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A Note on the Scattering of Electrons from Atomic Hydrogen
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The distortion of atomic hydrogen by a slowly moving electron at a large distance from the center of the
atom is examined. The problem is the initial phase of a previously described method for the calculation of
electron scattering which takes this distortion into account. The initial (static) problem is solved analytically
and extended to include higher order effects of the interaction of the electron with the atomic cloud. The
construction of a wave function to describe scattering starting from the solution of the static problem is
clarified. This yields as an incidental result a new approximation of the second order perturbation energy
associated with the above distortion. A short discussion of the present experimental results for this scattering
process is included.

1. INTRODUCTION the total orbital angular momentum is equal to the
angular momentum of the (partial wave) of the bom-
barding electron.

The di6'erent methods can be classified according to
the assumptions made regarding the structure of
+(rt, rs). One of the simplest methods is to assume
+(rt, rs) =N(rt)C'o(rs), where C'o(rs) is the ground state
of the hydrogen atom. ' Note that this form is unsym-
metrized and therefore does not distinguish between
singlet and triplet scattering. The variation with respect
to e(r&) yields as its Euler-Lagrange equation the
Schrodinger equation for an incident electron in the
averaged central field of the unperturbed hydrogen
atom. This method has accordingly been called by
Bransden et al. the central field approximation. '

Morse and Allis' introduced a symmetrized form of
the wave function (exchange approximation)

A N earlier paper' presented a method for calculating
the elastic scattering of slow electrons from atoms,

with special emphasis on the distortion of the target by
the incoming electron. Roughly speaking, the mecha-
nism of accounting for this distortion is adiabatic in
that the atom is assumed to follow the instantaneous
motion of the scattered electron. Mathematically, how-
ever, there are several ways of formulating this idea,
which have given rise to various adiabatic" theories
of scattering. EVhen hydrogen is the target atom, the
relationship of these methods becomes particularly
clear. This introduction will be concerned with sketching
and relating some of these various methods. Thereafter
we shall be concerned with obtaining analytic results
relevant to the method of I in the case of hydrogen and
extending the method to include additional physical
effects. The practical significance of the higher order
corrections, it must be emphasized, is uncertain. This
is because nonadiabatic e6'ects are certainly important
corrections. ' These corrections, however, will be differ-
ent for the diferent adiabatic theories.

Most of the methods which have been tried in the
low-energy scattering problem can be related to each
other within the framework of the variational form of
the Schrodinger equation:

+(rl r2) +(rl)@0(r2)++(r2)c 0(rl) (1.2)

The resulting Euler-I agrange equation is integro-
di8erential in nature and has been solved numerically.
The symmetrization has a larger e6'ect on the phase
shift than it does on the energy levels of bound states.

To take into account the distortion of the atom by
the incident electron, a potential energy term repre-
senting the interaction of the electron with an induced
dipole in the atom has been added to the Kuler-
Lagrange equations of both the central field' and
exchange approximations. ~ In the manner used by
Bates and Massey this term is of the form rr/(rts+d') ',
where n is the polarizability of the atom, and d is a cut-
off parameter inserted to prevent this term from
diverging at the origin. The addition of such a term to
the equations arising from the exchange approximation
has been called the exchange-adiabatic approximation
by Martin et al. '

' J. Holtsmark, Z. Physik SS, 437 (1929).
4 Bransden, Dalgarno, John, and Seaton, Proc. Phys. Soc.

(London) 71, 877 (1958).This paper will be denoted as BDJS.
~ P. M. Morse and %. P. Allis, Phys. Rev. 44, 269 (1933).' J. Holtsmark, Z. Physik 66, 47 (1930).
7 D. R. Bates and H. S. W. Massey, Proc. Roy. Soc. (London)

A192, 1 (1947).
Martin, Seaton, and. Wallace, Proc. Phys. Soc. (Z.ondon) 72,

701 (1958).

8

8 ~~ 4*(rt, rs)LII —Ef+(rt, rs)drtdrs ——0. (1.1)

H is the complete Hamiltonian of the (two-electron)
system in the field of the nucleus, E is the given total
energy, and %(r&, r&) is the desired wave function. The
spin states of the electron pair can be treated separately
by assigning the symmetry of the spatial wave function,
+(r&, rs), under the permutation of rt and rs (symmetric
for singlet and antisymmetric for triplet spin state). The
wave function can also be treated separately for diGer-

ent values of the total orbital angular momentum. If the
target hydrogen atom is in its ground state (1s), then

'A. Temkin, Phys. Rev. 107, 1004 (1957). This paper will be
referred to as I, and the equations referring to it will be prefixed
by an I.

M. Mittleman and K. Watson, Phys. Rev. 113, 198 (1959).
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The procedure of I takes the distortion of the atom
into account by modifying the Ansatz for the wave
function in the variational principle (1.1) rather than
by the addition of an ad hoc term in the one particle
Euler-I, agrange equation. The modification consists of
adding to 4'0(rz) of Eq. (1.2) a function of rz which
depends pararnetrically on the position of the incident
electron r, . (This method will accordingly be called the
method of polarized orbita. ls.) The determination of
this function is equivalent for large r1 to first order
perturbation theory for the distortion of the atomic
cloud by an incident electron, as will be shown in
Sec. 2. More specifically, the treatment of I only con-
sidered the dipole part of the interaction between the
electron and the atom a,nd determined the function
numerically. This contribution can be found analytically
in the case of hydrogen and the method can be extended
to include higher multipoles. With this modiied Ansatz,
the Euler-iagrange equation contains dipole and, if
desired, higher multipole terms representing the inter-
action of the electron with the atomic cloud.

This multipole expansion is equivalent for large r1 to
the second order perturbation energy of a static electron
with the atomic charge cloud. However the expansion
is an asymptotic series unless one restricts the integra-
tions over r2 in deriving these terms. In Sec. 3 it will
be shown that such a restriction yields an expansion
which is convergent for all values of r1. Although this
series does not converge to the value of the second order
energy, a numerical comparison with the latter (which
has been calculated by Dalga, rno and Lynn') shows

that it is a more accurate approximation than various
other approximations which have been used.

An additional fea, ture of the method of polarized
orbitals is the appearance of exchange polarization
terms in the Euler-I. agrange equa, tions in addition to
the dipole polarization potential. These terms arise
because the function expressing the polariza, tion of the
atom also occurs with its arguments exchanged in the
symmetrized form of the varia. tional Ansatz )see Eq.
(2.1)). To include the effect of these terms in a treat-
ment which does not utilize fully-antisymmetric wave
functions, in the exchange-adiabatic approximation for
example, would clearly require an admixture of excited
states, which would be interpreted as nonadiabatic
perturbations. Thus it is likely that the conditions for
the validity of the Born-Oppenheimer approximation
are less stringent when exchange is included than when

there is no exchange. ' The exchange polarization terms
have been found to have an important efI'ect on the
phase shifts. '

Section 4 contains a remark concerning the current
experimental situation.

~ A. Dalgarno and N. Lynn, Proc. Roy. Soc. {London) A70, 223
(1957}.

2. RELATION OF PERTURBATION THEORY TO
THE DETERMINATION OF THE

POLARIZED FUNCTION +&I'")

The method of I utilizes as the variational Ansatz
the wave function

zz(rg)
+(r~, rz) = -)co(rz)+4&&"&(rg, rz))

u(rz)
Leo(r~)+C'&&"&(rz, r,)). (2.1)

Co is the ground state wave function of the hydrogen
atom, and 4&&"'&(r, ; r,) represents the distortion of this
state by an incoming electron at the/@ed point r&. The
determination of C&o'"(r~, rz) was called the static
problem. We shall now investigate its connection with
perturbation theory.

The stationary state wave functions of hydrogen will
be written

u„((rz)
I )„(r,)= I') (Qz).

r2
(2.2)

LIn this notation &'0 of (2.1) becomes C'zoo j The u„~(rz)
satisfy

(2.3)

where

(2 4)

(Our units are lengths in Bohr radii: ao=h'/me', and
energy in Rydbergs: 1 ry= (2maoo/Iz') '.)

The perturbation potential due to an incident electron
at r1 iedld~ng its interaction with the nuclear charge is

(2.5)

The erst order perturbed wave function of electron 2

due to this potential is

(ufO~ V(r„r,')
~

1OO)

4 (rl r2) C'100 (rz) —P 4 to(rz). (2.6)

In (2.6) the z axis of r, has been taken along r~, rz' is the
variable of integration. In order to establish the corre-
spondence with the static problem, we shall now write
an approximate form of (2.6) consistent with the fact
that we are interested in P(rz, r,) for points r~)rz. The
exact form of the matrix element in (2.6) is (for lWO)
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(rdOI V(rr, r2') I100)Vi (02) we can reduce (2.10) to the set of equations

1 rI

N„i(rs')r2"pro(r2') dr2'
d' 2 l(3+1)

+
f2 1'2

—01 Ni. z(r2) =2rs'Ni, (ro). (2.12)

1 2
+r1

~

21 i(r2 ) Nlo(r2 )dr2 Pi(cosi)2)
2

l+1 (42r)-'*

=—Q(rr) Pi(costs).
(42.):

(The spectroscopic notation /=s, p, will be used
interchangeably with /=0, 1, .) From (2.11) one
can see that the dominant contribution to DC comes
from the l=1 term. The equation for it can be re-

(2.7) written with the help of (2.3) in the form

In the limit rr ~ ~ the second integral in (2.7) vanishes.
Our approximation is

+Vi, „(r2) mr, 1 (r2) =2rser, (r2), (2.13)

QO

Q(ri)= N. i(rs)r2 N10(f2)rff2'
~ l+1 g

where
2

V„,(r,)= ui, (r2) +—.
Ni (r2) dt2 'f2 (2.14)

(~ilr2'il 10).
k+1

(2 g)

LThe l=O term of (2.6) drops out in this approxima-
tion. g Calling the wave function resulting from (2.8)
4 (rr, r2), we have

Equations (2.13) and (2.14) are a special case of the
type of equations which Sternheimer" used in the
calculation of atomic and ionic polarizabilities Lsee
I (3.19) and I (3.21) for 22=1, l=0, /'= 1(. A solution
of (2.13) which vanishes at r2 ——0 and r2= ~ can be
found":

ei, „(r2)=2e "'(2r2'+r2'). (2.15)
f(rl r2)=41(rl r2)

(Note that ur, (r2) =2roe "' )Stern. heimer's equations
for higher multipoles is therefore equivalent to (2.12),
the solution of which is

2 Pi(cos02)
=4'100(&2)—P

1=1 r '+' (42r)'*

(r 1+2 r 1+1)
u„ i(r2) =2e-"

I +
El+1

(2.16)(~tl r2'&I 10)
X p (~ i(r2)/r2). (2.9)

n=l+1 6n Thus from (2.11)

It must be emphasized that 4 (rr, r2) is equal to p(rr, r2)
only in the limit rj —+ ~, and it is meaningful as an
approximation only when r~) r2.

It is well known that the summation in (2.6) for the
first order perturbed wave function is a formal expan-
sion of the solution of a differential equation for
ip(rr, rs). This equation cannot be easily solved; how-
ever the equation corresponding to approximation (2.9)
can be readily solved. This not only bypasses the
necessity of performing the sum over 22 in (2.9), but it
will enable us to establish the connection with the
approach of I to the static problem.

One can then verify that D4'=—4'100(r2) —4 (rr, rs)
satisfies the differential equation

00

4'(r1 r2) 4100(r2)
l=j Py~+»

(rs'+' rQ ) Pi(cos82)
Xe—"'I +—

I
. (2.17)

(4w)-'*

Comparing this with (2.9), we see that Sternheimer's

approach is equivalent to summing over e in that
expression.

We can comment on the remark made above that
the same procedure could in principle be followed in
solving for the exact first-order wave function p(rr, r2)

of (2.6). The difhculty there is that one must use the
complete decomposition of the perturbation V(rr, r2), of

2 ~ y2'—722———01 64=2 P 4100(rs)P1(cos02). (2.10)
l=l y, l+1

(4rr) '

' R. M. Sternheimer, Phys. Rev. 96, 951 (1954)."Iam indebted to Mr. J. L. Hammersmith of the U. S. Naval
Research Laboratory for the analytic solution of this equation.
The solution, however, has been obtained by Foley, Sternheimer,

Th js e uat ion can be s j d b nd Q@
and Tycko, Phys. Rev. 93, 734 (1954},and others, all in different
contexts. PA bibliographical review i's contained in L. C. AllenI egendre Polynomials. Thus, letting (unpublished). g Similarly (2.17) was independently obtained by
A. Dalgarno and A. Stewart, Proc. Roy. Soc. (London) A238,
269, 276 (1956). The effectiveness of the differential equation
approach to perturbation theory has also recently been stressed
by C. Schwartz, Ann. Phys. 6, 156 (1959), in which this example

~l has also been worked out.
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which the right-hand side of (2.10) is only the part for
r»r2. This gives rise to two equations of the type
(2.12) for the two regions fl)f2 and fl(f2. The solu-
tions in these two regions must be appropriately
matched. This has been discussed in detail in Sec. 4 of I.
The point here is that the approximation implicit in
considering only (2.12) is more sharply defined in the
perturbation theory approach through (2.8). From
either point of view, however, the meaningfulness of
(2.17) even as an approximation is certainly restricted
to the region r~&r2.

The value nl(00) coincides, as it should, with the atomic
polarizability n =4.5ao'.

Disregarding its significance as a polarizability poten-
tial, one can consider the quantity —ni(fi)/fi' as a
first approximation to the second order energy, E2(fl),
associated with the perturbation (2.5). A better approxi-
mation can be obtained by including higher / terms in
(2.17) retaining in each the step function 0(fl,f2). This
yields a new approximation to E2(f,) which we shall
call E2"(fl). One finds that

3. DIRECT POLARIZABILITY POTENTIAL

The dipole part (/=1) of AC of (2.11) is essentially
the solution of the static problem of I, and thus it is
the C(i"" of (2.1). The additional restriction fl) f2 was
incorporated in I by a prescription eliminating certain
terms which arose in the Euler-Lagrange equations
coming from the Ansatz (2.1)."This prescription can
be succinctly incorporated in O'I"" itself by the use of
the step function

with

Oz r& ——

0!i Fy
E2"(fl) = —2

g ~ 2l+2

(21+2)!(3+2) 8(l+2)e "'
E(E+1)22i+'

~ 2l+2 y 2l+1
1

X
2 (3+1)(2P+5l+2) 2 (21+2) 2'

(3.4)

(Elff2) 1 fl) f2

=0, rg(r2. (3 1)
fi2'(2t+1) fi2' '(2t+1) (2l)

el&0")(rl, r2) can then be defined Lthe subscript 1 is
added to indicate that we only include the k=1 term
in (2.11)]by

C»(0aii (rl ~ r2) =—0(fl f2) Ql (f2) Pl (cose12)
(3.2)

f,' f, (4~)~

2 Is&1

f2gl, (f2) Nl ~ (f2)df 2

3 0

9 2 ) 9
=———e "I fl'+ fl'+9fl'—

2 3 E. 2
27 27 27t

+—fi'+—fl+—i. (3.3)4)
'~ The mathematical transcription of this restriction is confused

in I. This confusion led to the retention of incorrect exchange
polarization terms there, so that curve (b) in Fig. 3 of I is not
quantitatively justi6ed. However, as we used a smaller value of
the polarizability and as the exchange polarization terms tend to
offset the effects of the direct polarizability term, ' it may be
that the curve (a) or (b) is still a good estimate of the s-wave
scattering from oxygen.

where Oi2 is the angle between ri and r2. The variational
principle (1.1) with the wave function (2.1) then yields
an Euler-Lagrange equation without any unwanted
terms. It should be noted that in the exchange term of
(2.1) the arguments of the step function in Csl(l"" (r2, rl)
must also be interchanged.

Among the terms arising in the Euler-Lagrange
equation for N(fl) is a direct polarizability potential of
the form —u(fl)/fl', with

2
i21(fl) f2ll (f2)+1 ls(f2)0(fi, f2)«2

3~0

(21+1)!
+ .+

22l+3
(3.5)

(21+2)!(1+2)
E (asymP) (fl)—

l i(i+])22l+lf 2l+2
(3.6)

which is to be cut off at its smallest term.
Similarly the direct polarizability potential coming

from the Ansatz

+'—= (N(rl)/fl)f(rl, r2)a (2i(r2)/f2)p(r2, rl), (3.7)

where P is the first order wave function given in (2.6),
coincides with the second order energy, E2(fl), which
has been calculated by Dalgarno and Lynn. ' The
various polarizability potentials are given numerically
in Table I, including in the last column the phenomeno-
lagiCal ei/(fl2+d2) 2 patential With if = 1.5 aS adOpted by
BDJS in their p-wave calculation. It should be noted
that the entries under E2"(fl) contain only the first
four terms of (3.4). Since the remaining terms make a
positive contribution, column three is a lower limit of
E2"(fl). One can convince oneself that E2(fl) is an
upper limit of E2"(fl). Therefore the agreement be-
tween E2"(fl) and E2(fl) is even better than the
numerical comparison in Table I would indicate.

'3 A. Dalgarno and J. Lewis, Proc. Phys. Soc. (London) 69, 57
(1956l.

This series converges for all values of ri as opposed to
the series obtained by neglecting the step function.
The latter may be obtained by letting fl —+ sc in (3.5),
giving the asymptotic series'3
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TABLE I. Comparison of various direct polarization potentials.
(Rigorous and approximate expressions of the second order per-
turbation energy. )'

&'1 +2(&1)
from

Dalgarno
and Lynnb

r1482("& )(&- 1)
from—r 14R2~ (r1) Dalgarno

from and Lewis&
Eq. (3.4) Eq. (3.6)

nr 14/(r 12+d&) &

n1(7 1) n =4.5,
Eq. (3.3) d =1.5

1
2
3
4
5
6
7
8
9

10

0.39862
2.24816
4.16113
5.00429
5.11606
4.99838
4.87067
4.7751
4.70745
4.6659

0.194
1.67
3.54
4.60
4.92
4.92
4.84
4,77
4.707
4.665

2.25
6.37504
6.97685
5.69395
5.37806
5.0798
4.89180
4.78044
4,71152
4.662

0.146715
1.27950
2.81569
3.82265
4.27378
4.43395
4.48256
4.49574
4.49902
4.49979

0.47605
1.8432
2.880
3.4588
3.78754
3.986159
4.11355
4.19953
4.26004
4,3044

a Columns 2 and 4 have been computed from Table I of reference 9.
Column 3 includes the sum of 4 terms in (3.4).

b See reference 9.
& See reference 13.

There are additional eGects in the distortion of the
wave function of the orbital electron, 2, by the potential
(2.5) which can be evaluated in higher order perturba-
tion theory. The effects of these additional corrections
upon the energy have also been investigated by Dal-
garno and Lewis. "They show that in the asymptotic
region (large ri) these terms make only a small con-
tribution to the energy. For example, third order per-
turbation theory yields as its first term one proportional
to r1

—7, and fourth order starts as ri '. This shows,
however, that the corrections to the polarization poten-
tial in the asymptotic region from each order of per-
turbation theory are expressible, as in second order
perturbation theory, as a series in inverse powers of r~.
It is clear that the sequence of terms to be added to the
dipole polarization potential as corrections should be
characterized only by the inverse power of each term
rather than the order of perturbation of theory from
which it arises. Thus r1

—' term of third order perturba-
tion theory should be included before r&

—' of second
order perturbation theory, and the latter should be
included simultaneously with the r1 ' correction of
fourth order perturbation theory.

This consideration that the various orders of per-
turbation theory get intermixed in the region of large r&

probably applies even more forcefully in the region of
small r~. Furthermore in this region the nonadiabatic
corrections will have their most important effect. Thus
the Ansatz (3.7) for the complete wave function is not
necessarily better than (2.1). The physical approxi-
mation which led us t.o the generalized form of (2.1)
in I was that the main eGect on the phase shift in the
region of smaller r1 was dominated by the interaction
of the scattered wave with the nuclear charge. Accord-
ing to this assumption it should not make much differ-
ence in the phase shift whether one uses 4" or 0' in the
variational principle as long as these functions are
appropriately symmetrized. For as poor as these func-
tions may be in the regions r1—0, r2—0, r1—r&, they are
likely to be better approximations of the exact wave
function if they have the correct symmetry than other-

wise. This implies then that it is not the exact form of
the direct polarization potential for small values r1
(as long as the potential vanishes in some reasonably
fast way as ri —+0) but. rather its accuracy for larger
values of rr and the consistent incorporation of the

exchange polarization, terms which are important for the
adiabatic description of scattering. It is in this latter
respect that the exchange-adiabatic approximation
(which includes no exchange polarization t.erms) falls
short.

4. THE EXPERIMENTAL SITUATION

The experimental situation at the present time is
uncertain because of an apparent discrepancy between
the results of Bederson, Malamud, and Hammer, "and
Brackmann, Fite, and Neynaber. "The former find a
resonance in the total elastic scattering cross section
with a peak value of 100xuo' at an incident electron
energy of 3 ev. The most extensive calculations for the
scattering in the energy range of these experiments are
1.hose of JAIassey and iVIoisiewitsch" (s-wave) and
BDJS'" (s- and p-wave). The lat, ter also include an
estimate of the contribution of the higher waves based
on the Born approximation, which yields a negligible
amount at these energies. Brackmann et a/. " have
looked at the scattering in a right circular cone at 90'
to the incident beam. The spread in their data is such
that there is agreement with the calculated values of
both Massey and AIoisiewitsch and BDJS, the agree-
ment with the latter being somewhat better. The
extrapolation of the experimental results to the total
cross section necessitates some assumption about the
scattering in the other parts of the scattering sphere.
However, the resonance of Bederson et ul. at 3 ev is
about 30% higher than the maximum possible for
s- and p-wave alone. "If one assumes that the difference
is due to d-wave scattering, then one can show that
there is a d-wave phase shift which will give approxi-
mate consistency among the phase shifts of BDJS,' the
data of Brackmann et al. ,

" and those of Bederson
et al."At slightly higher energies exact consistency can
be obtained. For example, at incident energy of 5 ev,
if q~ and qg+ represent the triplet and singlet st;attering
phase shifts, respectively, measured in radians, then it
may be verified that the phases &0 =1.91, p& =0.45,
its+= 1.09, iii+=0.04, taken from BDJS, and il;

—= 2.16,
q~+=0.98 will give a total cross section 0-=50ma02 in
accord with Bederson et al. ,

" and mill give a cross

"Bederson, Malamud, and Hammer, Bull. Am. Phys. Soc. 2,
122 (1957); Technical Report No. 2, Electron Scattering Project,
College of Engineering, New York University (unpublished)."Brackmann, Fite, and Neynaber, Phys. Rev. 112, 1157 (1958).

"H. S. W. Massey and B. L. Moisiewitsch, Proc. Roy. Soc.
(London) A205, 483 (1951).

'VKazem Omidvar, New York University Research Report
No. CX-37 (unpublished); Bull. Am. Phys. Soc. 4, 281 (1959),
has given a phenomenological, nonadiabatic method to account
for the BMH resonance. It should also be pointed out that the
results of BMH, although well known to the workers in the 6eld,
have not as yet been published.
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section of 1.4n.a02 in the cone of observation of Brack-
mann et u/. , which is within their experimental spread
of points. The destructive interference between the
s and d waves at right angles to the incident beam is
such as to reduce the scattering there relative to the
forward and backward directions by a factor of twenty.
These d-wave phase shifts, however, are at least an
order of magnitude larger than what is expected on the
basis of the Born approximation. ' A calculation of the
phase shifts using the method of polarized orbitals is in
progress here.

The importance of complete experimental results can
be appreciated when one realizes that the assumptions

regarding the structure of the wave function that have
thus far been made in the scattering problem are still
extremely crude compared to what has been done in
the bound-state problem.
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Lifetime of the 2S State of Atomic Hydrogen*
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A sensitive test for any mixing of the 2S~a and 2Pg state of atomic hydrogen is the measurement of the
rate for single-quantum decay of the 2S atom to the ground state. A new upper limit of this decay rate
has been determined. A section along a beam of 2S atoms, produced by electron excitation of a ground-state
atom beam, was viewed by an iodine-vapor-filled ultraviolet photon counter, which responds to the Lyman-
alpha radiation of the single-quantum decay process. From the counts observed when an electrostatic
quenching 6eld was superposed on the counter's field of view, the necessary experimental parameter (product
of 2S atom current and counter efFiciency) was determined. With the Field removed, a portion of the re-
maining counts could be ascribed to quenching on collision of the 2S atoms with residual gases in the vacuum
chamber, the quenching cross sections for which were measured. The decay rate not ascribable to known
quenching effects was 420 sec . Since unknown quenching eHects may have been operative, this figure
must be considered only as an upper limit for the natural single-quantum decay rate.

I. INTRODUCTION

ECENTLY Salpeter pointed out that if a perma-
nent electronic electric dipole moment were to

exist, one manifestation of it would be a shortening of
the lifetime of the 25~ metastable state of atomic
hydrogen. ' Its presence would mix the metastable state
with the 2I'~ state, and the lifetime would be inter-
mediate between the —,'sec associated with the two-
photon decay' of the 25 state and the 1.6)&10 '-sec
lifetime of the P state. Clearly, by measuring a lower
limit of the natural lifetime of the 2S~ atom for single-
quantum decay, an upper limit for the strength of any
perturbation of a fundamental kind, such as that
produced by an electronic electric dipole moment,
becomes, in principle, determinable. The present paper
describes an experiment which yieMed a lower limit of
2.4 msec for the lifetime of the 25 atom and in which

the cross sections for quenching the metastable atoms

* This research was supported by the Advanced Research
Projects Agency through the OAice of Naval Research.

' E. E. Salpeter, Phys. Rev. 112, 1642 (1958).' J. Shapiro and G. Breit, Phys. Rev. 113, 179 (1959).

in collisions with several common gases were deter-
mined.

II. EXPERIMENTAL APPROACH

A schematic diagram of the experiment is shown in
Fig. 1. A beam of ground-state hydrogen atoms was
produced from a furnace source and a fraction of these
were excited by electron impact to the 25 state, in a
manner similar to that used by Lamb and Retherford. '
In the present case, however, the initial ground-state
hydrogen atom beam was modulated at 100 cps by a
chopper wheel so that ac as well as dc measuring
techniques could be used. The 2$ atom hearn was then
passed t.hrough two successive electrostatic-field quench-
ing regions. In the second of these regions, the field was
produced by a pair of parallel plates, a known portion
of the region between them being viewed by an iodine-
vapor-filled ultraviolet photon counter. 4 Since the range
of this counter is from 1050 A to $270 A, the detected

~ AV; E. Lamb, Jr. , and R. C. Retherford, Phys. Rev. 79, 549
(1.950).

4 Brackmann, Fite, and Hagen, Rev. Sci. Instr. 29, 125 (1958).


