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Theory of Surface Modes of Vibration in Two- and Three-Dimensional
Crystal Lattices~

RICHARD F. %ALLIS
United States Nava/ Research Laboratory, 8"ash& sgton, D. C.
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Theoretical expressions have been developed for the frequencies and displacements of the normal modes
of vibration for two- and three-dimensional alternating diatomic lattices with free boundaries. Only square
and cubic lattices are considered. Nearest-neighbor Hooke s law forces having both longitudinal and trans-
verse components are assumed. The results have been obtained both by a perturbation method in which the
ratio of the transverse and longitudinal force constants is treated as a small quantity and by a Green's
function method. The use of the free boundary condition leads to the existence of surface modes of vibration
in which the displacement amplitude is relatively large for a light atom on a boundary and decreases roughly
exponentially toward the interior of the lattice. A band of surface mode frequencies lies in the "forbidden"
gap between the acoustical and optical branches.

I. INTRODUCTION

N understanding of the eGects of free surfaces on
the normal Inodes of vibration of crystal lattices

is important in the investigation of such subjects as the
infrared lattice vibration spectra of crystals and the
specific heats of very fine powders. In a previous paper'
it has been shown that one-dimensional diatomic
lattices with free ends and nearest neighbor Hooke's
law interactions may possess one or possibly two
"surface" modes of vibration, i.e., modes in which the
displacement amplitudes are relatively large at one or
both ends of the lattice and decrease roughly exponen-
tially toward the interior of the lattice. The frequencies
for these surface modes lie in the "forbidden" gap
between the acoustical and optical branches. If all the
atomic masses are made equal so that a monatomic
lattice results, the surface modes pass over into ordinary
wave-like modes.

In the present paper an investigation is given of
surface modes in finite square and cubic lattices of the
sodium chloride type using the model discussed by
Rosenstock and Newelp and by Montroll and Potts. ' It
is assumed that each atom interacts only with its
nearest neighbors according to a Hooke's law force.
This interaction contains both central and noncentral
components. Instead of the usual cyclic boundary
condition, the free boundary condition is employed in
which atoms on the surface are assumed to interact
only with their nearest neighbors on the interior of the
lattice and are otherwise free.

II. THE ROSENSTOCK-NEWELL MODEL

The equations of motion for the atoms in the Rosen-
stock-Newell model of the diatomic square lattice with

*A preliminary account of this work was given at the Chicago
Meeting of the American Physical Society, March 27-29, 1958
[ Bull. Am. Phys. Soc. Ser. II, 5, 110 (1958)].

' R. F. Wallis, Phys. Rev. 105, 540 (1957).'-H. B. Rosenstock and G. F. Newell, J. (.:heal. Phys. 21, 1607
(1953).' E. K. Montroll and R. H. Potts, Php s. Rev. 100, 525 (1955);
102, 72 (1956).

free boundaries can be written as
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where n and z are the x and y components of the dis-
placement of an atom from equilibrium and the
quantities j and k are integers specifying the position
of an atom in the lattice. The mass nz has the value
m& if j+k is even and the value ms if j+k is odd. The
quantities 0- and v- are the Hooke's law force constants
for the central and noncentral interactions, respectively.
The Kronecker h's in Eqs. (1a) and (1b) are introduced
to take into account the free boundaries at the edges
j=1, 2&V and k=1, 2'. Equations (1a) and (1b) may
be easily generalized to give the equations of motion for
the diatomic cubic lattice of the NaCl type with free
boundaries.

The Rosenstock-Newell model has a number of
realistic features. For example, it possesses resistance
to shear in contrast to a model with only nearest
neighbor central forces. A great advantage of the
Rosenstock-Newell model is its mathematical simplIcity
which permits one to carry out a fairly complete
analysis without excessive labor. On the other hand, the
Rosenstock-Newell model has a number of drawbacks.
The equations of motion show an unrealistic lack of
coupling between the displacements in the x direction
and those in the y and s directions. The presence of only
tvro force constants implies a relationship between the
three elastic constants @11, el~„and c44 which is not
necessarily satisfied by real cubic crystals. Furthermore,
the Rosenstock-Newell model does not possess rota-
tional invariance.
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A. Monatomic Simple Square and Simple
Cubic Lattices

Exa,ct expressions can be obtained for the normal
mode frequencies of the Rosenstock-Newell model in
the monatomic cases. Taking ns =m~= m2= m in
Eqs. (1a) and (1b), the normal mode frequencies for
the monatomic simple square lattice are specified by

4|T 'T

oP =—sm'(pz/2)+ —sm'(yo/2),
m 0'

(2a)

In spite of these difficulties, however, it is felt that an
investigation of the Rosenstock-Newell model can yield
qualitatively correct information concerning certain
types of surface modes of vibration.

the localized modes which arise. 'I'he perturbation
treatment has the advantage of being applicable to
lattices which are finite in all dimensions, but it is valid
only if r/ois sm. all. The Green's function method, on the
other hand, is not restricted to small values of r/o, but
the calculations can be carried through in detail only if
the lattice is finite in one dimension a,nd infinite in all
other dimensions.

a. Perturbation Theory

From Eqs. (1a) and (1b) one sees that the motions in
the x and y directions are not coupled. One can therefore
restrict one's eGorts to the x direction and obtain the
motion in the y direction by inspection from that in
the x direction.

By making the substitutions
where

pz =nzzr/2N, 0 &~nz ~& 2zV 1—(2b)

yo nozr/2N——) 0~& no &&2N 1. —(2c)

zz, &
——Umz lA;q exp(i&A), j+k even (5a)

N, z= Umz lA;I, exP(i&st), j+k odd (Sb)

I p=0 (4a)

v, &
——V cos(j——,') ooz cos(k ——,') q & exp(z~f), (4b)

where U and V are arbitrary constants.
One sees from Eqs. (2) that all normal mode fre-

quencies lie in a band of width 2[(o+r)/m]*'. It is clear
from Eqs. (3) and (4) that all normal vibrations are
wave-like in character and that none have the exponen-
tial drop-oG with distance from the boundary charac-
teristic of surface modes. This result has been previously
noted by Kaplan. 4

The preceding results can readily be generalized to
the simple cubic monatomic lattice using the Rosen-
stock-Newell model. One again finds that all modes are
wave-like in character and that there are no surface
modes.

B. Diatomic Simple Square Lattice

The problem of finding exact solutions to the equa-
tions of motion for the finite diatomic simple square and
simple cubic lattices is considerably more dificult than
for the monatomic case. So far we have been unable to
find exact solutions for the finite diatomic lattices and
have been forced to make use of other methods of
attack. One method is to treat the ratio r/o as a small

quantity and use perturbation theory. A second pro-
cedure is to regard the surface as a "defect" in an
otherwise perfect lattice and exnploy the Green's
function method of KIontroll and Potts' to investigate

4 H. KaPlan, Bull. Am. Phys. Soc. 2, 147 (1957).

The corresponding displacement amplitudes a,ssociated
with the normal modes can be written as

zz, ~,
——U cos(j—-', ) q z cos(k ——,') ooz exp(ioot), (3a)

(3b)

where Mo and M& are independent of r/o. The matrix'

Mo consists of 2)I| &(2)V dimensional matrices along the
main diagonal with all other elements zero. Each
2g&(2E matrix is the matrix which must be diagonal-
ized to obtain the normal mode frequencies of the linear
diatomic chain with nearest neighbor Hooke's law
interactions. One can verify this by observing that if
r/o is zero, Eqs. (1a) reduce to the equations of motion
for 2X independent linear diatomic chains of 2Ã atoms
each. Since exact solutions to the linear diatomic
chain problem have been given in previous work, '
the exact eigenvalues and eigenvectors of Mo can be
written down immediately.

There are 2Ã eigenvectors of Mo which correspond
to surface modes of the 2E linear diatomic chains. The
elements foriV of these eigenvectors may be written as

A o; z, o'(s, q') =cm, i (—1)~
—

'(mz/mz) & '8,o, (7a)

Azj o (s,q') =cmz'( 1)'(m&/m—z)&'8,o, 1(~j~(fV, (7b)

where q' is an odd integer in the range 1~&q'~&2'. The
normalizing constant c is given by

c= ([mzmo/(mz —mz) j[1—(m, /mz)-' j)—'. (7c)

For the remaining lV eigenvectors, q is an even integer
in the range 1 ~& q'~& 23T and the masses m~ and m2 should
be interchanged in Eqs. (7). The eigenvalue of Mo

where the A;~ are time-independent amplitudes and U
is an arbitrary constant, the solution of Eqs. (1a)
becomes equivalent to the diagonalization of a matrix
M called the dynamical matrix, whose dimensions are
4lV')&4)7' and whose eigenvalues are the values of co'.

The quantities A;~ form the elements of the normalized
eigenvectors of M.

The matrix M can be written as

M =Mo+ (r/o) Mz, (6)
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corresponding to each of the 2Ã surface-mode eigen- The values of p are determined by solving the trans-
vectors of Mo is cendental equation'

oI, = 0 (mz+m2)/mzm2.

There are also 2'(2' —2) eigenvectors of ilI2 which
correspond to wave-like modes. Their elements are
given by

A2; I, ,'(22, II') =c'mrs{sin(2j —1) 22

—x sin(2 j—2) t2}8„., (9a)

A», ,'(p, q') =c'm2*'{2," ' sin2 j22—sin(2 j—1)22}8«,
1~& j~& 1V, (9b)

c'= (2/zV) '{mzL1—22: coste+x2j
+m2$1 —22:—' cos2+x '7} ''. (9c)

for q odd and similar expressions with nsi and, m2 inter-
changed for q' even. The corresponding frequencies are
given by

(m2 —
mrna

'
oz„2=oz,2 1~ COS2p+

~ ~
Sln222 ', (10)i,+m, ) I'

and the quantities x and p are

fmsoI~ 2o ) *—

E mzoI~ 20' ) (11a)

p = nzr/2&V, (11b)

where the integer e lies in the range 1~&m~&/V —1 for
the acoustical branch Dower sign in Eq. (10)j and in
the range 1V'+1&n~&21V—1 for the optical branch
)upper sign in Eq. (10)$.

Finally, there are 2A eigenvectors of Mo correspond-
ing to translational modes of zero frequency. The
elements of the eigenvectors are given by

F/G = cos (IV——,')y/cos (N+-2') 7.

There are E independent values of y arising from
Eq. (14) which can be chosen to lie in the range
0~&y~&x. For each value of y there is a set of displace-
ments given by

zz„,= Vm 'Q2 A~2'(s, q')

)& COS (SV+-'2—g') y ezp (ZoIf), (15)

with oI given by Eq. (13a), A„'(s,g') by Eqs. (ia) and
(ib) and m =m1 or m2 depending on whether p+g is
even or odd, respectively.

We note from the form of the A „,' given by Eqs. (ia)
and (ib) that light atoms on opposite edges have
relatively large maximum displacements and that the
displacements decrease exponentially toward the interior
of the lattice. Since the largest displacements are
perpendicular to the edges along which they occur, we
shall refer to these modes as transverse edge modes.
Examination of the quantity f&(q') = cos(zV+ —',—q')7
in Eq. (15) reveals that fz(q')= fI(21V+1—q'). Con-
sequently, we further classify the modes under dis-
cussion as symmetric transverse edge modes. The dis-
placements for a typical symmetric transverse edge
mode are shown in Fig. 1.

A second class of transverse edge modes has fre-
quencies given by Eq. (13a), but the values of p are
determined by the equation

F/G = sin (zV—-', )y/sin PI+ 2') 7.

If (F/G) ~&(&V——2')/(zV+-2'), there are 1V independent
values of y satisfying Eq. (16), whereas if (F/G)
((1V——2')/(cV+-2, ), there are only E 1 independent—
values. For each value of 7 there is a set of displace-

A2, I, ,'(t, q') =mI*'LE(mz+m2) j—lb„,
A 2;, ,'(f.,q') =m2*tt1V (m1+m, )j

(12a)

for g' odd and by Eqs. (12) with m1 and m2 interchanged
for q' even.

The eigenvalues of cV correct to first; order in r/o are
readily calculated by degenerate perturbation theory.
Let us first consider the 2S eigenvalues and eigen-
vectors of Mo which correspond to the surface modes
with frequency oI, given by Eq. (8). The correct, ed
eigenvalues obtained by erst-order perturbation theory
can be grouped into several classes. For the first class
the frequencies are specified by

Q g 9 g g

4 p Q g Q Q a

q

Q

9. + g 0 y 2.

oz =oIs +r (G F COSQ), (13a)
where

Fro. 1. Displacements for a typical symmetric transverse edge
F 4PZrm m x rm m izz I gI m nv m 2zz) (13b) —mode. The oPen circles rePresent the lighter atoms and the solid

circles the heavier atoms.

G= 2 (mI +m2 )/l mlm2(ml+m2) j. (13c) ' See K. F, Herzfeld, J. Chem. Phys. 10, 50g (1942).



THEORY OF SURFACE MODES OF VIBRATION 305

ments given by

e~, = Um '*Q, A~q'(s, q')

Xsin (N+ ~~—q') p exp (ia&t) . (17)

(18)aP =cuP'+ r (G Fcoshy—).
For the symmetric corner mode the value of 7 is deter-
mined by the equation

F/G = cosh (N —-,')y/cosh (N+-,')y,

and the displacements can be written as

(18a)

Letting f2(q') =sin(N+-,'—q')y, we observe that f2(q')
= —f2(2N+1 —q'). Consequently, the modes specified
by Eqs. (13a), (16), and (17) will be referred to as
antisymmetric transverse edge modes.

Another type of surface mode occurring in the
diatomic square lattice is the corner mode. To first order
in perturbation theory the frequencies of the corner
modes are given by

GP=to& +r(g —f cos'r),

where ~ „' is given by Eq. (10),

(19)

4)2 —(x+x—') cosy j
, (19a)

nti(1 —2x cos&p+x')+m2(1 —2x ' cosy+x ')

2L2 —2(x+x ') cosp+x'+x ']
(19b)

mi(1 —2x cos&p+x')+m2(1 —2x ' cosy+x ')

The values of 7 are determined by

F/G —+ 0 so that there will be two corner modes for all
but very small crystals.

I et us now carry out the first-order perturbation
calculation using the 2E eigenvectors of Mo speci6ed
by Eqs. (9) and corresponding to a given value of p.
One obtains a set of E—1 symmetric wave-like modes
for each value of p with frequencies given by

u„,= Um. -'* P, A„,'(s,q')

Xcosh(N+-,' —q')y exp(icut), (18b)

f/g=cos(N ', )y/co—s—(N+', )y, -
and the displacements are given by

(19c)

with cu given by Eq. (18). The displacements for a
typical symmetric corner mode are shown in Fig. 2.

For the antisymmetric corner mode the value of p is
determined by

F/G = sinh(N —-', )y/sinh (N+-', )~, (18c)

and the displacements can be written as

I„,= Um. l P, A „,'(s,q')

Xsinh(N+-, ' —q')y exp(ia)t). (18d)

There is a symmetric corner mode for all physical
values of F and G provided m~~ns2, but an anti-
symmetric corner mode exists only if (F/G) & (N —-', )/
(N+-,'). If the latter condition is not satisfied, the
antisymmetric corner mode passes over into an anti-
symmetric transverse edge mode. In the limit E —+ ~,

m~, = Um '*P, A„,'(p, q')

Xcos (N+ i2—q') y exp (i(ot), (19d)

where co is given by Eq. (19).
One also obtains a set of antisymmetric wave-like

modes for each value of p. The frequencies are given by
Eq. (19) with y values determined by

f/g = sin(N ——,')y/sin(N+-', )y. (20)

The displacements are obtained from Eq. (19d) by
replacing cos(N+2 —q')y by sin(N+2 —q')y. There are
E—1 antisymmetric wave-like modes for each value
of y if (f/g) &(N——,')/(N+-', ) and N modes if (f/g)
&~ (N —2)/(N+k).

For each value p there is one symmetric surface
mode and one antisymmetric surface mode, provided
(f/g) & (N —-', )/(N+-', ), with frequencies given by

(o' = (u,'+ r (g f cosh'), — (21a)

and the values of y determined by

f/g = cosh(N —-', )7/cosh(N+-', )y

for the symmetric surface mode, and by

(21b)

Fro. 2. Displacements for a typical symmetric corner mode. The
open circles represent the lighter atoms and the solid circles the
heavier atoms.

f/g= sinh(N ——,')y/sinh(N+-, ')y (21c)

for the antisymmetric surface mode. The corresponding
displacements are obtained from Eq. (19d) by replacing
the quantity cos(N+-', —q')p by cosh(N+-', —q')p or
sinh(N+-' ,—q')y for the symmetric and antisymmetric
surface modes, respectively. Since the largest displace-
ments occur along two opposite edges and are parallel to
these edges, we shall refer to these modes as longitudinal
edge modes. If the condition (f/g) & (N' —~)/(N+ ~) is
not satisfied, the antisymmetric longitudinal edge mode
passes over into a wave-like mode.
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unless X is small or 7./ois v. ery small. If 'V is not small,
the splittings due to the r/opert. urbation may become
comparable to or greater than the frequency separations
corresponding to diBerent values of p. Higher orders of
perturbation theory would then be required to take into
account the contributions of modes with diferent p
values. This difficulty does not, however, occur for
modes with frequencies in the "forbidden" gap, pro-
vided the gap is not too narrow.

b. G~eee's Fnwctio&z Method
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ACOUSTICAL BRANCH

FxG. 3. Diagram of the squares of the normal mode frequencies
for a Gnite diatomic square lattice. The symbols 5 and A designate
symmetric and antisymmetric modes, respectively.

A erst-order perturbation calculation has also been
made using the translational eigenvectors of Mo given
by Eqs. (12). One obtains a set of wave-like modes but
no surface modes.

A diagram of the normal mode frequencies for the
Rosenstock-Newell model of a diatomic square lattice
with 8 atoms on an edge is given in Fig. 3 for the cases
r=0 and 7WO. It is assumed that (X—2)/(E+s) is
greater than both f/g and F/G. This condition is

generally satisfied unless the crystal is very small. All
frequencies are doubly degenerate because of the
independence of the motions in the x and y directions.
These motions would in general be coupled in a model
having interactions more complicated than those of the
Rosenstock-Newell model. The double degeneracy
would then be resolved.

Of the modes with frequencies in the optical and
acoustical branches only those are shown in Fig. 3
which lie closest to the forbidden gap when z=o. The
transverse edge mode frequencies lie in the "forbidden"
gap and form a band of width 2rF (in terms of cu').

From the expression for F given in Eq. (13b), one sees
that the width approaches zero as lV —+ ~. The
transverse edge modes are alternately symmetric and
antisymmetric. Split off below the transverse edge mode
frequencies are the frequencies for the corner modes,
the symmetric corner mode frequency lying lower than
the antisymmetric.

The modes with frequencies in either the acoustical
or optical branches and which correspond to a given
value of p yield a band of wave-like mode frequencies
having a width of 2rf in terms of ~2. The longitudinal
edge mode frequencies are split oG below the band of
wave-like modes with the symmetric mode having the
lower frequency.

It may be noted that the first order perturbation
treatment of the modes with frequencies in the
acoustical or optical branches is probably not valid

h= (2+p+1/p)y —4—4s,

q= (r/0) cosP,

8= arctan(qt / ~
1+4'' —rP ~),

p =m~/m2,

y= (~/~. )',

5=7 0.

(22c)

(22d)

(22e)

(22f)

(22g)

(22h)

The quantity f is 2m times the reciprocal wavelength
describing propagation of the surface waves parallel
to the edge of the lattice. The physical range of interest
for P can be taken to be —s/2~& P~& s./2.

If s is small compared to unity, one can obtain a
solution of Eq. (22a) in powers of s. The result to
second order in z is

(1+p') p(1 —p)'
y= 1+2 s+4 (1+cos'P)s'. (23)

(1+p)' (1+p)'

Let us consider a diatomic square lattice with 2E
a,toms along each edge and with cyclic boundary
conditions applied. The equilibrium positions of the
atoms may be designated by pairs of integers (p,q). If
the interactions of the Rosenstock-Newell model are
employed, a "surface" may be introduced by setting
the interactions between atoms (O,g) and (1,g) equal to
zero where the integer q may take on any value in the
range —E~& q~&E. Treating the interactions set equal
to zero as a "defect, "we have evaluated the frequencies
for the transverse edge modes with frequencies in the
"forbidden" gap. The nature of the assumed model
excludes the possibility of corner modes. The calculation
is based on a straightforward application of the method
of Montroll and Potts which, however, in its original
form does not permit the investigation of longitudinal
edge modes with frequencies in the acoustical or optical
branches. The evaluation of the required Green's
function is conveniently done only in the limit iV —+ ~
so that the results apply to a semi-infinite lattice.

The frequencies in the "forbidden" gap are deter-
mined by the transcendental equation

2t f'2 —(1—q)h$ cos(8/2)
=|'$4(1—g)+hf sin(8/2), (22a)

where

i= (L2+2s—(1+p)y]L(1+ 1/p)y —2—2sl) ', (22b)
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To first order in s, the transverse edge modes all have
the same frequency. This result agrees with that
obtained by perturbation theory in the limit E —+ ~.
The degeneracy is resolved in second order so that a
band of frequencies results.

Exact numerical solutions to Eq. (23) have been
obtained for p =0.5 and s= 0.1, 0.5, and 1.0 using the
IBM-704 computer at the Research Laboratories of
the General Motors Corporation. I am indebted to
Dr. Robert Herman through whom the computer was
made available for this problem and to Dr. Harold
Willis Milnes who supervised the programming. The
results are shown in Fig. 4 where y is plotted against f.
The total variation in y for x=0.1 is only 0.001 which
is not evident in the figure. It is interesting to note that
the exact results are rather well fitted by values cal-
culated from Eq. (23) even for s= 1.0.

For the semi-infinite lattice under consideration one
can discuss the distribution of surface mode frequencies.
Since the frequency distribution function is proportional
to dt's/da&, it possesses infinities at the smallest and
largest frequencies of the transverse surface mode band.

3.0

= I.O

2.0—

P =0.5

I.O—
P =O. I

Fic. 4. The frequency squared plotted as a function of propaga-
tion constant for the transverse edge modes of the semi-inlnite
diatomic square lattice. The mass ratio is one-half.

c. Diatomic SimPle Cubic Iottice

The Rosenstock-Newell model for the diatomic
simple cubic lattice has been treated by both perturba-
tion and Green's function methods. The results of the
first order perturbation calculation are presented sche-
matically in Fig. 5. There are a number of surface
modes which may be classified as transverse face modes,
transverse edge modes, corner modes, longitudinal face
modes, and longitudinal edge modes. To illustrate the
analogy with the two-dimensional results, we shall give
expressions for the frequencies and displacements for
some of the transverse face modes in a crystal containing

OPT!CA L
BRANCH
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Fio. 5. Diagram of the squares of the normal mode frequencies
for a 6nite diatomic cubic lattice. The symbols 5 and A designate
symmetric and antisymmetric modes, respectively.

KV' atoms. The frequencies are given by

QP= (d, +r/2G F(cos+y+ co—sp2) $, (24)

where 1/' and G are the same as in Eqs. (13b) and (13c),
and y~ and y2 are each solutions of Eq. (14). The x
components of the displacements are given by

u„,„=Um. '* Q, P-, A„,,o(s,q', r') cos(E+-,' —q')g:g

Xcos(1V+-', —r')y2 exp(i&et), (25a)

where m =m~ or m2 according to whether p+q+r is
odd or even. The quantities A~,„'(s,1',r1') are given by

A2, q, , (s,q', r') =-cmq'*( —1)' '(mq/m2)' 'b«5, „, (25b)

A9j, g „'(s,cl', r')=cm2 (—1)&(m&/m2)& h« 'o„„.,
'

1& j&lV, (25c)

where c is given by Eq. (7c), q' and r' are integers in the
range between unity and 2X inclusive and q'+r' is
even. For q'+r' odd, the masses m~ and m2 are inter-
changed in Eqs. (25b) and (25c).

For other transverse face modes one or both of the
cosine factors in Eq. (25a) are replaced by sines. The
y's involved in the sine factors are then determined by
Eq. (16). Transverse edge modes arise if one of the
cosine terms in Eq. (24) is replaced by the hyperbolic
cosine and the corresponding cosine factor in Eq. (25a)
is replaced by either a hyperbolic cosine or hyperbolic
sine. The p associated with the hyperbolic function is
determined by either Eq. (18a) or (18c). Corner modes
are obtained by replacing both cosine terms in Eq. (24)
by hyperbolic cosines and the cosine factors in Eq. (25a)
by hyperbolic cosines or hyperbolic sines.

If (F/G) & (lit —~)/(/V+ 2), there are 4(1V—1)' trans-
verse face modes, 8(lit' —1) transverse edge modes and
4 corner modes, while if F/G does not satisfy this
condition, there are (4¹—4K+1) transverse face
modes, (41lt' —2) transverse edge modes and one corner
1110de.



308 RICHARD F. WAL L I S

The transverse face mode frequencies form a band in
the "forbidden" gap. The transverse edge mode fre-
quencies also form a band which may be entirely below
the band for the face modes or may overlap the lower
portion. The corner modes frequencies in general lie
below the face and edge mode bands. All frequencies are
threefold degenerate because of the independence of
the motions in the x, y, and s directions.

The Green's function calculation of the surface mode
frequencies for the diatomic simple cubic lattice in the
limit T—+ ~ again leads to an equation of the form of
Eq. (22a) except that s is to be redefined as 2(r/o. ) and
r) as (r/o)(cosgt+cosfs). A power series solution to
second order in s is given by

(1+a')
y=i+4 s

(1+p)'

p(1 —p)'
+16 t1+s (costi+ cosset s)'$s', (26)

(1+p)'

where y and p have been defined previously.

III. DISCUSSION

Surface modes of vibration in crystal lattices have
been discussed previously by I ifshitz and Rosenzweig. '
Using a technique rather similar to that of Montroll
and Potts, ' I-ifshitz and Rosenzweig have found that
two types of surface modes may exist in diatomic
crystals, one type being analogous to the Rayleigh
waves of continuum theory and a second type being
derived from the optical branch and having no analog
in continuum theory. The paper of Lifshitz and Rosen-
zweig gives only general results which are applicable
only to semi-infinite lattices, so that edge and corner

' L M. Lifshitz and L. N. Rosenzweig, J. Exptl. Theoret. Phys.
U.S.S.R. 18, 1012 (1948).

modes are not discussed. Unfortunately, we have not.
been able to obtain a more detailed treatment given by
Rosenzweig. ~

From the fact that the Rosenstock-Newell model of
the monatomic simple cubic lattice does not possess
surface modes, we may conclude that the Rayleigh-
type' surface modes do not exist for this model. The
surface modes found for the diatomic lattices are there-
fore not analogous to Rayleigh waves since in the
continuum limit there is no distinction between mon-
atomic and diatomic lattices. It is possible that the
surface modes for the diatomic lattices correspond to
the "optical" surface modes of Lifshitz and Rosenzweig.

The absence of Rayleigh-type surface modes in the
Rosenstock-Newell model is probably a consequence of
the particular nature of the model. Stoneley' has
investigated the continuum theory of surface waves in
cubic materials and found that Rayleigh-type waves do
not exist for all possible values of the elastic constants
c~~, c~2, and c44. For the Rosenstock-Newell model in the
continuum limit the relation c&2=0 is satisfied. The
elastic constants consequently may not lie in the range
of values for which Rayleigh-type waves exist. Another
possible reason for the nonexistence of Rayleigh-type
waves in the Rosenstock-Newell model is the lack of
coupling in the latter between the displacements in the
x, y, and s directions. A detailed investigation of these
points is currently underway.
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