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ionized halogen ions and n conduction electrons per
unit volume. We assume that the density of the centers
is sufficiently small for interactions between them to
be neglected, and that the mobility of an electron is
much larger than that of an ionized center. Since a
doubly ionized halogen ion has an effective charge +2e,
it exerts a Coulomb attraction on the surrounding
electrons. The lifetime of a center is (a) the time that
a,n electron takes to reach the center, plus (b) the time
that an electron takes, once in the immediate neighbor-
hood of a center, to be captured. A lower limit is
obtained if we neglect the latter. The average time for
an electron to reach a center may be estimated very
simply. At the time t=-0, the closest electron to a given
center is about [(4m/3)nl ' cm away. This electron
will be attracted toward the center with a force 2e'/Er'
and move toward it with a velocity pE=2pe/Er'.

Here IC is a dielectric constant and p, is the mobility of
an electron. The time for the electron to reach the
center is

r +g2
7=

~0 2pe S~epm

where r= L(4'/3)eg '.
I or NaCl at 200'K, the high-frequency dielectric

constant E 2, and @=40 cm'/v-sec, ' which gives
7 105/e sec. If et&10'~/ cm', then r) 10 '2 sec, and
it is thus very likely that a doubly ionized halogen has
time to escape into an interstitial position. It should be
possible to estimate e by measuring the electrical con-
ductivity of a crystal during irradiation. Such meas-
urements are now in progress.

9 A. G. Red6eld, Phys. Rev. 91, 753 (1.953).
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A procedure is outlined for evaluating the spatial diffusion coefficient of magnetization of spins on a rigid
lattice. The temporal recession of a spatially sinusoidally varying magnetization is analyzed, and is reduced
to the problem of finding a function whose moments are known. An unambiguous value of diffusion coef6cient
can be obtained but the possibility of a complete lack of diffusion cannot be ruled out.

OME years ago Bloembergen' pointed out that cer-
tain spin relaxation. phenomena could be explained

if it was assumed that energy can be spatially trans-
ported in the spin system of a rigid lattice via mutual
spin Aips of near neighbors, brought about by the
dipole-dipole interaction. He was able to make a rough
estimate of the diffusion coe%cient, but eGorts to
improve on his theory have failed because of the
inapplicability of perturbation theory to this pi'oblem.

In many cases it is diAicult, if not. impossible, to
prove theoretically whether or not such spin diffusion
actually occurs, ' but if we assume that it does, then it is

possible in principle to find a unique value for the
diffusion coefficient D. XVe consider for simplicity the
high-6eld case, for which total M, is conserved, and for
which the Hamiltonian can be suitably truncated. ' It
suffices to consider a single spatial Fourier component
of the spin magnetization. At time t=0, we assume
lV =Mp+C(0) sinkx. Such a nonuniform magnetization
could be produced by adding a nonuniform field to the
uniform high field for t&0 and switching this added
field oG at t=0. According to the usual diftusion equa—

' N. Bloembergen, Physica 15, 386 (1949).
~ P. W. Anderson, Phys. Rev. 109, 1492 (1958).' J. H. Van Vleck, Phys, Rev. 74, 1168 (1948).

tion, C(t) will decay exponentially for t)0 with time
constant v '= Dk2. We asslike that this is the case, and
find that the consequences of this assumption are con-
sistent with a certain rigorous quantum calculation
provided k ' is large compared to the interspin distance.
The resulting diAusion coe%cient D can be regarded as
an upper limit and is probably the true one for those
cases in which spin diffusion actually does occur.

We consider the time derivatives of C(t) at 3=0;
these can be calculated assuming that the system is
described for t=0 by the density matrix

where
p A (1 aC/kT+BU), —

U= Q j S111kXgSgg

Here A and 8 are suitable constants, K is the Hamil-
tonian' of the spin system for t&0, 5„ is the 2' com-
ponent of spin angular momentum operator for the jth
spin, and x; is its r, coordinate. The fact that (1) is

written as a series rather than an exponential form
implies that we are considering the high-temperature
limit only.

The expectation value of U, TrUp(t), is proportional
to C(t); thus the derivatives of C at 3=0 can be calcu-



316 ALF RED G, REDF I EL D

I.O

I'xG. j.. Behavior
of various functions
discussed in the text.

where CA»]r=LA»]i [A»]s=—LA CA 81]~ etc. U'sing

the fact that the truncated BC commutes with total 5,
and that the trace on the right-hand side is, on the
average, an even function of x;—x;, and assuming that
the spin system is macroscopically homogeneous, we can
reduce (6) to

—(ik)'"Ms„g; TrS '
= 2 P;; [sin-', k(x;—xg)] Tr[ae,S„][3'.,S„]„. (7)

lated. ' Odd derivatives vanish and the even derivatives
Ms —= (d'"C/dt'")/C(0) will be discussed below. ~e
immediately see that C(t) cannot be exponential; in-
stead we may hope that its behavior is exponential for
time greater than some time T,((7-, for time less
than T;, C(t) must depart from exponential behavior
to have zero first derivative at 3=0.

C(t) is analytic and has a normalized Fourier trans-
form A(s&):

C(/) =C(0) A ((v) cos(u/d(o. (3)
0

The 20th moment of A (co) is (—1)"M,„.If one assumes
that C(t) is nearly exponential, A(&u) will be nearly
Lorentzian, except for co& T, ', where it will be cut oG

(Fig. 1).Thus we can write2r/s.
A(~) = g(~), (4)

1+hi T

where g(a&) equals unity for co =0 and is a function which

approaches zero for a&&~ T; (see Fig. 1). Since cssA(ce)

~(2/s. ~)g(ce) for &o) r ', we have

Ms (2/ r)sg(ce)des,

for g&&T;; therefore v and thus D can be determined if
the shape of g(co) is known. But the 2mth moment of g is

approximately given by j Ms„+s/Ms ~, and the shape of g
can in principle be determined from its moments.

In order to be consistent, D must be independent of k,
so 7 ' and all the 3E2„must be proportional to k'.
We have

(ils)'"Ms„p; (sinkx;)' TrS.P
=g;; sink@; sinks; Tr[K,S„]CK,S„.]„, (6)

4The reasoning used here is similar to that used in treating
free-induction decays in magnetic resonance. See, for example,
I.J.Lowe and R. E.Norberg, Phys. Rev. 107, 46 (1957);R. Kubo
and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

For the usual dipole-dipole and exchange interactions,
the trace on the right-hand side decreases rapidly with
increasing x;—x;, so that only nearby spins i and j
need be included in the double sum. Thus (7) is pro-
portional to k' for k ' much larger than the spacing
between spins, This condition also leads to v-)&T;

(T; is of the order of the nearest neighbor inter-
action Ts), so that the assumption of spin diffusion is
indeed consistent with the calculated M2„.

The theory can be applied to the low-field case and
to spectral diffusion' "by suitable modifications of K
and U. The low-field case appears to be straightforward,
but the results of the spectral-diffusion calculation are
complex and the interpretation obscure.

When applied to an electronic spin system with

static microscopic inhomogeneous (hyperfine) broaden-

ing, this theory predicts spatial diffusion even for spin-

spin interaction much smaller than the hyperfine

broadening, in disagreement with the natural inter-

pretation of experiments' on spectral diGusion and with

other more sophisticated theoretical work. ' A partial or
complete lack of diffusion means C(eo )&0, A (0)
singular. A true singularity appearing in A (0) at ~=0
would be virtually impossible to distinguish from a
Lorentzian peak at co(~ ' by means of a moment
calculation.

Nevertheless, we may hope that in cases where

diffusion does occur, the present formalism would

apply. The best quantitative experimental comparison
would be with angular' and field' dependence of TJ„ in

ionic crystals. The actual calculation of the 3f2„and
g(&u) would be difficult but does not appear to be out
of the question.

ACKNOWLEDGMENTS

I wish to thank P. %. Anderson, N. Bloembergen,
and M, Bloom for their comments.

' G. Feher (to be published).
A. Portis, Phys. Rev. 104, 584 (1956).
G. D. %atkins, thesis, Harvard University (unpublished).
N. F. Ramsey and R. V. Pound, Phys. Rev. 81, 278 (1950).


