a) we find that

1 2k 1 t'k —~)p=E: lim E[p+(E)j=——ln———ln~ ~, (22a)
2 C 4 (k+gi

p=real, p'&a'=Ep . lim RDl~(p)$

1 (~+p)
2 &k+p)

Inserting (22a) into Eq. (16), we can obtain the
probability for an outgoing deuteron:

dimensions. As it stands (26) is obviously adapted to
the second interpretation, where 8 is the direction of
scattering. In the first interpretation 0 must be con-
nected with the distribution of energy between the
stripping fragments. In order to work out this connec-
tion it is convenient to revert to Eq. (18). In the
neighborhood of a point Eo with coordinates (17), the
exponential in (18) can be approximated by a plane
wave exp{is(xcose+y sin8)}. If we reintroduce the
original coordinates m and v, this goes over into

exp {i~L(cose+sine) uj(cose—sin8) vj}. (29)

Let us call the particle with the coordinate I the
proton and the particle with the coordinate v the
neutron. Then their respective momenta are given by

p =~ (cos8+ sine),
30p'= a (cos8—sine).

If we square both equations and add, we obtain
—,'(p'+p") =z'=E; p~'=&(2E—p')'. Solving for cose,
we get cose= (P+P')/2~ or

»m
~
Py(p)

~

'= 2k(p+k)L(k+~) (k+p) (k—p)'j-',
(24)

Eo&0, p= real, p'&~'

j.
o (8+)=—Lp~(2& —p')"j

2K
(31)

t=xk ~ Ep+0 (25)

from which it follows that t goes from 0 to 1 as Ep goes
from 0 to 00. Inserting Eq. (24) into Eq. (19),

(1—t t 1—cose.(8) = Ic(8) I'= )
(26)

mx 1 t' cos'8 1+t—cose

~n~'=(1 —t)', a,&0. (27)

In order to check (26) and (27) we can investigate the
conservation of current condition in the xy plane.
The current of f;„is simply kC '= (1—t2) i; that for a
plane wave of total energy Ep is simply I{:. Hence, the
condition of conservation of current becomes

(1—
~
n ~') (1—t2)-:=. o(e)de.

Equations (26) and (27) satisfy Eq. (28).
The cross section for the stripping reaction is o(8)

as given by (26). Here it should be remembered that the
original Hamiltonian admits of two diferent interpreta-
tions: (a) as describing two particles in one dimension
as stated above; (b) as describing one particle in two

It is convenient to introduce the dimensionless
variable

There are two solutions corresponding to the positive
or negative sign of p'.

Finally, we obtain for the probabilities W~(p),
W (p) that the proton emerges with momentum p,
and the neutron is scattered backwards, or correspond-
ingly forwards:

W, (p) =a(e,) ~dk, /dp~ =o(8,)(2Z—p2)
—',

(32)
W (p) =a(e ) ~

dk /dp i

=~(8 ) (2Z —p')-:.
Since o.(8) increases with decreasing cose, and

cos8 &~cos8+, 8' is always larger than 8'+, i.e., for a
given proton momentum, p, the neutron always prefers
to be scattered forward. From (26) it can be seen that
8'+=0 for cos0=1, i.e., if both particles are scattered
backwards with equal momenta. Since in this case they
must remain close to each other, they would form a
deuteron and it was to be expected that the stripping
cross section is zero. 0. is largest for cosg= —l, which
means that there is always a preference to forward
scattering of both particles with equal momenta. This
eGect becomes more and more pronounced for high
energies.
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