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The origin of the large tetragonal distortions which occur in a
number of transition metal oxides having the spinel structure has
been examined recently by Dunitz and Orgel in terms of the
crystal field theory. According to these authors the macroscopic
distortions arise as a consequence of a Jahn-Teller type distortion
in the immediate environment of certain transition metal ions.
Thus, all the observed large distortions in spinels have been corre-
lated with the results of this crystal field treatment on the basis
of the spatial ordering of the local distortions.

In this communication we investigate the detailed properties of
the transformations from tetragonal to cubic phases which are
observed at elevated temperatures. An approximate model has
been constructed which explicitly takes into account the inter-
actions between local Jahn-Teller distortions about neighboring
octahedral site cations. The configurational energy of the model
has been derived in a completely general form in terms of occupa-
tion variables, and has been used to deduce the structure of the

stable low-temperature phase. By the use of the usual methods of
statistical mechanics it has proved possible to derive the thermo-
dynamic behavior of the model, and hence to contribute to an
understanding of the cooperative nature of these phase trans-
formations. The temperature and composition dependence of the
long-range order parameter, the thermodynamic functions, and
the lattice parameters are calculated explicitly. The principal
result of importance is the demonstration that the transformations
from tetragonal to cubic spinel phases are thermodynamic transi-
tions of the first order type. That is, a latent heat, a volume dis-
continuity, lattice parameter discontinuities, and a lambda
anomaly in the heat capacity are to be observed at the trans-
formation temperature. The available experimental evidence
supports the conclusions drawn from the theoretical model. The
agreement between theory and experiment is found to be semi-
quantitative in most of the cases considered.

I. INTRODUCTION

HK origin of the large crystal distortions which
occur in certain transition metal compounds has

been examined by several investigators. Goodenough
and Loch' have discussed the large distortions from
cubi& to tetragonal symmetry in a number of spinels
from the point of view of the ordering of square covalent
bonds about the transition metal cations in octahedral
sites. Goodenough' has also analyzed similar distortions
occurring in the perovskite-type manganites in terms of
the ordering of covalent and semicovalent bonds.
Adopting the point of view of the crystal field theory, '
McClure' has suggested that distortions from cubic
symmetry will occur whenever there is a large Jahn-
Teller distortion in the ligation of the transition metal
cations. Dunitz and OrgeP have recently provided an
exhaustive analysis of the distortions in transition
metal oxides in terms of the crystal field theory.
Emphasizing the role of the Jahn-Teller e8ect, they
have constructed a table of the type and magnitude of
distortions that can be expected in both the octahedral
and tetrahedral ligations of all the transition metal
cations. With these results Dunitz and Orgel have
succeeded in correlating all the observed large distor-
tions in transition metal oxides with the occurrence of
the appropriate Jahn-Teller type distortion. In addition, .

* A short account of some of this work has already appeared:
J. A pl. Phys. 30, 30S (1959).

. B. Goodenough and A. L. Loeb, Phys. Rev. 98, 391 (1955).' J. B. Goodenough, Phys. Rev. 100, 564 (1955).' For a review of the crystal field theory see W. Moffitt and
C. J. Ballhausen, Annual Review of I'hysiccl Chemistry (Annual
Reviews, Inc. , Palo Alto, 1956), Vol. 7.

4 D. S. McClure, J. Phys. Chem. Solids 3, 311 (1957).
s J. D. Dunitz and L. E. Orgel, J. Phys. Chem. Solids 3, 20

(1957).
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they have shown the equivalence of the results of
Goodenough and Loeb to the consequences of the more
general crystal Geld theory.

Even though the origin of the crystal distortions is
now clear, the work of the above authors does not
explain the transformations from distorted to cubic
phases which are observed in many transition metal
compounds at elevated temperatures. Apart from the
suggestion that covalent bonds or local Jahn-Teller
distortions must order cooperatively below some trans-
formation temperature to produce a noncubic phase,
this aspect of the problem had not been treated in
detail. Finch, Sinha, and Sinha, ' on the other hand,
recognized the resemblance of certain experimental
lattice parameter curves on ferrite-manganite systems
to those obtained in studies of the order-disorder and
ferromagnetic problems. Following Goodenough and
Loeb, they attempted a calculation of the temperature
and composition dependence of the lattice distortions
from a consideration of the number of covalent bonds
oriented in "right" and "wrong" directions (by analogy
with the order-disorder theory for binary alloys). It
shall be shown in this paper, however, that the treat-
ment of Finch et a/. is inadequate, and that certain
conclusions which can be drawn from their equations
axe in disagreement with the experimental results.
Thus, an understanding of the variation of crystal
distortion with temperature and composition has not
yet been obtained.

In the present communication we wish to investigate
the detailed properties of the transformations from the
low-temperature distorted structures to the high-tem-

Finch, Sinha, and Sinha, Proc. Roy. Soc. (London) A242, 28
(1957).
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perature cubic phases. Concluding with Dunitz and
Orgel, and McClure that the origin of the distorted
structures is the Jahn-Teller effect, we have constructed
an approximate model for the system which takes into
accourit the interaction between local distortions about
neighboring transition metal cations. By the use of the
usual methods of statistical mechanics it has proved
possible to derive the thermodynamic behavior of this
model, and hence to contribute to an understanding of
the cooperative nature of these crystal transformations.
This paper treats the model for the spinel structure,
while that required for the perovskites will be described
separately. 7 Furthermore, we are concerned here only
with those spinels having distorting cations on the
octahedral sites alone (e.g. , Mns04, ZnMns04, CuFesOq,
etc.); the more general case will form the subject of a
separate investigation.

Section JI is dev'oted to a brief review of the' Jahn-
Teller eGect followed by a detailed description of the
model for the spinels. In Sec. III, the Hamiltonian of
the system is derived, and from it is deduced the
structure of the distorted phase which may exist at low
temperatures. Section IV contains a mathematical
treatment of the thermodynamic properties of the
model by the general methods employed in the study
of cooperative phenomena. Explicit consideration is
given to the temperature dependence of the free energy,
entropy, internal energy, heat capacity, and lattice
parameters. Section V outlines the calculation of
Sec. IV for the case where nondistorting cations dilute
the active compound. ; the composition dependence of
the transformation is thus obtained. A comparison of
the theoretical results with the experiments to which
they apply is presented in Sec. VI.

The principal result of importance in this investiga-
tion is the demonstration that the transformations from
tetragonal to cubic spinel phases are thermodynamically
of the erst order. That is a latent heat, a volume dis-
continuity, lattice paranieter discontinuities, and a
lambda anomaly in the heat capacity are to be ob-
served at the transformation temperature.

II. THEORETICAL MODEL

To begin, we review the action of the Jahn-Teller
effect in causing the large crystal distortions by sum-
marizing the main conclusions presented by Dunitz and
Orgel. s According to the theorem of Jahn and Teller,
molecules with orbitally degenerate electronic ground
states are unstable in the symmetric configuration. The
molecule will always find at least one vibrational
coordinate along which it can distort to split the
degeneracy and lower its energy. In the octahedral
transition metal complexes, those cations having one,
two, four, six, seven, and nine 3d electrons will have

' P. J. Wojtowics, Bull. Am. Phys. Soc. 4, 63 (1959).' H. A. Jahn and K, Teller, Proc. Roy. Soc. (London) A161,
220 (1937).

orbitally degenerate ground states. It is only for the
3d' (Cr'+ Mn'+, Fe'+) and 3d' (Cu'+) configurations
where the degeneracy occurs in the strongly anti-
bonding orbitals, that the distortions are large, however.
For these two cases the commonly observed distortions
are of the prolate tetragonal type; the octahedron is
elongated so that now four ligands lie close to the cation
while two are farther removed. The opposite distortion,
giving two close and four distant ligands is also possible,
but does not seem to occur (in spinels, at any rate).
Opik and Pryce' have ascribed the greater stability of
the prolate tetragonal distortion to the anharmonic
nature of the electrostatic forces acting between the
central cation and the ligands. In a more complete
analysis Liehr and Ballhausen" have shown that either
distortion may occur depending on the exact nature of
the cation-ligand interaction. In this paper, we shall
consider only the elongated distortion, the generaliza-
tion to the other case being straight forward if required.
Furthermore, there are three equivalent tetragonal
distortions, one along each of the cubic axes, and in
the isolated complex each will occur with equal proba-
bility.

In a crystalline material the situation is made com-
plicated by the interaction of neighboring distortions,
and it becomes necessary to examine the problem in
terms of the details of specific lattice structures. In the
ideal cubic AB204 spinel structure" the oxygen ions
form a cubic close-packed lattice with the A and 8
cations occupying, respectively, the tetrahedrally and
octahedrally coordinated interstices. The octahedral
sites may be subdivided into four interpenetrating non-
equivalent face centered cubic lattices, and a 8 cation
in any one such sublattice has six 8 neighbors, two
from each of the other sublattices. For the purposes of
this investigation it is convenient to view the spinel
lattice simply as a collection of octahedral transition
metal complexes centered on the 8 ion sites, the apexes
falling on the cubic close-packed anion positions. The
octahedra are then seen to pack in such a way that each
complex shares two oxygen ions with each of its six
neighboring complexes.

Now, in such a cubic system, each 8 transition metal
ion will be subject to a crystalline electric field of
octahedral symmetry, and those whose electronic con-
figurations were listed above will possess orbitally
degenerate ground states. To satisfy the Jahn-Teller
theorem each such cation must distort its immediate
environment, the distortions presumably being of the
same type as in the free complexes. Since the octahedra
about the cations share ligands at their edges, the dis-
tortions in neighboring complexes must interfere with
each other. At high temperatures, where this interaction

' U. tupik and M. H. L. Pryce, Proc. Roy. Soc. (London} A238,
425 (1957).

"A.D. Liehr and C. J.Ballhausen, Ann. Phys. 3, 304 (1958)."The geometry of the spinel lattice has been described in detail
by K. W. Gorter, Philips Research Repts. 9, 295 (1954).
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is of little importance, each complex will distort inde-
pendently, all three equivalent tetragonal distortions
again occurring with equal probability. Furthermore,
the orientations of the distortions are rapidly inter-
changed by means of the lattice vibrations, and at any
instant an equal number of complexes are distorted in
the three cubic directions. The structure is described as
being statistically cubic; to a diffraction experiment the
crystal will indeed appear to be cubic, although re-
quiring an abnormally large vibrational correction.
Upon lowering the temperature, the interactions be-
tween distortions begin to dominate, and the probability
of a given distorted complex being oriented in a certain
direction now depends on the orientations of at least
those neighboring complexes with which ligands are
shared. A short-ranged ordering of distortions may then
occur. Finally a temperature is reached, below which
minimization of the free energy is accomplished by
minimizing the interaction energy between local dis-
tortions rather than by a maximization of the entropy
(disorder). The distortions will form a superlattice,
ordering in such a way as to provide the least inter-
ference between neighboring complexes. A macroscopi-
cally distorted phase thereby results. The exact nature
of such a transformation cannot, of course, be inferred
from these and previous considerations. In this paper
these heretofore lacking details will be derived from our
model, a description of which now follows.

The basic unit of the model, chosen to represent the
complex formed by a transition metal cation and its six
ligands, is the simple rigid octahedron. Because of the
Jahn-Teller effect each octahedron is given a prolate
tetragonal distortion so that there will be one long and
two short axes. The magnitude of the distortion is
assumed to be a constant independent of the tempera-
ture and the orientation of neighboring distortions. The
model for the spinel (A ions not included) may now be
constructed by centering these basic units on the points
of the four 8-ion fcc lattices with the axes of the
octahedra directed along the cubic directions. Each
octahedron shares an edge with six neighboring octa-
hedra. If the octahedra were undistorted a cubic
structure would result. Since the octahedra are dis-
torted, this structure will not, in general, possess cubic
symmetry. It is convenient, however, to define a set
of pseudo-cubic axes with respect to which it will be
possible to specify the orientation of the octahedral
axes. Within this framework it is easily seen that the
octahedra are constrained to only three approximately
definite orientations. The long axes of the octahedra
may be directed (exactly, or very nearly so) in the x,
the y, or the 2' directions of the pseudocubic coordinate
system defined by the stacking of our basic units.

The essential feature of the model is the pairwise
interaction of neighboring Jahn-Teller distortions. As-

suming that only nearest neighbors interact appreciably,
we find that there are four diGerent pair potentials
depending on the relative orientation of the octahedra

involved. The possibilities, along with the resulting
pair interaction potentials are depicted in Fig. 1 where
the octahedra are schematically represented by drawing
their three mutually perpendicular axes (these are
equivalently the six cation-ligand bonds, four short and
two long). The magnitudes of the potentials V» and V»
should be small as the Jahn-Teller distortions do not
interfere with each other in these configurations. In the
configurations leading to the potentials V2~ and V2~,
the distortions do interfere with each other, and con-
siderable strains are induced in the structure about the
two cations involved. The potentials V2~ and V22 are
therefore larger in magnitude, and it is reasonable to
order the pair potentials as follows: V~2& V~~((V22& V2~.

We shall further assume that the pair potentials are
constants, independent of the temperature and the
orientations of other octahedra in the neighborhood of
the pair in question. Moreover, an analysis of the
detailed nature of these interactions in terms of more
basic principles shall not be undertaken at this time.

In addition to the assumptions already discussed, it is
important to indicate several other approximations
made in the construction of this model. For simplicity
the inhuence of the lattice vibrations is completely
neglected. It is known, ""however, that although the
lattice vibrations may contribute profoundly to co-
operative phenomena, the eGect is not such as to alter
the qualitative character of the transformation. Thus
this theory would predict a first order transformation
even if the lattice vibrations were included; the exact
values of the derived thermodynamic functions would,
of course, be changed. The interaction between the
octahedra and the tetrahedrally coordinated A ions is
also neglected. But since these will be nondistorting
cations in the systems of interest, it is reasonable to
suppose that these interactions will depend little on
the orientations of the octahedra. Also ignored are the
small trigonal distortions induced in the octahedra by
deviations of the oxygen parameter, I from the ideal
value of 0.375.

12 2I 22

I2 II 22 2I

I'"ro. i. The four possible pair interactions between octahedra
in the spinel. The octahedra are schematically represented by
their axes, one long {heavy) and two short. The dashed lines are
the shared octahedral edges.

"K.F. Stripp and J. G. Kirkwood, J. Chem. Phys. 22' 1579
I,'1954).
"P.J. Wojtowicz, thesis, Yale University, 2956 (unpublished).

III. THE HAMILTONIAN

The Hamiltonian for a particular configuration of the
crystal is the sum of all the nearest neighbor pair
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interaction potentials appropriate to that configuration.
The enumeration of the pair potentials is facilitated by
the division of the system of octahedra into the four
face-centered 8-ion sublattices of the spinel structure.
The four sublattices may be classified according to the
(110) directions along which the lines of centers be-
tween neighboring octahedra are found to fall. Figure 2
shows the arrangement of nearest neighbors about a
site of sublattice 1, while Table I gives the directions of
the lines of centers for neighbors between all pairs of
sublattices. The directions are labeled both by the
usual Miller indexes and in the more convenient (p,p')
notation. The (p,p, ') direction is defined to be the direc-
tion of the sum of unit vectors pointing in the p, and p'
cubic directions. We note that the lines of centers
between a given site and the two nearest neighbors
from the same neighboring sublattice are collinear.
Furthermore, there will be Ã/2 sites in each sublattice
so that we treat a mole of transition metal spinel,
28204 (1V is Avagadro's number).

The many possible configurations of the system may
be completely specified by the use of a set of occupation

, (7oi)
/

r (oui)

FIG. 2. The arrangement of nearest neighbor B sites about a
B site of sublattice 1. The open circles are the oxygens while the
hatched circles represent cations. Each cation is labeled according
to the sublattice on which it resides.

variables defined as follows:

'1, if site i on sublattice s is occupied by an
p, '(v) =1 octahedron distorted in the v-direction,.0, otherwise,

where i=1, , 1V/2; s=1, 2, 3, 4; and v=x, y, s.
From their definition, it is seen that the occupation
variables must satisfy the relation:

P„p (v) =1, (s=1, 2, 3, 4), (i=1, , 1V/2), (1)

since an octahedron in any one site must have a single
deFinite orientation with respect to the pseudocubic
axes. Further,

TABLE I. Directions of lines-of-centers of neighboring octahedra
between all pairs of sublattices.

Sub-
lattice

None
(T~O) (—~, y)

3 (011) (y, z)
4 (Tot) (—~, s)

2

(110) (—*,y)
None

(101) (x, 8)
(o11) (—y, x)

(011) (y, ~)
(101) (x, s)

None
(110) (x, y)

4

(101) (—x, s)
(o11) (—y, «)
(110) (x, y)

None

These satisfy the relations:

P X "=P X "=s/3, (all st pairs), (3)

since each site has s/3= 2 nearest neighbors from each
of the neighboring sublattices. The direction of the line
of centers of a pair connected by a nonvanishing 'A;,"
may be obtained by reference to the s-t element of
Table I. For example, the line of centers of a pair con-
nected by )I,;P' lies in the (011) or (—y, s) direction.

The configurational potential energy for any pair of
sites i, j in the crystal may be written in the form

p (v))~;,"pj'(v') V(v, v'; p, ,p'),

where p (v) and p (v') specify the orientations of the
octahedra at i and j, and where X;;" discards those
terms for pairs which are not actually nearest neighbors.
V(v, v', p,p') is the pair interaction potential resulting
from the contact of a pair of octahedra distorted in the
v and v directions, respectively, and having their line
of centers along the (p,p') direction (the p and p' being
taken from the s telement of T-able I). Now, it was
shown in Sec. II that there are only four diferent
possible values for V(v, v'; p,p, ') depending on the rela-
tive orientation of the pair under consideration. Table II
lists the pair potentials appropriate to the diGerent
combinations of indexes (v, v'; p,p') generated by the
various configurations of pairs in this system. The
results are easily verified by examination of Fig. 1. For
each neighboring pair i, j in the crystal, there will be
nine terms of the form shown above since there are
three allowed orientations for each member of the pair.

TAm, z II. Pair potentials resulting from different relative
configurations of neighboring octahedra.

the energies of these configurations, it is necessary to
introduce another set of two-valued variables, the
nearest neighbor selector factors which are defined by

'l, if site i on sublattice s is a nearest neighbor
to site j on sublattice t.

.0, otherwise.

P;p. (v)=)V, ', (v=x, y, z), (s=1, 2, 3, 4), (2)

where E,," is the number of octahedra on sublattice s
with long axis oriented in the v-direction. A specifica-
tion of the values of tile 6Ã occupation variables com-
pletely determines the configuration of the system.

To obtain the Hamiltonian function which determines

Configuration

P= V QP)P
P=P =P Ol P
P =++V QP
P=P QV QP,
V —++V =P
V=@ QV =P

~(. '~e')
V11
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Only one of the nine will be nonvanishing, however;
by their definition, the occupation variables will discard
those terms not actually describing the true situation.

The Hamiltonian function can now be constructed
by summing the interaction terms for all pairs in the
system, taking proper account of the entires in Tables I
and II. The procedure is straightforward but tedious,
and shall not be displayed here. A simplified form of the
Hamiltonian can be obtained, however, by making use
of the relationships satisfied by the occupation variables
and nearest neighbor selector factors, Eqs. (1) to (3).
Upon collecting terms, the result is

2+s(2V21+ V12)+ (V11+V12 2V21)p

+ (V22 V12)g
4 N/2

p =E Z p'(~)) "p'(~)
sgt i, j

4 N/2

q= 2 2 &*~'6"(p)p~'(p')+p" (p') p~'(p) J,
s&t i j

where the p and p' are the (44,p') of the s felement of-
Table I, and where v/p or p, '. The erst term is a con-
stant while p and q are amenable to a simple interpreta-
tion. In each term, p, '(1)X;,"p (1) of p, 1 =1'Ap, or p'.
Referring to Table II, it is found that this combination
of indexes results from that relative orientation leading
to the potential Vii. Thus, p is the total number of
nearest neighbor pair contacts of the kind contributing
V» to the configurational energy. In each term of
q, v= p, v'= p,

' or v=p', v'=p. Table II shows that these
combinations result from that relative orientation
leading to the potential V22. Therefore, q is the total
number of nearest neighbor pair contacts of the type
contributing V22 to the energy.

The Hamiltonian function can be used to deduce the
structure of the distorted phase which may result from
an ordering of the octahedra at low temperatures. At
the absolute zero a stable, ordered crystalline phase is
characterized by having a minimum con6gurational
energy and a vanishing configurational entropy (dis-
order). That completely ordered arrangement of the
distorted octahedra which leads to a minimum in H
will then represent the low-temperature stable phase.
Since V22 —U12)0 and Vii+V12 —2U21(0, H will be
minimized when p and q are simultaneously maximized
and minimized, respectively. The only completely
ordered arrangement accomplishing this places the long
axes of all the octahedra along the same crystallographic
direction. In this case p attains its absolute maximum,
Es/3 while g is at its absolute minimum, zero. The
configurational energy of this phase is Xs(2U12+ Vrr)/3,
one-third of the neighbor contacts contributing V»,
two-thirds contributing U12. With all the octahedra
distorted in the same direction, the low-temperature
structure must be tetragonal and with c/a)1 in as
much as the individual octahedra are prolaI;ely tetrag-

onal. A number of spinels containing 3d' and 3d
cations in the octahedral sites have been found to
have the tetragonally distorted structure at low tem-
peratures. Several examples with their room-tempera-
ture c/u ratios are Mn204 (1.16),'4 y-Mn202 (1.16),"
ZnMn204 (1.14) "MgMn204 (1.15) "CoMn204 (1.15) "
and CuFe204 (1.06)."

ZN PrvQ~ expL ———PÃs(2V21+ Vi )/3],

P =L(&/2) 3'/IIII &.".
v s

Q~=P~ '2' expL W-(p, ~)3, -
JV(p)g) (Vll+ V12 2V21)p+ (V22 V12)gy

(5)

where P= 1/I4T, k being the Boltzmann constant and T
the thermodynamic temperature. The symbol P' means
a summation over the two allowed values of all 6X
occupation variables:

P' -+ P P (61' sums) P, (6)
P2'(&) =o u1'(S) =o pNg24(z) =0

subject to the restrictions expressed in Eqs. (1) and (2).
I'N is the number of distinguishable configurations for

'4 B. Mason, Am. Mineralogist 32, 426 (194'7}.
'4 E. J. Verwey and J. H. deBoer, Rec. trav. chem. SS, 531

(1936)."P. F. Bongers, thesis, University of Leiden, 1957 (unpub-
lished)."E.F. Bertaut, J. phys. radium 12, 252 (1951)."J.G. Kirkwood, J. Chem. Phys. 6, 70 (1938).

IV. THERMODYNAMIC PROPERTIES

The Hamiltonian function in terms of the general
occupation variables, Eq. (4), may now be used to form
a basis for any one of a number of techniques that have
been developed to treat the statistical mechanics of
cooperative phenomena. The most convenient tech-
nique for this problem is the method of moments de-
veloped by Kirkwood. "By using this procedure it will
be possible to ascertain the approximations made in
evaluating the partition function, and to form a frame-
work within which higher approximations may be
constructed in a consistent fashion. The first part of
the calculation involves the evaluation of an approxi-
mate partition function for a fixed but arbitrary set of
orientations, N=(E1*, Eiv, . , E4", Jtr4*), of the
octahedra on the sublattices. The equilibrium values of
the set N are then obtained by minimizing the con-
figurational free energy with respect to N. The sub-
sequent determination of the temperature dependence
of the thermodynamic functions concludes this section.

The partition function, ZN for a fixed set of orienta-
tions, N is obtained by summing the Boltzmann factor,
exp( —PH) over all the distinguishable configurations
of the system that can be generated from the set N.
Following the method of moments, this is expressed as
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the set N, and hence is the nuinber of nonvanishing M, =(V»+V» —2V»)&p)+(V» —V»)&tt),
terms generated by g'. I'& serves as a normalizing
factor for the configuration sum Qti, when PW vanishes, (p) p p &&.,(„))&gy . .«&.t(„))
Qtt reduces to unity. s&t i j

The configuration sum may be expanded in a power
series in —p in terms of the moments M„: 4 N/2 N(2

&v)= Z Z (&o"6))&E&';"~"(~'))
( p)tt

QN=Q M,
gl (7)

s&t i

N/2

+(t "(u'))&2 l 't"s»'( ))},
M„=I'N 'Q' W"=(W").

By their definition above, the moments are just the
a priori (that is, unweighted) averages of the simple
powers of 5', averaged over all the permitted dis-
tinguishable con6gurations of the system. A more useful
expansion utilizes the semi-invariants of Thiele, X

( p)ttt

Qua=exp P X
mt

The semi-invariants may be computed from the mo-
ments by equating the two expressions for Qtit and
separating terms of the same order in —p. The details
of this procedure have been published elsewhere. ""
The first few X are given by

P g=3fg,

~2 ——~2—~1,
As= Ms —3MzM1+2M1'.

2 2
(N, ")= —N,", —

E E
(12)

where Eq. (2) was used in passing from the first to the
second line above. In a similar way,

2
&E &'t"~t'(~)) =HE Z 4"~t'(~))

where the summations over s, t, and i have been re-
moved from the brackets since averages of sums are
sums of averages. In addition, since u priori distribu-
tions on different sublattices are independent, the
averages can be decomposed in products in as much as
the p' and p' refer to sites on diGerent lattices. Because
the a priori average value of p,'(te), (ce=x, y, s), is the
same for all sites i,

2 2
&o"(~))=—2 &p"(~))=HZ ~"(~))

Ã

A consistent sequence of approximations to Q& may
be obtained by retaining one, two, , e semi-invariants
in Eq. (8). We shall make use of the first approximation
in which all terms beyond X& are neglected:

2 8 22:
=—-Ãt"

E 3 3T
(13)

Qua=exp( —PX1) =exp( —PM1). (10)

The nature of this approximation is demonstrated by
examination of the form of the invariants, Eq. (9), or by
comparing Eqs. (7) and (10). In either case, it is seen
that retaining only A& is equivalent to assuming that
M =M~", all higher moments are powers of the first.
This is true if the orientations on neighboring sites are
uncorrelated, for then the averages over different sites
are independent, leading to a set of moments having no
dispersion. Thus, the approximation adopted is based
on the premise that there is little short range ordering
between neighboring octahedra; the system may be
completely described by a long range order, that is by
the set N. The present treatment is therefore analogous
to the well-known "molecular field" theory of mag-
netism and to the "random mixing" approximation in
the theory of mixtures.

The evaluation of the first moment is made straight-
forward by expression in terms of the occupation
variables:

where in this case it was necessary to use Eq. (3) in
addition to Eq. (2). Collecting terms, the value of the
first moment is

28 4

Ml= Q L(V11+V12 2V21)N Nt
3X«t

+(V» V»)(N;N +—N Np)i, (14)

where again v/p, or p, ', the p and p' being taken from
the s-t element of Table I. The configurational partition
function for the set N is then obtained (in the first
approximation) by combining Eqs. (5), (10), and (14).

The determination of the equilibrium values of the
set N is considerably simplified once it is recognized
that the twelve members of the set are not all inde-
pendent. In fact, this large number resulted only
because of the division of the system into sublattices,
a concept introduced solely for the purpose of simpli-
fying the calculation of the Hamiltonian and partition
function. Four dependent members can be eliminated
immediately by the relations

"R.W. Zwanzig, J. Chem. Phys. 22, 1420 (1954). g„N,"=N/2, (s= 1, 2, 3, 4), (15)
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Z~ ——F~ exp{—/LE(0) —2NzVa'/9]),
V= V22 —Vgg+2V2g —2Ug2) 0)

+(0) Ns( Vl1+ 2 V12+4V21+2 V22)/9p

(19)

where E(0) is the configurational energy of the ran-
domly oriented phase, 0-=0. The molar configurational
free energy, F(a) = kT 1nZ&, is given by t—he following:

F( )—F(0)= (1+2a) ln(1+2a)
2NkT/3

+2(1—a) ln(1 —a) —a'/J, (20)

F(0)=E(0)—2NkT ln3,

since the total number of octahedra on any sublattice
is fixed. Seven more members can be eliminated by
symmetry considerations. If the z direction is defined
to be the unique direction of the completely ordered
tetragonal phase, then at the absolute zero, all E,' will

equal N/2, their maximum value. Since the Hamil-
tonian is invariant to the labeling of the sublattices, "
the deviations with temperature of the N, * from N/2
are independent of lattice index s, and hence must be
identical for all temperatures, so that

(16)

Furthermore, in the perfectly ordered configuration,
the individual octahedra, the bulk phase, and the
nearest neighbor environment about any given octa-
hedron all have tetragonal symmetry with coincident
unique axes (s direction). The deviations from perfect
order must therefore occur by the orientation of the
octahedra into the x and y directions equally, so that on
each sublattice, and for all temperatures,

N, *=N, ", (s = 1, 2, 3, 4). (17)

The eleven relationships between the members of the
set N, Eqs. (15) through (17), now permit the specifi-
cation of all the configurations of the system in terms
of a single long-range order parameter 0- which may be
defined as follows:

N, *=N, =N(1 —)/6,
N '=N(1+2a)/6, (s= 1, 2, 3, 4).

0. ranges in value from unity in the perfectly ordered
tetragonal structure to zero in the randomly oriented
statistically cubic phase. Substitution of Eq. (18) in
Eqs. (5), (10), and (14) yields the partition function in
terms of 0. .'

temperatures are determined by minimizing J with
respect to a at constant J. Setting (BF/Ba)~ to zero
provides the following transcendental equation between
o. and J:

ln(1+2a) —ln(1 —a) =a/J. (21)

The multivalued solution of this equation for positive J
was obtained by numerical methods on an IBM-650
electronic computer. The results are displayed graphi-
cally in Fig. 3. The solid branches are those values of 0-

which give an absolute minimum to the free energy,
and therefore represent the thermodynamically stable
phases. The location of the transformation temperature
is accomplished by the determination of the conditions
under which a phase of finite order 0- can be in equi-
librium with the cubic phase. The usual requirement for
the coexistence of two phases is the equality of their
molar free energies. Thus, setting F(a) —F(0) to zero in
Eq. (20) and solving simultaneously with Eq. (21)
should give the transformation temperature. The ana-
lytical solution of this system of equations reveals that
at a single temperature, J~= (4ln2) ', a tetragonal
phase with 0-=

~ is in equilibrium with the cubic phase.
Reference to Fig. 3 shows that above J~ the cubic phase
alone is stable, while below J& only tetragonal phases
having 0.&2' are stable. It is therefore demonstrated
that the transformation from tetragonal to cubic sym-
metry in transition metal spinels is a first order phase
transformation.

Other thermodynamic quantities of interest may be
derived from the free energy by the use of the familiar
formulas of thermodynamics. The results for the molar
configurational internal energy, entropy and heat
capacity, respectively, are

E(0)=F.(0) 2sVsVa'/9, —

s(a) = 23NkL3 ln3 —(1+2a) in(1+2a)
—2(1—a) ln(1 —a)], (22)

4Nka'/3 J'
C(a) =

[3/ (1—a) (1+2a) $—1/J
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where Stirling's approximation was used to compute P~
in terms of a, while F(0) is the free energy of the cubic
phase, and J=3kT/sV is a reduced temperature.

The equilibrium values of the long range order for all
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~ Note that the con6gurational energy of the system, Eq. (4),
depends only on the values of p and g. These in turn are just the
number of certain kinds of interactions, and are independent of
the notion of sublattices or the labeling of directions.

FH:. 3. Long range order vs temperature by numerical solution
of Eq. (21) for positive J. The solid branches represent the
thermodynamically stable phases.
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The explicit temperature dependence of these quantities
may be calculated by the substitution of the solutions
of Eq. (21), o(J') into Eq. (22). The theoretical curve
for the heat capacity C(J) is shown in Fig. 4 where the
typical lambda shape characteristic of cooperative
phenomena is in evidence. The discontinuities in the
thermodynamic quantities at the transformation tem-
perature are computed from Eq. (22) by accounting
for the jump in g from ~ to zero. The values for the
latent heat, entropy change, and heat capacity dis-
continuity are AE= 1VsV/18, AS= 0.918 cal/'mole, and
AC= 22.4 cal/'mole, respectively.

The temperature dependence of the lattice parameters
cannot be derived from the present model of the spinel
in a rigorous way, but an adequate approximation can
be deduced from the following considerations. We shall
assume that the c and u parameters of the average
tetragonal unit cell are proportional to the mean
lengths of the octahedral axes aligned along and per-
pendicular to the unique axis (s direction). Let P„be
the probability of finding an octahedron with long axis
oriented in the u direction, and let o, and yn be the
lengths of the short and long octahedral axes. The
mean length in the s direction is rr(yP, +P +P„),while
in a perpendicular direction, say x, the mean length is

rr(yP +P„+P,). If we neglect the normal thermal
expansion of the lattice or assume that it is isotropic,
the constants of proportionality for c and for a are
equal, and it becomes possible to express the c/a
ratio as

c/a= (yP,+P,+P„)/(yP,+P„+P,). (23)

The probability I'„is just the fraction of octahedra
oriented in the t direction, equal to P, E,"/2''f. The
relationship between the c/a ratio and the long-ra, nge
order is therefore

c 3+ (y —1)(1+2o.)=1+(y —1)o,
a 3+ (y —1)(1—o)

ratio from unity. Equation (24) shows that the curve
of c/u ns T will closely resemble the solid branches in
Fig. 3, showing a finite discontinuity, A (c/a) = (y —1)/2
at the transformation temperature.

If the normal thermal expansion of the lattice is
neglected, it is also possible to derive the inQuence of
disordering on the unit cell volume. Vsing the same
procedure as above, the volume of the unit cell (equal
to ctt') is found to be proportional to the following
function of the long range order parameter:

- Ls.+:(.- 1-)s(1--s)+ (1/») (7-1)s

X (1—3o'+2o') g. (25)

The fractional volume change on passing from the
tetragonal to cubic phase at the transformation tem-
perature can be computed from (25) and is given by
Av/tt= (y —1)'/12&. For a typical case, 7=1.16, and
the fractional volume expansion predicted by the model
is 0.0018.

Having completed the thermodynamic analysis of the
model, we shall now compare these results with those
obtained by Finch, Sinha, and Sinha. ' As stated pre-
viously, these authors based their calculation on the
consideration of the number of octahedra oriented in
"right" and "wrong" directions. What they failed to
account for, however, is the fact that there are twice as
many wrong directions (x and y) available as there are
right directions (s). One must then conclude that at
the highest temperatures this model would have half
the octahedra oriented in the s direction with the
remaining half oriented in x and y (see Eq. (3) of
reference 6, P ~ 0j. It is clear, however, that the high-
temperature phase must have equal populations in all
three directions in order that the structure be cubic.

The seriousness of this error is demonstrated most
clearly upon examination of the relationship between
long-range order and temperature obtained by Finch
ef al. :

S= tanh(d(IWpS),

where (y —1) is the deviation of the octahedral axial
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FIG. 4. Theoretical heat capacity vs temperature by substitution
of solutions of Fq. (21) into Eq. (22).

where in their notation, 5 is the long-range order, and
Wp is an (undelned) interaction energy Lace Eq. (8) of
reference 6j. This form of equation is well-known in

theories of cooperative phenomena, and it has been
demonstrated" that its solution always leads to second-
order phase changes. Thus, Finch's treatment would

predict the continuous variation of lattice parameters
and the absence of a latent heat and entropy change.
The accumulated experimental evidence appears to
support our prediction of a first-order change, as we
shall show in the final section.

V. COMPOSITION DEPENDENCE

In this section we briefly consider the results ob-
tained from the theoretical model appropriate to spinels

having the formula AB2 2,C2,04, where a fraction x of

"H. N. V. Tetnperley, Chulges of Strtte (Interseienee Publishers,
Inc, , Qe~ York, 1956), p. 26.
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the octahedrally coordiriated 8 ions are replaced by the
cation C. Unlike the 8 ions, C does not produce Jahn-
Teller distortions in the octahedral sites. Distributed
randomly among the octahedral sites, the C ions merely
serve to dilute the nearest neighbor interaction struc-
ture of the 8 ions. The efficiency of the cooperative
transformation is thereby reduced; the transformation
temperature is lowered, and the maximum deviation of
the c/a ratio from one is diminished.

The Hamiltonian of this model is derived by the
same technique as used in Sec. III. The dilution of the
distorted octahedra by the regular octahedra of the C
now requires the introduction of an additional set of
occupation variables, p (0) which are defined to have
the value one when site i of sublattice s is occupied by
an undistorted C octahedron, and the value zero other-
wise. The occupation variables still satisfy Eq. (1),
except that v is now summed over x, y, s, used 0. In
addition to Eq. (2), the following sums also obtain:

P; p (0) =xX/2, (s=1, 2, 3, 4),

Q P X"=(1—x)2E.
s op-'0

(26)

The presence of the undistorted C octahedra also
introduces three new pair interaction potentials. Since
the C octahedra do not possess a unique axis, the pair
interaction potentials resulting from the nearest neighbor
contact of a 8 and C octahedron will depend only on
the relative orientation of the long axis of the 8 with
respect to the line of centers joining the 8 and C. Thus,
the potential V02 will result when ~=p or p', while Vpj
obtains when v4p or p', where again j is the direction
of the unique axis of the 8, and (p,p') is the direction
of the line of centers joining the pair in question. The
configurations leading to V02 and Voj closely resemble
those producing V» and V», respectively, Fig. 1.
Moreover, because of the lack of unique axes, the
contact between two nearest neighbor C octahedra will
always be Vpp, independent of the (p,p, ') of the pair.
With these new quantities, the configurational Hamil-
tonian of the model can be derived as before, the result
being given by

H = 2N's(2 U2l+ Vip+ x(4Vp2+ 2 Vpl —4Vl2 —2 Vpl)

+x'(3Upp —2Vpl —4Vp2+3Vl2) j
+ (Ull+ V22 2 V21)p+ (V22 Ul2) g) (27)

where p and g retain their former signi6cance, Eq. (4).
The form of II has not changed upon dilution, so that
the structure of the low-temperature phase will remain
tetragonal with c/a) 1. The maximum value of p
however, is diminished by the factor (1—x)'.

Using the same arguments as in Sec. IV, the descrip-
tion of the system can again be reduced to the specifi-
cation of the value of a single long-range order parameter
0., Because of the dilution by C, o must be renorm. al-

4$k (1—x) 'o'/3 J'
C(a,x) =

$3/(1 —o) (1+2o)j—(1—x)/J
(31)

For any value of x, the heat capacity curve will have
the same shape as in Fig. 4, except that the ordinate
and the abscissa must be properly scaled by the factor
(1—x). The latent heat, entropy change, and heat
capacity discontinuity at J& are likewise all reduced
from their corresponding "undiluted" values by the
factor (1—x).

The conspicuous appearance of the scaling factor
(1—x) demonstrates the possibility of a corresponding
states principle between the thermodynamic functions
of spinels of diferent composition x. We define a new
reduced temperature by J=J/(1 —x) and a set of
reduced molar thermodynamic functions by G=G/
(1—x), where G=ri, E, S and C. By applying these
definitions to the results of this section it is seen that
all the thermodynamic equations assume the same form
as those obtained in Sec. IV; the composition de-
pendence no longer appears explicitly having been
completely absorbed in J and the C. The corresponding

ized, so that it is now dedned by

1V,*=X,"=E(1 x) (—1—o)/6,
1V z Ã(1 x)(1+2o.)/6 (g 1 2 3 4)

(28)

Application of the moment method to first approxi-
mation for a fixed value of 0- gives the free energy of the
diluted system as

&( )—~(0)= (1—x) t (1+2~) ln(1+2o)
2cVkT/3

+2(1—o) ln(1 —o)$—(1—x) 'o'/J, (29)

where J retains its former significance, and where the
free energy F(0) now contains the additional free
energy of mixing of x moles AC204 with (1—x) moles
of cubic 28204. Differentiation with respect to a. at
constant J provides the analog of Eq. (21):

ln(1+2o) —ln(1 —o.) = (1—x)o/J. (30)

Thus for any value of x, the dependence of r on J is the
same as depicted in Fig. 3, except that the abscissa
must be properly scaled by the factor (1—x). The first-
order nature of the phase change is unaltered by the
dilution of the interactions, the parameter 0 still
changing discontinuously from —,

' to zero at the trans-
formation temperature J&. Solving for J~, it is found
that Ji (x) = (1—x) (4 ln2) '= (1—x)Ji (0), showing that
the reduction of the transformation temperature is
proportional to the dilution. The internal energy,
entropy and heat capacity may be obtained from the
free energy by the straightforward differentiation with
respect to T. The derived result for the heat capacity,
analogous to Eq. (22), is
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states principle must be used with caution, however.
An examination of the manner in which it develops
during the derivation reveals that it is a particular
consequence of the approximations used in the evalu-
ation of the partition function. If higher moments than
the first were included, terms of higher order in (1—x)
would have appeared destroying the simplicity of the
equations and preventing the use of scaling factors.
The corresponding states principle should, therefore, be
considered accurate only for small values of x.

The combined composition and temperature de-
pendence of the c/a ratio has also been computed within
the same approximation used in Sec. IV. An additional
simplification was introduced by assuming that the
axial lengths of the undistorted C octahedra are equal
to n, the length of the short axes of the tetragonal 8
octahedra. This assumption eliminates the introduction
of an additional parameter into the equations. More-
over, since we are primarily interested in the ratio of c
to a, the errors introduced by this assumption will
largely cancel out. Within this framework, the result
for c/a is
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rather that the 6rst tetragonal phases to form will
immediately possess large deviations of c/a from one.
This behavior is, of course, a direct consequence of the
6rst order nature of these transformations.

Fio. 6. The composition dependence of c/a for different tem-
peratures. The quantity (c/a —1)/(y —1) is plotted as a function
of the composition for several values of T/T, (0).

c 3+ (1—x) (y —1)(1+2o.)=1+(1—x) (7—1)o. (32)
a 3+ (1—x) (y —1)(1—o)

The temperature dependence of c/a for different com-
positions is displayed in Fig. 5 where $(c/a —1)/(p —1))
is plotted as a function of J for several values of x.
The composition dependence of c/a at different con-
stant temperatures is shown in Fig. 6. Here L(c/a —1)/
(y—1)] is plotted as a function of x for difFerent ratios
of the ambient temperature, T to the transformation
temperature, T&(0) of pure ABs04. The most prominent
and noteworthy feature of the latter set of curves is
the abrupt change in c/a at a certain critical composi-
tion characteristic of the ambient temperature. These
results show that as the composition is changed, the
onset of tetragonality will not be gradual with the
appearance of arbitrarily small values of (c/a) —1, but
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Fzo. 5. The temperature dependence of c/a for different com-
positions. The quantity (c/a —1)/(p —1) is plotted as a function
of the reduced temperature for several values of x.

VI. COMPARISON WITH EXPERIMENT
AND DISCUSSION

A list of compounds which exhibit the tetragonally
distorted spinel structure (with c/a) 1) at room tem-
perature was presented at the end of Sec. III. We shall
now consider some of these compounds individually,
comparing the properties and predictions of the theo-
retical model with the available experimental evidence.

CuFe204

Properly prepared, Cupe204 is an inverse spinel so
that half of the octahedral sites are occupied by the
distorting Cu'+(3ds) ions. The remaining cation sites
contain the nondistorting Fe'+(3d') ions. As observed
by several investigators, c/a=1.06 at room tempera-
ture. '""The transformation temperature has been
found to fall in the range, 360'C to 390'C" "The
temperature dependence of the c/a ratio has been
determined by Ohnishi, Teranishi, and Miyahara. "The
experimental points are shown in Fig. 7(a) along with
the theoretically computed curve. Equations (30) and
(32) were used to compute the curve, the two adjustable
parameters therein being given the following values:
TI=633'K and (1—x)(p —1)=0.057. The agreement
between theory and experiment is exceptionally good;
it is unfortunate, however, that not enough points were
taken near T~ so that a de6nite experimental verification
of the first order nature of the phase change could not
be established. Also included in Fig. 7(a) is the c/a vs T
data" for the compound Cupe~, SCr0 204. In this ma-

~ S. Miyahara and H. Ohnishi, J. Phys. Soc. (Japan) 12, 1296
(1956}.

"Ohnishi, Teranishi, and Miyahara, J. Phys. Soc. (Japan) 14,
j.06 (&959).~ T. Inone and S. Iida, J. Phys. Soc. (Japan} 13, 656 (1958).
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Cupel, sCro. s04 (data of reference 23). (b) The c/o ratio for
CuFe204 as a function of the fraction of Cu actually in 8 sites
(data of reference 6). See text for discussion of the theoretical
curves.

Mn304

The c/a ratio of 3JIns04 is 1.16 at room temperature. "
Because of this large distortion from cubic symmetry,
Mn304 has been assumed' ' to be a normal spinel with
Mn'+ occupying the A sites and Mn'+(3d') filling all

the available 8 sites. This assignment of configuration
is compatible with other properties of the material, and

terial a significant fraction of the Cu is present in the
tetrahedral sites"; the transformation temperature and
the limiting c/a ratio are therefore both reduced. The
theoretical curve was computed using the valuse,
T&=458'K and (1—x) (y —1)=0.043. The agreement
between theory and experiment is not as good for this
case, the reason being that the displacement of the
Cu'+ onto the A sites does not just dilute the interac-
tion between the distorted octahedra of the 8 lattice.
Ions with the configuration 3d' oblately distort the
oxygen tetrahedra about the A sites, thereby intro-
ducing new distortions and interactions which are not
accounted for in the present model.

The c/a ratio of CuFes04 has been measured as a
function of the fraction of Cu'+ ions actually in 8 sites
by Finch, Sinha, and Sinha. ' The experimental results
are shown in Fig. 7(b) along with the theoretical curve
computed from Eqs. (30) and (32) with the parameters,
y —1=0.157 and J(T„)=0.0406, where J(T,) is the
value of J at the room temperature, T„.The agreement
is remarkably good despite the neglected eAects of the
Cu'+ on the A sites.

The heat capacity of CuFe204 has been measured
over a wide temperature range by Inone and Iida. '4

The typical X-anomaly is plainly in evidence, the shape
of the experimental curve being quite similar to that
given by Eq. (22) or (31), Fig. 4. The observed heat
capacity discontinuity at 390'C is about 14 cal/mole'K
in good agreement with the theoretical value of 11.2
cal/mole'K computed from Eq. (31) with x=-', .

is consistent with similar assignments required to
explain the properties of ZnMn204 and y-Mn203. ' The
temperature dependence of the lattice parameters of
ilIn304 has been determined recently by VanHooke
and Keith. "The c/a ratio remains relatively constant
at 1.16 from room temperature to about 1000'C, after
which it declines rapidly with the eventual formation of
a cubic phase. Not enough measurements were made
near the transformation temperature to permit the
determination of the order of the transformation, but
quite signi6cantly there is a short temperature range in
which the coexistence of cubic and tetragonal phases is
in evidence. Positive proof of the first order nature of
the transformation is provided by the thermodynamic
measurements of Southard and Moore. "A very sharp
transformation is observed at 1445'K exhibiting a
latent heat of 4500 cal/mole and an entropy change of
3.11 cal/'mole. An analysis of the enthalpy data taken
from room temperature to far above the transformation
temperature reveals that there is a heat capacity discon-
tinuity at 1445'K amounting to roughly 12 cal/'mole.

Although the experimental results are found to be in
substantial agreement with the predictions derived
from the model, several significant quantitative diGer-
ences exist. The degree of disorder introduced into the
tetragonal phase is far less at T~ than predicted from
the model; the structure is still considerably ordered
before the transformation occurs. The values found for
the entropy change and heat capacity discontinuity,
being larger and smaller, respectively, than predicted
in Sec. IV also indicates that the greater fraction of
disordering occurs at T~ rather than before. Equation
(22) would predict an entropy change of 4.36 cal/'mole
if all the disordering occurred at T~.

There are several reasons why the model developed
here disorders with temperature at a rate faster than
that observed in Mn304. It has been assumed through-
out that the energy of the system could be decomposed
into a sum of pair-interaction potentials alone. The
presence of three-body potentials which favor the
ordered arrangement would tend to "stiffen" the system
and aid in resisting the thermal disordering of the
octahedra below the transformation temperature. The
thermodynamic properties of the model were further
derived within the approximation that the short-range
order played a minor role. The inclusion of higher
moments than the first in Eq. (10) to take account of
the inQuence of short-range order would most probably
have the effect of shifting the 0- es T curve, Fig. 3, to
higher values of cr near T&, thus improving the agree-
ment with experiment. This analysis of the discrepancies
found for Mn304 is also consistent with the very good
agreement obtained for CuFe204. In the latter com-
pound, only half of the 8 sites are occupied by the

"H. J. VanHooke and M. L. Keith, Am. Mineralogist 43, 69
(1958).

'~ J. C. Southard and G. E. Moore, J. Am. Chem. Soc. 64, 1769
(1942).
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distorting Cu'+ ions reducing the number of Cu-Cu
nearest neighbor pairs by @. Thus, the contribution of
possible three-body forces and/or short-range order is
minimized, and a model containing pair interactions
and long-range order alone should prove to be an
adequate approximation.
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Fro. 8. (a) The c/a ratios at room temperature in the system
(Mn~04)|, (Fe304) (~ are data of reference 27, ~ are data of
reference 6). (b) The c/a ratios at room temperature in the system
(ZnMn204)1 (GeCo204) (data of reference 28). See text for
discussion of the theoretical curves.

"McMurdie, Sullivan, and Mauer, J. Research Natl. Bur.
Standards 45, 35 (1950).

(Mns04) r, (Fes04).

The crystallographic properties of the mixed system
(Mns04) r, (Fes04) have been studied extensively, but
serious difhculties have prevented their full interpreta-
tion. The two pure compounds are known to be incom-
pletely miscible" so that there is always some doubt as
to the exact composition of phase whose tetragonal cell
edges are being measured. Even if the exact composition
of the tetragonal phase were known, there is still
considerable doubt as to the cationic and electronic
distributions among the A and 8 sites. For simplicity,
we shall assume that for all values of the over-all com-
position x, a fraction (1—x) of the 8 sites are actually
occupied by Mn'+ ions. The lattice parameters of this
system have been measured as a function of composition
and temperature by McMurdie, Sullivan, and Mauer. "
The experimental results on the room temperature c/a
ratios for different values of x are plotted in Fig. 8(a)
(a number of points obtained by Finch et al. s are also
included). The curve is computed from Eqs. (32) and
(30) usirig the following values for the parameters:
y —1=0.161 and J(T„)=0.0751.

The c/a ratios for different compositions diminish
with temperature in much the same way as pure
Mn304. The discrepancy between theory and experi-
ment lessens as x increases, however, further sub-
stantiating our notions concerning the behavior of
Mn304 as discussed in previous paragraphs. The com-
position dependence of the transformation temperature

has also been determined by McMurdie cf al." For
small values of x the depression of the transformation
temperature is proportional to dilution as predicted in
Sec. V. For larger values of x the transformation tem-
perature drops much more rapidly with increasing
dilution, so that by x=0.4 the transformations occur
below room temperature. Thus the corresponding states
principle is indeed obeyed, provided the degree of
dilution is not too great.

The crystallographic properties of several other
systems containing Mn304 plus a cubic ferrite have
been examined. In particular, Finch et al. ' have de-
termined the composition dependence of the lattice
parameters of mixtures of Mn304 with NiFe204,
MnFes04, and CoFes04. The c/u ratio of each of these
systems behaves very much like that of (Mns04)&, -
(Fe,04)„Fig.8(a), except that the break from tetrag-
onal to cubic phases occurs at a diferent value of x for
each example. The fitting of theoretical curves therefore
requires difI'erent values of the parameters p —1 and
J(T,) for each case. Since these parameters depend on
the properties of pure Mn304 alone, the necessity of
changing their values from one system to the next
suggests that our knowledge of the actual occupation
of the 8 sites by Mn'+ is indeed imprecise in these
compositions.

(ZnMns04), ,(GeM'+s04).

The problems encountered in the specification of the
cation and valence distributions in spinels containing
both manganese and iron have been fully recognized by
Kickham and Croft. In a recent study" of spinels con-
taining trivalent manganese, these authors have ex-
plicitly avoided compositions containing iron, and have
further chosen systems which appear to present little
ambiguity in the composition and cation distribution.
The lattice parameters of the system (ZnMns04)&, -
(GeMns04) were determined at room temperature;
not enough points were taken to make a good com-
parison with experiment, however. The composition at
which the tetragonal phase ceases to be stable at room
temperature is found to lie between x=0.35 and
x= 0.40.

The c/a ratios in the system (ZnMns04) &,(GeCo&04)
were measured at room temperature, " the results
being presented in Fig. 8(b). The theoretical curve was
computed from Eqs. (32) and (30) using the following
values for the parameters: y —1=0.158 and J(T„)
=0.0811. The break from tetragonal to cubic is seen
to occur between x=0.325 and x=0.35, at a value
significantly less than that observed for the previous
example. It is our belief that this difference may be due
to the presence of the Co'+(3dr) ions on the 8 sites.
The Co'+ ion has its own small but not insignificant

~ D. G. %ickham and W. J. Croft, J. Phys. Chem. Solids 7,
351 (1958).
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Jahn-Teller distortion' and could very well act to
oppose the cooperative action of the Mn'+. On the
other hand, the large difference in break points could
merely be the result of chemically inhomogeneous
experimental materials; the somewhat larger scatter of
the experimental points in these cases suggests that
this may be true (this will, of course, be a problem in
most systems studied).

The following approximate values of the transfor-
mation temperatures in the system (ZnMn204), ,-
(GeCo204) were also obtained by Wickham and Croft:
T,=1290, 790 and 710'K for x=0, 0.30 and 0.32,
respectively. Using the value of 1290 for T,(0), the
corresponding states principle predicts 903 and 877'K.
for @=0.30 and 0.32, respectively. Both' of these values
are too high indicating the invalidity of corresponding
states at these values of x (the Co'+ ions may also be
contributing to,this. discrepancy).

On the basis of their own work and the observations
of others on the manganates, Wickham and Croft" have
been led to conclude that a fraction of about 0.60 to
0.65 of the 8 sites must be occupied by distorting
cations in order for the crystal to be tetragonal at room
temperature. We should like to point out that this
"critical" fraction observed in many spinels containing
Mn'+ is strictly a property of the ratio V/kT, appro-
priate to the interactions between Mn'+ octahedra, and
does not depend critically on any specific geometric
property of the spinel 8 lattice (at the absolute zero
there will be, of course, a critical fraction which depends
solely on geometrical considerations). The difFerent

values of critical fraction actually observed are then a
reQection of the inQuence of other 8 site cations in

aiding or hindering the cooperative action of the Mn'+.
Two particularly drastic examples of such a behavior
are provided by the compounds ZnCrMn04 and
CrMn204. Although only a half of the 8 sites contain
Mn'+, the c/a ratios have been found" to be 1.04 and
1.05, respectively, at room temperature. To date, only
Cr'+ has exhibited such a dramatic eGect on the critical
fraction in the manganates, however.

The compound CuFe204 further illustrates the de-

pendence of the critical fraction on V/kT„. Fitting the
data on Cu'+ systems, Fig. 7(b), required a larger
value of V (smaller J(T„)value) than that needed in

the Mn'+ systems, Fig. 8. The interactions are thus
more effective among the Cu'+, and a smaller critical
fraction at T„is to be expected. The data of Fig. 7(b)
does indeed show the reduction of the critical fraction

to approximately 0.35. Ohnishi et u/. " have also esti-

mated the critical fraction for Cu'+ on the 8 sites to
have a value near 0.37.

NiCx204

Certain very general considerations plus the simi-

larities actually encountered in deriving the properties
of the present model and the model for the perovskites7

permit the induction of a generalized rule concerning
the behavior of a certain class of tetragonal-to-cubic
transformations. In those situations (independent of
the detailed crystal geometry) where the tetragonal
structure results from a parallel alignment of tetrag-
onally distorted basic units (octahedra, tetrahedra,
etc.), a single long range order parameter will be found
to suKce, and the derived thermodynamic equations
will have the same form as those obtained in this
investigation. The transformation from such a tetrag-
onal structure to the cubic counterpart will therefore
be a phase change of the first order. The long-range
order parameter, moreover, should diminish with tem-
perature to about half its initial value before the
macroscopic phase transformation takes place.

The compound NiCr204 provides a particularly
striking confirmation of the validity of this rule. This
compound is a normal spinel" with a tetragonal unit
celP' having c/a&1. Since Ni'+(3d') is assumed~ to
cause prolate tetragonal Jahn-Teller distortions in the
tetrahedral sites, it is clear that the bulk distortion
arises from the parallel alignment of the distortions in
the tetrahedral sites. The general rule is therefore
applicable to NiCr204.

The behavior of the transformation in NiCr204 is
especially convenient to study since the phase change
occurs very near room temperature. The temperature
dependence of the lattice parameters in a polycrystalline
sample has been measured by White" of this laboratory.
At —170'C the c/a ratio is 1.040 and is presumably at
or very near its maximum value. At 27'C the c/a ratio
is reduced to 1.022, while at 34'C the entire sample has
become cubic. Between the latter temperatures both a
tetragonal and cubic phase are present, the initially
small amount of cubic phase growing with temperature
at the expense of the tetragonal material. This behavior
is believed to be caused by composition deviations from
one crystallite to the next producing a distribution of
transformation temperatures. The significant feature of
this experiment, however, is the observation that the
c/a ratio of the disappearing tetragonal phase remains
at or above 1.016 during the entire transformation
range. Tetragonal phases with c/a ratios less than this
value are just not observed. We believe this to be the
first truly definite structural verification of the first
order nature of this kind of phase transformation. It is
also noteworthy that the deviation of c/a from unity
is actually found to diminish to about half its initial
value before the phase change takes place.

The volume discontinuity accompanying the first
order phase change in NiCr204 can be estimated from
the structure data. The calculated unit cell volumes"
display an expansion of about 2 parts in 10' as expected.
Similar measurements by Ullman32 demonstrate a unit-

"F. C. Romeijn, Philips Research Repts. 8, 3O4 (1953).~ F. K. Lotgering, Philips Research Repts. 11, 190 (1956).
3' J. G. White (private. communication, 1958).
3~ S. G. Ullman (private communication, 1958).
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cell volume expansion of about one part in 10'. Both of
these determinations are in agreement with a macro-

scopic .measurement. of the volume, Using a strain

gauge technique, the volume of a pressed pellet of
polycrystalline NiCr204 was observed to increase about
0.8 parts in 10' on passing through the transformation
temperature. "

"P.J.Wojtowicz and L. A. Zanoni (unpublished results, 1958).
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It is shown that the Bardeen-Cooper-Schrie6er and Bogoliubov theories of superconductivity predict an
isotope efI'ect which is the same for all superconductors, so long as the Coulomb interaction is neglected.
This is demonstrated by writing the system of integral equations in a mass-invariant form, and it does not
involve finding actual solutions. The theories predict that II0, T„and the energy gap at T=G are propor-
tional to M &. The inclusion of the Coulomb interaction destroys the invariance of the equations and intro-
duces deviations from the —~ ino-the exponent. The magnitude of the deviation depends on the particular
superconductor considered.

I. -INTRODUCTION
I

HE experimentally determined fact that the
critical temperature T, of a superconductor is

proportional to M & where M is the atomic mass, the
so-called isotope eKect, is one of the phenomena that
must be explained by any successful theory of super-
conductivity. ' This effect now seems to hold without
exception for the superconductors tested, Sn, Hg, . Tl,
and Pb. For the recent theory:of Bardeen, Cooper, and
SchrieGer, ' the proof of the isotope eGect as given by
these authors is based on an approximate solution.
First the electron-electron interaction is set equal to
zero if either electron in either the initial or 6nal state
is outside a certain region R about the Fermi surface.
It is then found that T, is proportional to the width of
R in terms of the energy. This width is taken to be
(jtco)s„,an average phonon energy, which' is proportional
to M:. Hence the isotope effect follows. The proof is
thus directly dependent on the choice for the width of
the interaction range R. This particular value for the
width is taken since the phonon part of the electron-
electron interaction changes from a negative to a posi-

' I"or a discussion of the experimental results and references to
the literature, see B. Serin, Homdbech der Physc?c (Springer-
Verlag, Berlin, 1956), Vol. 15, p. 237. The most recent work 'ore

Pb' is by Hake, Mapother~. and Decker, Ph.ys. Rev. 112, 1522
(1958).

s Bardeen, Cooper, and Schrieffer, Phys. Re'v. 108, 1175 (1957);
referred to as BCS.' J. Bardeen and D. Pines, Phys, Rev. 99, 1140 (1955); re-
ferred to as BP.

tive quantity if the energy change of one of the elec-
trons becomes larger than the phonon energy corre-

.sponding to the momentum transferred. However, it
does not seem justifiable to discard the interaction
where it is repulsive. Besides, for the Bardeen-Pines
interaction' the phonon part becomes repulsive when
the energy digeremce becomes larger than )'tco, whereas
BCS cuts oG the interaction if either electron energy
falls outside R.'

Ke give here a proof of the isotope eHect for the BCS
and Bogoliubov theories which is based on the invari-
ance properties of the Bogoliubov'-Valatin' integral
equations under changing mass and does not involve
finding explicit solutions. Neglecting the Coulomb inter-
action, the isotope e6ect can be demonstrated by this
method even when band structures, anisotropies, and
the functional dependence of tt(t) L2tc(0) is the energy
gap j are considered as well as the exchange energy by a
Hartree-Fock approximation. It is found that T„HO,
and the energy gap at T=0 are all proportional to 3f &.

It has been pointed out by J. Bardeen |,'private communica-
tion) that the scale of energies is determined by Acr since it is the
only energy which enters the-problem. Thus even if there is a
distribution of frequencies, the energy scale is proportional to
M &. Despite these general arguments, it seems desirable to the
author to see the proof carried through explicitly. The author
wishes to thank Professor Bardeen for communicating this
argument.

s N. N. Bogoliubov, Nuovo cimento 7, 794 (1958);Bogoliubov,
Tolmachev, and Shirkov, A Rem Method in the Theory of Super-
condgctceity (Consultants Bureau, Inc. , New York, 1959).

c J. G. Valatin, Nuovo cimento ?, 843 (1958).


