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For metals and semiconductors the calculation of crystal wave functions is simplest in a plane wave
representation. However, in order to obtain rapid convergence it is necessary that the valence electron wave
functions be made orthogonal to the core wave functions. Herring satis6ed this requirement by choosing as
basis functions "orthogonalized plane waves. " It is here shown that advantage can be taken of crystal
symmetry to construct wave functions p which are best described as the smooth part of symmetrized Sloch
functions. The wave equation satisfied by p contains an additional term of simple character which corre-
sponds to the usual complicated orthogonalization terms and has a simple physical interpretation as an
e6'ective repulsive potential, Qualitative estimates of this potential in analytic form are presented. Several
examples are worked out which display the cancellation between attractive and repulsive potentials in the
core region which is responsible for rapid convergence of orthogonalized plane wave calculations for s states;
the slower convergence of p states is also explained. The formalism developed here can also be regarded as a
rigorous formulation of the "empirical potential" approach within the one-electron framework; the present
results are compared with previous approaches. The method can be applied equally well to the calculation of
wave functions in molecules.

i. INTRODUCTION

' 'N 1940 Herring' proposed the method of orthogo-
~ ~ nalized plane waves which has since proved to be the
most Qexible and powerful means for calculating the
electronic wave functions of metals' and semicon-
ductors. ' He observed that if the crystal wave functions
are expanded in plane waves the boundary conditions at
the surface of the unit cell are automatically satisfied so
that if enough plane waves are used very good crystal
wave functions can be obtained. In order to include the
radial nodes of the valence wave functions in the core
region, however, so many plane waves are required as
to make the method impracticable. For this reason
Herring suggested orthogonalizing each plane wave to
all core wave functions, which has the eGect of aug-
menting each plane wave by adding to it a suitable
linear combination of core orbitals. The resulting wave
function includes radial nodes and Herring showed that
rapid convergence would result.

The principal disadvantage of Herring's procedure
was that in orthogonalizing a single plane wave to the
core functions the spherical symmetry of the core was

lost, As a consequence the orthogonalization terms that
appear in the secular equation have a complicated form
which makes their physical interpretation dificult and
calculations involving them laborious. Slater' has pre-
ferred to take advantage of the atomic spherical sym-

metry by using augmented plane waves. His procedure
in practice has proved to be at least as laborious as the
OP% method even when the necessary condition that

*This research was supported in part by the National Science
Foundation.

f National Science Foundation Postdoctoral Fellow.
f National Science Foundation Predoctoral Fellow.
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the potential be approximately constant outside the
atomic region has been well satisfied.

Calculations using the OP% method have used group
theory' to reduce the secular equation at symmetry
points of the Brillouin Zone. The resulting basis func-
tions are combinations of plane waves transforming ac-
cording to irreducible representations of the group of
the wave vector. The most important simplifications
introduced by our method are a consequence of our
choosing as basis functions terms resembHmg such sym-
metrized combinations of plane waves instead of single
plane waves; these are thee orthogonalized to the core
wave functions. It will be seen that this sequence enables
us to take maximum advantage of atomic symmetry.
For this reason in Sec. 2 we restrict our discussion to s
and p bands of cubic crystals at k=0. From the fact
that core wave functions and energy levels are nearly
independent of the position of k in the reduced Hrillouin
Zone it is evident that these restrictions can easily be
removed; the procedure for doing this is discussed in
Sec. 4.

The derivation presented in Sec. 2 introduces basis
functions p which are best described as the smooth
part of symmetrized combinations of Bloch functions.
The wave equation satisfied by p contains an addi-
tional term which corresponds to the orthogonalization
terms in the OP% formalism. This term has the form of
a repulsive potential and depends on the core wave
functions and the valence wave function in the core
region. In principle the core wave functions are best
computed from Hartree-Pock v ave functions for free
atoms but in practice the valence functions, which vary
slowly in the core region, are quite insensitive to the
detailed nature of the core potential, so that the core
functions can be replaced by analytic functions. This
circumstance can be used as the basis of a qualitative
investigation of the nature of the effective potential
(attractive plus repulsive). The method we have used
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for doing this and the results that were obtained are
presented in Sec.3 as a guide to the qualitative nature of
the eGective potential. %'e also discuss in Sec. 3 the
possibility of modifying the repulsive potential slightly
in such a way as to reproduce the free-atom term values;
this might be especially useful for heavy atoms. In this
respect the results represent a generalization of the
quantum-defect method of Kuhn and Van Vleck' and
Brooks and Ham, ' which has yielded very good results
for alkali metals.

The form of the repulsive potential developed in Sec.2
is actually quite general and should be useful in calcu-
lating wave functions in crystals other than metals or
semiconductors and in molecules as well. In Sec. 5 we
discuss briefly one of the many possible other applica-
tions of the formalism, namely the calculation of wave
functions of color centers in alkali halides.

(2.2)

If we had chosen p to be a single plane wave Herring's'
results would follow. Our results already show a trivial,
but important, simplification, which is that valence
wave functions of, say, s character need be orthogo-
nalized only to s core functions. ' Ke now seek the wave
equation satis6ed by &p, the "smooth" part of It . We
have

HP =EP, (2.3)

2. THEORY AT A=O

We shall assume to simplify the derivation that all
electrons move in the same potential, If necessary the
derivation could easily be extended to include l-de-

pendent terms, which might arise if an "averaged" ex-
change potential were used for diferent values of / in the
core region. Further we consider at 6rst only valence
and conduction band wave functions having s or p
atomic character in cubic crystals at k=0. These latter
restrictions will be removed in Sec. 4. Se begin by
imagining that we keozv the exact crystal wave function

which transforms according to an irreducible repre-
sentation of the cubic point group I' which has s or p
atomic symmetry. ' Since f must be orthogonal to the
core states of similar symmetry, we have

and Eq. (2.4) assumes the desired form

(H+V„~)y„=Z(p (2.6)

where
~
K„) denotes a sum of plane waves having equiva-

lent reciprocal lattice wave vectors and transforming
according to the irreducible representation o, . Since p
represents the "smooth" part of f we may expect to
obtain a convergence about as rapid as that of the
orthogonalized plane wave method. Furthermore, from
the form of (2.6) it is clear that substitution of Eq. (2.7)
leads to a secular equation of the same form as those
obtained in OP% calculations after the secular de-
terminant has been factored (reduced by group theory),
but with the important difference that the unwieldy
orthogonalization terms have disappeared completely.

The great utility of the arrangement of terms given in
Eqs. (2.5) and (2.6) can be seen from a closer investiga-
tion of Eq. (2.5) which we write more explicitly by
introducing a„ from (2.2). Then

(2.8)

and it can be seen that this term has an especially simple
form because of the atomic character of 9 "(r). In the
region where p "(r) is appreciable q may be written as
the product of a single spherical harmonic and a radial
function of r. The orthogonality relations for spherical
harmonics then cause the complete cancellation of all
angle-dependent terms from (2.8) so that the orthogo-
nality terms have a much simpler form here than in the
OP% formalism. In addition if p varies su%ciently
slowly in the core region compared to p " (which will
generally be the case) that it can be approximated by a
constant in this region, then from Eq. (2.8) we see that
V„ is independent of p . In general it will be found that
the repulsive potential is quite insensitive to y . '

We can now be more explicit in our definition of the
repulsive potential. At the outset we assumed p was

So far our discussion has applied equally well to
molecules or crystals, as our only assumption has been
that the atomic character of P is known. We now
specialize to the case of crystals, and in particular
metals or semiconductors. Then we can solve Eq. (2.6)
by expanding p„ in symmetrized combinations of plane
waves.

(2. /)

and substituting (2.1) in (2.3) we 6nd

Hq +Q„a„"(E E)p "=Ep„, —

where Hp "=8"p ".We now introduce

'y u P g a(g~n E)p n/~

(2.4)

(2.5)

known. From Eq. (2.8) it is clear that it is suflicient to
know p in the region where p "islarge, i.e., in the core
region. In metals and semiconductors for valence and
conduction band wave functions usually only b j and b2

will be large in (2./). Then in (2.8) the radial part of p
may be assumed to vary as j&(x&r). Corrections to this

' T. S. Knhn and J. H. Van Vleck, Phys. Rev. 79, 382 (1950).' H. Brooks and F. S. Ham, Phys. Rev. 112, 344 (1958).
~ H. Bethe, Ann. Physik 3, 133 (1929).

Here and elsewhere we shall neglect overlap of core orbitals on
diferent atoms. If necessary the q

"may be chosen orthogonal to
core orbitals on other atoms.

' The form of the repulsive potential displayed in Eq. (2.7) is
very similar to that of the exchange potential which, when written
in this form, is known'0 to be less sensitive to q than the exchange
terms themselves. The situation here is even more favorable since
y may be chosen to have no nodes.

'o J. C. Slater, Phys. Rev. 81, 385 (1951).
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approximation are of order (bs/bt)'(xs' —«t')a', where a
is a typical core dimension; this is ordinarily quite small.
For rough calculations j&(xtr) may be replaced by r'; the
resulting correction is then of order ~~'a'.

The repulsive potential given in Eq. (2.8) is also
energy-dependent. In practice one can often guess I' for
a given state to better than O.i ry, and in this case
choosing this value for E in (2.8) will leave E only on the
diagonal of the secular equation obtained by substi-
tuting (2.7) in (2.6). In practice (E" E) is o—f the order
of 10 ry, so that the error resulting from this approxima-
tion is also quite small.

It is easy to show that Eq. (2.6) is exactly equivalent
to the OP% equations if the exact form of y is used
in V„:

E= (9-«-)+2-(E—E-")(o- )', (2 9)

(v-, v-)=1.
Now substitute the expression for &p given by Eq. (2.7).
The resulting bilinear form in the b s is exactly the
same as the one that is obtained in the OPW formalism
after the forms have been factored into diGerent irre-
ducible representations. By approximating q and E in
V„as described above we obtain a considerable simpli-
6cation of the wave equation with an error that is small.

It is interesting to note at this point that if a, varia-
tional function is used for the radial part of q then
Eq. (2.9) represents a convenient starting point for
calculation of free-atom wave functions and term values.

Finally from Eq. (2.8) it is clear that the repulsive
potential is l-dependent. Some care must therefore be
exercised in extending the results of this section to k&0
a,nd in the calculation of effective masses. Ke postpone
a discussion of this matter to Sec. 4, and now turn our
attention to the problem of obtaining qualitative esti-
mates of the repulsive potential V, .

3. ANALYTIC AND EMPIRICAL
APPROXIMATIONS TO V,

The relative magnitude of the various terms in the
repulsive potential as well as the convergence properties
of the method can be investigated by introducing
analytic expressions for the wave functions in the core
region. The earliest such analytic expressions were de-

veloped by Slater.""More accurate expressions for
some atoms have since been developed by Lowdin. " "
For the present we are interested only in obtaining
qualitative estimates of the repulsive and attractive
potentials. Thus we shall use Slater's simplified analytic
expressions with the radial part of p given by

(3.1)

important for our purposes that each P be an eigen-
function of our potential. Thus we shall assume a
potential of the form (in atomic units)

2Z 2(A —Z)
V, (r) = — —— e

r r
(3 2)

TAsLE I. Core and valence eigenvalues for Si in Rydbergs. The
values listed under Cases I and II were derived as described in the
text, while the core values derived by WoodrufP' are listed in the
third column. Experimental valence values, as dered in the text,
are also listed in the third column.

Case II

where A is the atomic number of the atom in question
and Z and P are varied to give the correct core and
valence levels as determined from Hartree calculations
or x-ray and spectroscopic term values. We have carried
out calculations for Si with two choices of Z and A to
study the qualitative behavior of the repulsive potential
when the attractive potential is changed.

It may be felt that the Slater form of y is not suffi-

ciently general to yield accurate wave functions and
hence accurate repulsive potentials. To check this point
we have calculated wave functions and energy levels in
hydrogen using the Slater form (3.1).For the 1s and 2p
wave functions this is of course exact, but it should be
noted that for higher states this is one of the worst cases
that could have been chosen. [The reason is that
hydrogenic wave functions for higher states of principal
quantum number n have the form exp( —r/rt)g(r) where

g is a polynomial in r. Our wave function has the form
g„b„r"exp( —r/e) so that the inner oscillations have
the wrong wavelength. In a screened Coulomb potential
such as (3.2) the inner oscillations will have more nearly
the correct wavelength. ]In spite of this we find that Es,
is correct to within 0.01% (correct repulsive potential)
and Es, to within 1% (incorrect repulsive potential).
The details of the calculation, including a comparison of
its, in the Slater form with the hydrogen wave function,
are given in the Appendix.

Pote added im proof. —Further calculations show tha, t
although the Slater-I owdin expressions yield good re-
sults for atoms, they have only qualitative significance
for band splittings. The reason is that analytic expres-
sions fit the ta, ils of the core orbitals poorly, while these
tails make an important contribution to the low Fourier
coefFicients of the effective potential. A more detailed
discussion is given in reference 23(a).

Our first calculation used A =14, Z=2.9, and X=3.2
in Eq. (3.2). The resulting eigenvalues are listed in

where e and ) are variational parameters. However it is

n J. C. Siater, Phys. Rev. 36, 57 (1930)."J.C. Sister, Phys. Rev. 42, 33 (1932)."P.O. Lowdin, Phys. Rev. 90, 120 (1953).
'4 P. O. Lowdin, Phys. Rev. 94, 1600 (1954)."P.O. Lowdin and K. Appei, Phys. Rev. 103, 1746 (1956).

Level

1$
2$
3$
2p
3p

Case I

—135.6—11.64—2.34—7.99—1.78

—119.2—10.93—2.43—7.69—1.90

Woodruff

—134.6—11.12—2.14—8.18—1.65
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C;
'pn 7'

bi

101.0
1.0

13.66

3$ 3$

Case I
2$

1—29.0
1.0

13.66

3$

2$

2
81.5
2.2
5.08

1
36.1

1.7
4.30

1@i
bi

1
1.0

13.66

2
2.2
5.08

Case II
2$

3
2.5
1.63

2$

1
1.7
4.30

2
2.0
1.20

C;
Hzi

bi

91.3
1.0

12.77

3$

1—22.3
1.0

12.77

3$ 3$

2
69.1
2.2
4.78

1
31.2
1.7
4.03

1
1.0

12.77

2
22
4,78

3
2.5
1.58

1.7
4.03

2
2.0
1.18

TanLE II. Values of the parameters appearing in Eq. (3.4) for the
potentials described in Sec. 3. valence wave functions in the free atom are also listed.

The repulsive potentials listed under cases I and II in
Table III used the free-atom valence wave functions
listed in Table II. Thus with these constants our atomic
eQ'ective potential for valence electrons in the crystal is
completely determined. We choose to display its Fourier
transform,

2
Vk t V(r)haik rdsr

II, &
(3 3)

where the integral is extended over all space, and V
denotes either V, or V„. Here Ils ——a'/4 is the volume of
the unit cell in a silicon crystal, the factor of 2 represents
the number of atoms per cell, and a is the lattice con-
stant. If Vk is multiplied by the form factor cos(k. ~)
with c= sra(1, 1,1), then we have essentially the poten-
tial which determines the energy bands of silicon. (The
potential for the crystal is the~ taken as a superposition
of the spherically symmetric atomic potentials with a
neutralizing uniform negative charge 2Z per atom. )

p (r) Q . g ~tnre s',r—(3.4)

The constants occurring in Eqs. (3.3) and (3.4) are
listed in Table II. The corresponding constants for

"T.O. Woodruff, Phys. Rev. IOB, 1159 (1956).

Table I under case I.Core eigenvalues due to Woodru6"
are also listed for comparison.

It is also possible to calculate valence eigenva, lues in
this potential. For monovalent atoms this yields an
especially straightforward test of the correctness of the
potential for valence electrons, since these eigenvalues
can be compared directly with spectroscopic term values.
If a potential can be found which reproduces the latter
values suKciently well, this approach would represent a
generalization of the quantum-defect method of Kuhn
and Van Vleck' and Brooks and Ham. '

For polyvalent a,toms a direct comparison with spec-
troscopic term values is not so easily obtained, since each
valence electron partially shields the other valence
electrons from the core. A rough measure of the degree
of this shielding can be obtained as follows. Each valence
electron is treated on an equal footing. Then ne, +me~
is set equal to the energy required to remove all the
valence electrons from the atom. Here e and nz are the
numbers of s and p valence electrons and e, and e~ the
lowest s and p term values in the effective potential. The
required second equation for ~, and e„ is obtained
setting e„—e, equal to the average s-p term difference of
the successively ionized atom. The values of e, and ~„
derived in this way from the spectroscopic values are
also listed in Table I. It can be seen that our potential
does indeed have about the right shielding.

The complete core wave functions can be written

0-~= V~-(e, v )~-i(~)l», (3 3)

TAsx.E III. Fourier transforms of electrostatic and repulsive
potentials. Here k is measured in units of 2xu ' and V~ in
Rydbergs. The repulsive potentials listed under cases I and II
were calculated assuming that the radial parts of q ~ were described
by the functions listed in Table II. The repulsive potentials in the
last two columns were obtained from Woodruff's wave functions
assuming A@~~1' .

Case I Case II W'oodru6 a

k2 V,r; V„a V„y V,a V„. V„j VP V„e V„p

3 —0.662
8 -0.336

11 —0.275
16 —0.217
64 —0.083

0

0.463
0.375
0.334
0.281
0.113
0.528

0.240
0.183
0.159
0.129
0.036
0.288

—0.686—0.340—0.275—0.215-0,079

0.542
0.438
0.392
0.333
0.144
0.580

0.271 —0.718
0.199 -0.372
Q.170 —0.301
0.134 -—0.234
0.035 -0.083
0.319

0.560
0.424
0.363
0.289
0.077
0.650

0.407
0.347
0.317
0.277
0.113
0.457

a See reference 16.

The va, lues of V, t' and V„' for values of k correspond-
ing to some of the reciprocal lattice vectors for the
silicon crystal are listed in Table III. For s states we
have taken L~= —1.1 ry and for p states E= —1.5 ry.
The resulting potentials are also shown in Fig. 1 for s
states and in Fig. 2 for p states.

From these results several interesting conclusions can
be drawn. First we notice that for large k (which corre-
sponds to the core region) the repulsive s potential very
nearly cancels the attractive potential. Thus high
Fourier coeKcients of the effective potential in s states
are quite small; in particular only V»& is large. In the
expansion (2.7) usually only b ' and perhaps b ' will be
large; a convergent eigenvalue is obtained when n is
large enough to include all symmetrized combinations of
plane waves lir ) such that (z&l VII' ) or (K&l VII' ) con-
tains V111.

We see from Fig. 2 that such excellent cancellation
does not obtain for p states. This is not surprising, for
the orthogonalization procedure can be regarded as
another way of in.eluding the radial kinetic energy in the
core region in the calculation. Nothing can be done
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sharpening the shell structure. Thus it might be thought
that Eq. (3.6) would produce a wave function resembling
our to as defined by (2.1). This appears to be the case
for some monovalent atoms, but for polyvalent atoms
the surprising result is obtained that the outer wave
function is forced inside the inner one. In any event
there is no point in using (3.6) when the rigorous and
actua, lly simpler result (2.8) is a,vailable.

4. CALCULATIONS FOR AAO; EFFECTIVE
MASS FORMALISM

The expression for the repulsive potentia, l at Ir, =0
given in Eq. (2.7) apparently depends on the irreducible
representation o.. Actually to a very good approximation
it depends only on l(n), the va, lue of l associated with
core orbitals transforming according to o,. For cubic
groups at k=0 these have been, determined by group
theory by Bethe. ' Similar techniques can be used at
other points of the Brillouin zone possessing sufficiently
high symmetry; the results for bcc lattices have been
listed by Howarth and Jones."

These results are actually only approximately correct
even at k =0. Thus at k= 0 the cubic field actually
introduces an admixture of g functions into s functions,
for example. This admixture is certainly negligible at
k= 0, but at points of somewhat lower symmetry such as
k —ma '(1,1,1) in fcc and diamond latt. ices one finds d

functions admixed into s functions. We must therefore
investigate now the form of the repulsive potential when

is a combination of several diGerent / values in the
core region. Our aim is to show that a corresponding
mixture of the l-dependent repulsive potentials will lead
to a correct secular equation.

We assume that within a region of radius E about
each nucleus the potential is spherically symmetric and
that p is known in this region. (This can be done by
iteration. ) To simplify the notation we assume that p
contains only s and p components and that the coordi-
nate axes can be chosen so that only et=0 spherical
harmonics occur. We add a superscript E. to remind
ourselves that we are in the core region; then

0'= p. (r)+2 a.V."(r)

= g biI'i(0)[p i"(r)+P a„'P("(r)j, (4.1)
L=O n

~-'= —(p -i'(r),4 i"(r) ). (4 2)

By a process similar to that of Sec. 2 we obtain for the
repulsive potential

V.=Z 2 b~(+i"—&)~-'Pi(~)4i "(r)/
n L=O

2 b iJ'i(0) p - i'(r) (4 3)
L=O

~' D. J. Hoxvarth and H. Jones, Proc. Phys. Soc. (London) A6S,
355 (&952).

1—Qb2(~ R V' /~ 8)
L=O

(4.5)

where V„L denotes the 1-dependent repulsive potential
appropriate to a single value of l.

We now wish to find a function of r only, V(r), such
that

(p -,V.~-) = (p -,V(r) p -)
From Eqs. (4.1) and (4.5) this means

(4.6)

2 bP(p-i', V(r)p-i')= 2 bP(v-~', V.'v. i') (47)
L=O

It is natural to try to satisfy Eq. (4.7) with

V(r) = Q cpiV„'(r).
L=O

(4.8)

Now Eq. (4.7) provides one condition on V(r), while
(4.8) contains two constants which are under-deter-
mined. If we demand further that (4.7) hold for arbi-
trary b& we find that; (4.8) in general will not yield a
solution. The best choice here appears to be obtained if
we notice that for r in the region of the last shell of the
core U„'(r) V,'(r). [The wave functions fi" are similar
but the energies (Ei"—L~') differ. See Sec. 3.j Then (4.7)
a,nd (4.8) require that

L=O

COL= 1.
& (4 9)

a plausible result which we can use to determine coL in
general. Combining (4.7), (4.8), and (4.9) we find

2

MO=
cp +ci cp +cP

cP=bP(p i, (V' —V ') p -~)

(4 1o)

Thus only b, q ~(r) enters in the definition of cp~ so that
~i is independent of the normalization used in (4.1). In
actual calculations bL can be determined by expanding
the plane waves in Eq. (2.7) in spherical harmonics. The
weighting factors calculated from Eq. (4.11)will involve
essentially the orthogonality coe%cients A„L of the
orthogonalized plane wave formalism. "

In practice calculations have been carried out only at
points of high symmetry; at these points the operations
described above are particularly easy to carry out.

By a similar argument it is easy to show that if the expansion
of y contains m&0 spherical harmonics, i.e.,

q. L
——g L'PL EL (e)e™~P.L Z(r),

then b&2 in (4,11) should be replaced by Z~ &'P&~'.

If we now take matrix elements of V,. we obtain
1

(p -', V.p -') =2 2 bP(«" E—)(~-')', (44)
n L=-0
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Perturbation theory can be used to compute bands and
wave functions at neighboring points in k-space; the
resulting curvatures at band edges are the eGective
masses. The formal details of such calculations have been
discussed by many workers, for example, Dresselhaus,
Kip, and Kittel."Since our potentials are l-dependent it
might appear that a basic modi6cation of this formalism
would be necessary. However, accurate calculations can
be carried out quite simply by returning to Eq. (2.1)
and using for 5t

" the analytic expressions discussed in
Sec. 3. Details of the method with application to Si will

be published elsewhere. "'

5. OTHER APPLICATIONS

Applications of the formalism described in Sec. 2 can
be made to a variety of problems in molecular and solid
state physics. In this section we will discuss brieRy
several interesting possibilities.

In simplified calculations of the properties of poly-
valent metals plane-wave and point-ion approximations
are often made. The above results suggest that this is a
fairly good approximation which can be improved by
including the l-dependence of the eGective potential.

Similar simplifications have been made by Gourary
and co-workers" "in the calculation of color centers in
alkali halides. Again the calculations should be improved
by including the l-dependence of the effective potential.

6. CONCLUDING REMARKS

features of the formalism were then investigated quali-
tatively in Sec. 3 and the physical signi6cance of the
repulsive potential was discussed. In particular it was
noticed that the simple form of the repulsive potential
made possible direct comparison with free-atom term
values, thus oGering the possibility of generalizing the
quantum-defect method to crystals where the potential
is not spherically symmetric and Coulombic outside
each core. Finally in Sec. 4 it was noticed that for most
problems of interest the restriction to k=o could be
removed. This was physically obvious since the inter-
action of valence wave functions with the core could
only be expected to change for reasons of symmetry, as
valence-electron wavelengths are long compared to the
size of the core.
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APPENDIX

We list here the wave functions and energies obtained
for hydrogen according to the methods of Sec. 3. The

TAnLE IV. Values of parameters appearing in Eq. (3.4) and
energies for hydrogen.

The earliest methods of calculating wave functions in
crystals were the tight-binding and plane-wave formal-
isms. The former represents core functions accurately,
and the latter represents valence functions accurately in
metals and semiconductors except in the neighborhood
of the core. Both the orthogonalized plane wave and
augmented plane wave formalisms can be regarded as
attempts to patch together wave functions having the
correct form both inside and outside the core. Un-
fortunately both formalisms lead to rather complicated
calculations, the former because it fails to take maxi-
mum advantage of atomic symmetry and the latter
because it fails to utilize the fact that the form of the
valence wave function in the core is determined almost
entirely by the requirement that it be orthogonal to the
core orbitals. YVe have investigated here the physical
eGect of the core region. by expressing the orthogo-
nalization terms as an eGective repulsive potential. This
leads to some loss in accuracy but as compensation we
maintain the great simplicity of the tight-binding treat-
ment of the core regions and the plane-wave treatments
of the rest of the crystal. This was easily demonstrated
in Sec. 2 for cubic crystals at k=o. The convergence
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1
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0.2500

0.204
2.00
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2
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"Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
"aL. Kleinman and J. C. Phillips (to be published).
s4 B.S. Gourary and F. I.Adrian, Phys. Rev. 105, 1180 (1957).
~~ B.S. Gourary and P. J. Luke, Phys. Rev. 107, 960 (1957)."B.S. Gourary, Phys. Rev. 112, 337 (1958).
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Fre. 4. A comparison of the 3s wave function for atomic hydro-
gen, as calculated by the methods of Sec. 3, with the exact wave
function.
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energy obtained for the 2s state is 0.2499 ry and for the
3p state 0.11110,as one would expect from the varia-
tional principle and the fact that (3,1) is exact for the
1s and 2p states. The 2s wave function cannot be exact
if (3.1) is used for each shell, however, and the 3s energy
can therefore be lower than the exact value; we And the
value 0.1117ry.

The wave functions are described by the parameters

of Fq. (3.4), and these are listed in Table IV. The 3s
wave function constructed in this way is compared with
the corresponding hydrogen wave function in Fig. 4.

Similar results for hydrogen have been derived by
Antoncik'r using the Thomas-Fermi expression (3.6)
derived by Gombas. "

"E.Antoncik, Csechoslov J. Phys. 7, 118 (1957).
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Magnetic Properties of the Manganese Chromite-Aluminates*
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The mixed-crystal spinel series MnCr«Al &04 has been synthesized and found to form a single cubic phase
with a cell edge that is a linear function of the aluminum content. An x-ray study indicates that the series
is an almost-normal spinel series with the A sites occupied by divalent manganese iona and about 5% of the
trivalent aluminum ions.

The magnetization-temperature curves have approximately zero slope at absolute zero and exhibit no
peaks or compensation points. The saturation moment is 1.16pg for 5=0.0, increasing to 1.37pg at t=0.8,
and dropping to 1.25pz at t=1.0. The reciprocal-susceptibility vs temperature curves have the hyperbolic
shape characteristic of ferrimagnets. The observed magnetic properties cannot be explained by the Neel
theory but can be accounted for, at least qualitatively, by the Ave-parameter Yafet and Kittel theory.

INTRODUCTION

' "X 1948 Xeel showed that the magnetic moments of
~ - a number of magnetic oxides having the spinel
structure and the chemical formula 3IcVs04 (where 3II
is a divalent and 1V is a trivalent ion) can be explained
in terms of two crystallographically unique sublattices
A and 8.' For the materials he considered, and many
more studied since then, the interactions of the sub-
lattices are such as to orient them antiparallel to each
other, and the observed magnetic moment is the
moment of one sublattice minus the moment of the
other.

Although the Xeel theory was very successful in
many cases, there are theoretical objections to parts of
the theory. For certain values of the interaction
parameters, one of the two sublattices would be un-
saturated, resulting in a nonzero slope of the magneti-
zation es temperature curve at absolute zero, which is
in conflict with the third law of thermodynamics.
Another objection is that for certain other values,
which may be quite large, of the interaction parameters
the material remains paramagnetic at all temperatures.
This does not seem I'easonable, since for strong inter-
actions one would expect some kind. of ordering at low
temperatures.

Yafet and Kittel in 1952 published a modification of
*This paper is based on a thesis submitted to the Graduate

School of the University of Maryland in partial fu16llment of the
requirements for the degree of Doctor of Philosophy.' L. Neel, Ann. phys. 3, 137 (1948).

the Xeel theory in which the two sublattices were again
divided, giving four sublattices, A1, A2, 81, and 82, and
which overcame the above difficulties. ' Those cases
explainable by the Xeel theory are also explainable by
this theory, and in a similar fashion. One feature of this
theory is that for those cases in the Xeel theory re-
quiring an unsaturated A sublattice, for example, the
Yafet and Kittel theory requires nonparallel alignment
of saturated A1 and A2 sublattices. The Yafet and
Kittel theory also introduced the interesting possibility
that magnetic ordering transitions may occur at tem-
peratures other than that at which the spontaneous
moment appears.

The Yafet and Kittel theory has been used by
several authors to explain observed magnetic eBects
that are not in agreement with the Xeel model. Gorter
has suggested that the saturation magnetization of the
MnCr204-MnFe204 series might be explained in terms
of angles on the 8 sublattice. ' I-otgering has used the
theory to explain the magnetization of MnCr204 and
FeCr204 and has given approximate values of the
interaction parameters. 4 The measurements of McGuire,
Howard, and Smart' show a kink in the susceptibility
curve of XiCr~04 near 300'K, and later work by
Volger4 shows a specific heat anomaly and that by

' Y. Yafet and C. Kittel, Phys. Rev. 87, 290 (1952).' E. W. Gorter, Philips Research Repts. 9, 295, 321, 403 (1954).
4 F. K. Lotgering, Philips Research Repts. 11, 337 (1956).
~ McGuire, Howard, and Smart, Ceram. Age 60, 22 (1952).


