
P H YSI CAL REVIEW VOLUME 1 46, NUMBER 2 OCTOBER 15, 1959
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The quantum theory of the third virial coefficient C is discussed. Three types of intermolecular pair forces
must be distinguished. (1) No bound or low-lying two- and/or three-body states exist. The first four terms of
the low-temperature expansion of Czz are obtained. They depend on the scattering length, the effective range,
and a third length which cannot be inferred from scattering data. The limitations of the applicability of such
expansions are discussed, both for He' and He', by means of a comparison of the corresponding expansion for
the second virial coeificient 8 with detailed numerical results known for specific potentials. (2) Existence of a
near zero energy level both for the two- and the three-body system. It is shown how in this case the actual
potentials may be replaced by suitably matched boundary conditions on the two- and the three-body wave
functions near the respective coordinate origins. It is 6rst explained how the method applies to B.Then the
leading term of C is explicitly determined. (3) Existence of strongly bound two- and three-body states. An
approximate expression for C is given by treating the single atoms and the binary and ternary compounds as
a system of three ideal gases in chemical equilibrium.

authors developed were applied by them mainly to the
nvestigation of the low-temperature behavior of a dilute

Bose-Einstein (BE) gas or a dilute Fermi-Dirac (FD)
gas of hard spheres, but they have a wider validity of
which the limits at present are still unclear.

Two aspects of the work of I.ee and Vang are of
particular interest for what follows: First, they showed
how to relate the so-called cluster functions of a BE or
an FD gas to the corresponding functions for a
Boitzmann system (see also Sec. II). A second essential
feature is their binary expansion method, in which one
arrives at a formal reduction of the properties of an
e-body Boltzmann system to the corresponding two-
body system. A short review of this method, with some
emphasis on the relation to the classical Ursell expan-
sion, will be given in Sec. V. We only note here that,
thus far, the inhuence of the existence of bound two-
and/or more-body states on the binary expansion pro-
cedure has not been clarified.

The study of the binary expansion method led us to
ask two questions, the answer to both of which is known
where 8(T) is concerned: To what extent are the higher
virial coefficients determined by two-body scattering
data' Is it possible to discuss to some extent in which
way these coe%cients are aGected by the existence of
two- and/or more-body bound states'? It is the purpose
of this paper to analyze these questions specifically for
the third virial coetIicient C(T).

It turns out that it is essential to distinguish three
cases depending on the form of the intermolecular
potential.

(u) The case of repulsive forces Assuming th.—at the
intermolecular force is purely repulsive, or if in addition
ome attraction is present, that the attractive force is so
eak that no two- and/or three-body bound states or

ee and C. N. Yang, Phys. Rev. 105, 1119 (195'l); Lee, Huang,
nd Yang, Phys. Rev. 106, 1135 (1957).

5 T. D. I,ee and C. N. Yang, Phys. Rev. 113, 1165 (1959).

I. INTRODUCTION

~ 'HE virial coeScients B(T), C(T), are defined

by the Kamerlingh Onnes virial expansion:

~(T) C(T)
pV=ET 1+ + +. . .

V V2

for the equation of state of a dilute gas. It is well known
that in the classical theory, that is for high temperatures,
the virial coeKcients can be found explicitly in terms of
the intermolecular forces. These expressions are simplest,
and most familiar when (a) the forces are additive and
(b) the two-particle force is central, and these properties
will also be assumed throughout the present work. For a
discussion of the classical theory for special intermolecu-
lar potentials we refer to the review by Kihara. '

In the quantum theory, that is for su%ciently low
temperatures, the picture is very much less complete.
There exist explicit expressions for the first quantum
mechanical corrections to the classical results, ' but only
for the second virial coefficient B(T) is an exact expres-
sion known by means of which one can discuss the entire
temperature range. ' We will come back to this in Sec. III
but it may be well to point out already here that this
expression relates B(T) to the discrete energy levels of
the two-body system and to the phase shifts of the two-
body continuum wave functions. The continuum part
can thus be found in principle from scattering experi-
ments.

In recent times the quantum theory of the nonideal
gas has advanced considerably by the work of I.ee,
Yang, and their collaborators. 45 The methods these

' T. Kihara, Revs. Modern Phys. 25, 831 (1953);27, 412 (1955).' See reference 1, Secs. 14—16.' E. Beth and G. K. Uhlenbeck, Physica, 3, 729 (1936);4, 915
(1937). See also B. Kahn, dissertation, Utrecht, 1938 (unpub-
lished), Chap. IV. L

4 K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957);
Huang, Yang, and t.uttinger, Phys. Rev. 105, 776 (1957); T. D.
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low-lying virtual states exist, the method of I ee and
Yang' can be applied and leads to a low-temperature
expansion of C(T). In Sec. VI the first four terms of this
expansion are given; see Eq. (121). To this order the
characteristic lengths of the two-body system which
appear successively are: the scattering length a, the
effective range ro, and a third length d, which cannot be
inferred from scattering data'; see Eq. (96).

(P) The case of weak bi,mdimg He.—re we consider the
situation when the attractive forces allow just one low-

lying energy level (either real or virtual) both for the
two-body and the three-body systems. More precisely,
we mean by this that the energy levels in question are so
close to zero that a temperature regime exists in which
the ratio, binding energy over kT, is much less than one,
while at the same time the ratio, range of the forces over
the thermal wavelength X=k(2mriskT) '*, is also much
smaller than one. We shall show in Sec. VII that in this
case the leading term in C is of the form const&&t ', where
the constant is independent of the precise shape of the
intermolecular potential and can be determined by re-
placing the actual potential by a suitable boundary
condition. The final result is given in Eq. (181).

(y) The case of strong binditsg In this .—case we as-
sume that two- and three-body bound states exist and
that we are in a range of such low temperatures that
the ratio of the binding energies to kT is much larger
than one. Here the method of I,ee and Yang' is not
directly applicable. For this regime of binding, our re-
sults will be presented in Sec. VIII.

It is, of course, possible and also sometimes convenient
to consider the above three cases for the second virial
coefficient. However, for B(T) all expansions can be
obtained from the exact expression, whereas, to our
knowledge, for C(T) one has to start afresh for each of
the three cases. Since the weak-binding case (where the
leading term of B is of the form const&(X') seemed of
special interest to us, we shall give in Sec. IV a new
derivation of the value of the constant, in which we do
not start from the exact expression for B(T), but also
for 8 treat the problem as one with boundary conditions
replacing the intermolecular potential.

The experimental validity of the low-temperature ex-
pansions of the virial coefficients is very probably quite
limited. In this connection the isotherms of He4 and He'
are, of course, of special interest. Recently Keller' has
made new measurements of the isotherms both for He'
and He' at temperatures below O'K, and there are also
recent numerical calculations of B(T) based on the

6 Lee and Yang have shown that the ground-state energy per
particle of a dilute BE system of hard spheres with diameter u is
given by e=krap[1+128(paa)&/15s&+ ~ ~ ). By means of the
methods of Sec. VI, it is easy to give a direct proof of the rather
obvious fact that this formula for e also holds for an arbitrary
repulsive force, provided one replaces the hard-sphere diameter by
the scattering length. We have also found that beyond this order,
terms in the square bracket proportional to pu'ro and to pd' must
appear.

7 W. F.. Keller, Phys. Rev. 97, 1 (1955):He4; 98, 1571 (1955):
He'.

Lennard. -Jones (12,6) potentials and on the (exp, 6) po-
tential. ' We will make some comments on these results
in Sec. III. Here we only state that with regard to the
third virial coeKcient no dependable low-temperature
data exist so far for He', as Keller has pointed out. ' In
the case of He' the same author gives experimental
values for C at 3.8' and 3'K. However, as we shall see
in Sec. VI, the binary expansion result for He' is already
rather dubious at these temperatures. The practical
usefulness, if any, of our results for C(T) remains there-
fore to be seen, but we believe, at any rate, that the
considerations which follow may be of some methodical
interest.

II. GENERAL PRELIMINARIES

We recall that the virial coefficients can be expressed
in terms of the so-called cluster functions bz through the
Mayer equations:

P N

= lim g b~(U, T)s',
v " z=&

oo—= lim Q lb)(V, T)s',
p v "z=x.

(2)

by elimination of s. For large volume V the b&(V, T)
become independent of V and in the gas region the sum
and the limit in (2) can be interchanged. Calling
b&

——limb&(V) (we will always suppress the argument T),
one obtains

gy2
B=—,C=—(—2bsbi+4bs'), etc.

$2 $4
(3)

'de Boer, van Kranendonk, and Compaan, Physica 16, 545
(1950):He'; J. E. and M. F. Kilpatrick, J. Chem. Phys. 19, 1930
(1951):He4; Kilpatrick, Keller, Hammel, and Metropolis, Phys.
Rev. 94, 1103 (1954):He' and He4.

9 Kilpatrick, Keller, and Hammel, Phys. Rev. 97, 9 (1955):He3
and He4.

The b&(U) are defined in terms of the trace of the l-body
cluster operator U z which in turn is expressed in terms
of operators 8'„, defined by

W„=exp( —
PHt "&), P= 1/kT,

where II& "& is the e-body Hamiltonian. One has

Ui(1) =Wi(1),

Us(1,2) = Ws(1,2) —Wi(1)Wi(2),

U3 (1)2,3) = Ws (1)2)3)—Ws (1)2)W, (3)
—Ws(2, 3)Wi(1) —Ws (3,1)Wi (2)

+2Wi(1) Wi(2) Wi(3);
then

V/!b((V) =Tr(Ui). (6)

All these definitions and relations hold irrespective of
the statistics. The statistics enters Oat'Y in the choice of
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the l-particle states in the volume V (with prescribed
boundary conditions on the surface of V) with respect to
which the matrix elements of 8"

~ and U~ are formed. We
have:

(1) Boltzmann statistics,

(1'" Ãlw I1".x)
=&'&'(1'. "&')&**(1".8') e p( —0&'( '); (7)

(1'2'3'
I
U, "I 123)

=-(1'2'3'I& 'I»3)+(I'3'I tt 'l»)(2'IU I3)
+ (2'3'I& 'I ») (1'I Uil3)+(2'3'l~ 'I »)
X (1'I Uil2)+(1'2'I tt2'I 13)(3'I U

I 2)
+(1'3'I'll

I
23)(2'I U, I1)+(1'2'l~ el 23)

X (3'I Uil »+ (2'I Uil 1) (3'I Uil 2) (1'I Uil 3)

+ (3'I Uil 1)(1'I Uil 2) (2'I Uil 3) (1.&)

(2) BE statistics,

(1' 1PIW~sEI1 1V)=1V!

A corresponding procedure can also be worked out for
the I'D case. '

We will adopt units for which A=i and the mass of
the particle no=-', ; the thermal wavelength X is then
(4irP)*'. With these units

i, symm

(3) FD statistics: same as Eq. (8) but with a summation
over antisymmetric states.

Of course, the operator 8'~ itself does not depend on
the symmetry properties of the tt 's. However, it is con-
venient to hang a label BEor FD on 8'~ and likewise on
U&. Without labels the corresponding symbols shall
always refer to the Boltzmann case. The arguments
1, , iV of the P's in Eqs. (7), (8) refer to the coordi-
nates and, where necessary, to the spins of the E
particles. It may be recalled that Eqs. (2)—(6) hold true
for arbitrary spin.

It has been observed by I ee and Yang' that 8'&~K
and 8'~~D can be expressed in terms of the correspond-
ing Boltzmann matrix elements 8'~, as follows:

&1'",x'I w~»I1 "~v)
=P, P(1', ",lv'Iw I1, ",x), (9)

p'Iw I1 . iv)
=Pp. P'e p.(1', ,iV'

I
1'Vg

I 1, ,1V), (10)

e&"~=—p a y g c" (16)

where C;; is the (central) two-body potential.

III. REVIEW OF THE QUANTUM THEORY OF B(T)

From Eqs. (4) and (6), one finds

bi=lim —Tr(Wi) =—,
V

1
b2 ——lim I P exp( —PE;&@)—P exp( —PE,&")7, (18)

2V s

where E;"', E;(0& are the energy states of the two-
particle system, enclosed in V, with and without
interaction, respectively. By separating the diGerent
angular momenta and the possible discrete states from
the continuum states, Eq. (18) can be transformed into

where I"is any one of the E!operators that permute the
variables 1', , iV'. ep ——+1(—1) if the permutation
of the normal order is even (odd). Thus one has a
scheme to go from U to UJ which goes via the sequence

QO

bg Q(2l+——1)—Bi,
X3 ~=0

U~~ —+ 8'~E~ W —+ U, (11) Bi=+ ee'«+2 dr

and similarly for FD. It turns out that the relation (11)
between U E and U can be expressed most simply by
means of quantities 'LL~ de6ned as follows: X

~
dk exp( —2pk')

I Ri p(r) —R~, , i&0~'(r) $, (20)

(ai,a2, . ,«l«'I1, 2, . l)
=Q p Pg(ai, . . .,ai

I
Ui

I 1, ,l).

For example, one finds from Eqs. (9) and (12)

(1'I Ui"
I I)= (I'l&i'I I) = (1'I U

I »,

(12)

(13)

where e„g are the binding energies of the possible states
for given l, and Ri, i(r), Ri, P&(r) are th, e radial wave
functions, with and without interaction, for the relative
motion of the two-body system. The normalization of
these radial functions is so chosen that for r ~ ~

(21)
(1'2'I U2 El 1,2) = (1',O'I't4el 1,2) Rii —+ sinLkr ——',lir+bi(k)$,

+(2'l~ 'I 1)(I'l~" I2) Rii&oi = (mkr/2) Vi+1(kr) —+ sin(kr ——,'lm. ).
= (1',2'IU2I1, 2)+(2',1'I U2I1,2) In Eq. (20) the integral over r can be carried out, and

+ (2'I Ui
I 1) (1'I Ui

I 2), (14) from Eqs. (3), (17),and (18) we obtain the final formula,
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always for HoltzQlann statistics:

B=—2~iVXo Q (2l+1)Bi,
l=p

1 r." d~&

Bi Pe——f""&+— dk exp( —2Pk')

(22)

The generalization to BE or FD statistics is straight-
forward and also the inQuence of an intrinsic spin s of
the particles is easily taken into account. One obtains

review of this work we refer to the report of de Boer" at
the Kamerlingh Onnes Conference. We note that the
numerical calculations based on potentials like (26)
show that even at 1'K the D-state contributions in (22)
are already appreciable. Since the lowest temperature
for which 8 has been measured is 1.5'K, the validity of
Eq. (25) and of the expansions for the three regimes of
binding defined in the introduction is extremely limited.
Nevertheless, these expansions may perhaps be useful as
a check on numerical calculations.

(rr) The Case of Repulsive Forces

&I Z"=
s+1 S

BEE+ Bl'"Di
2s+1 2s+1

Now the bound state term in Bp is absent, while for 5

we may use the expansion"

s+1
BED BED+ BBE)

2s+1 2s+1

(23)
1

k cot5 = +—-,'—rok'+O(k4),

where Bg~ and BFD refer to zero spin and are given by

BEE=—2llVXs[-sr+2 Q (2l+1)Bi],

where a is the scattering length and rp the effective
range. This leads to

l even

Brn= 2~N~'t sr+ Z (2l+1)Bt)
l odd

(24)
0 X'

Bo=2 1 ——+—a (a——'ro)+O(X ') (28)

with Br given in Eq. (22).
Since in this paper we are mainly interested in the

very-low-temperature behavior of B(T), and since we

always will have the application to He' and He' in

mind, the equations can be simplified by considering

only 5 states, at most one discrete state and s=0 for
BE (He4), s= rs for FD (He'). Then

BEE=—21NX'ps+2Bo],

BED"&= —2'*1VX sL——,', +-',Bo],

1 p" d8
Bo=e&'+Bo', Bo' ——— dk—exp( —2Pk').

x ~p dk

(25)

To account for the differences in the mass of He' and
Hee we have introduced in (25) two thermal wave-

lengths X and X;. It is understood that the quantities e

and 8 should be labeled correspondingly.
The most recent measurements of B(T) for He' and

He' at temperatures below O'K are due to Keller. ' The
theoretical discussion, which was started by de Boer,"
assumes an empirical potential C(r) with parameters

adapted so as to represent the high-temperature be-

havior of B(T).For instance, de Boer used the Lennard-

Jones potential,

~( ) =4.[(-/ )"-(-/ )'j, (26)

with parameters r)/k = 10.2'K, o = 2.56 A, but also other
forms of the potential have been used. For a recent

'o See the contribution of J. de Boer and R. B.Bird, in Hirsch-
felder, Curtiss, and Bird, Molecular Theory of Gases (John Wiley
and Sons, Inc. , New York, 1954).

which when inserted into Eq. (25) gives the low-

temperature expansions for the 8's. Note that only in
the BE case the term 1/Xo has meaning since D-states
give an O(X ') contribution. For the FD case one must
stop at the first term in Eq. (28) unless the I' wave-
contribution is taken into account. Only for He' it
seems certain that no discrete state exists, so that the
expansion (28) might be tried. From 5(k), computed
numericallys with the use of Eq. (16), it can be esti-
mated" that for He', a,;——6.4 A, which leads to

53.5 170
B(He') =

~
+ — +const

~
cm'/mole. (29)

T-*' r
Thus for T~ 0, B(He') should go to + co. B(He') has
been measuredv at temperatures ranging from 3.8 to
1.5'K and all experimental values found in this interval
are negative. Numerical computations of B(He'), pub-
lished both for Lennard Jories potentials' and for
exp-six potentials, ' go down to 0.3'K where B(He') is
still negative. However, Keller has communicated to us
unpublished numerical results obtained in collaboration
with J. E. Kilpatrick and E. F. Hammel for B(He') at
0.1 and 0.2'K from which it is seen that at 0.1'K the
B(He ), for either type of potential, is still negative but
begins to exhibit an upturn which presumably leads to
positive values for B(He') at still lower temperatures.

It may further be noted that if one uses the first two
terms of Eq. (29) only, one would get negative values

"J. de Boer, Physica 24, 90 (1958)."See for instance J.Blatt and V. Weisskopf, Theoreijca/ Ngcleor
Physics (John Wiley and Sons, Inc. , New York, 1952), p. 62.

"J.de Boer (private communication).
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for B(He') from T~0.1'K on upward. However,
de Boer has pointed out to us" that from temperatures as
love as 0.05'K on up the J'-states contributions be-
come quite important, so that the two term S-wave
Kq. (29) does not have much meaning beyond that
point. In that connection it is also interesting to quote a
further unpublished result due to de Boer: using the
potential (26) he finds that for wave numbers up to

0.2 A ' the two-term formula (27) gives a reasonable
account of the behavior of 5 provided one takes
rp—22.6 A.

The large values of a and rp clearly show that for
temperatures of, say, 1'K on up the expa, nsion of
B(He') of the type (27)—(29) must be very slowly, if at
all, convergent. The scattering objects are so big that
the regime of practical usefulness of the scattering
length and effective range concepts is extremely limited.
It wil1 moreover become clear from the discussion of the
weak-binding case, to which we turn next, that for He'
the notion of scattering length is in fact meaning1ess for
all practical purposes.

(g) The Weak-Binding (WB) Case

As was stated in the introduction, this regime is
defined by the simultaneous conditions,

pe&(1, 0/X((1,

where e is the absolute value of the bound state, or the
energy of the low-lying virtual state, whatever the case
may be, and where 0- is a measure for the range of the
forces. In this case there is a well-known argument'
which allows us to put

(31)

and which runs as follows: for a level close to zero, the
corresponding wave function develops for very nearly a
quarter wavelength up to the range of the forces. On the
other hand, the phase shift 6 starts from zero or x for
k=0 if the level is virtual or real. Thus if we now
entirely neglect the range of the forces, we may in first
instance replace db/dk in Eq. (25) by &7r/2 at k=0,
where the plus (minus) sign corresponds to the virtua, l

(real) case. Of course, the term es' in Bo is present only
for the real case. Then Kq. (31) follows immediately.
Substituting Eq. (31) into Eq. (25), one gets in the WB
limit

thc virtual (I'cal) case. Tllus tllc corI'cctioI1 to tile phase
jump of 7r/2 clearly depends on the force law.

The WB case seems to be applicable to He'. All
numerical calculations'' based on empirical potentials
have shown that, if a discrete level exists at all, e/k is
less than 0.05'K. In fact, on the basis of the present
available data one cannot decide whether the level close
to zero is real or virtual. Since for He', X 8.7/—Tl A, and
since the range of the forces is of the order of 5 A, there
is a small range of temperatures below say 0.5'K, for
which both inequalities (30) are fulfilled.

For He' Eq. (32) gives BIIE———625/Tl cm'/mole.
From the published numerical tables, " one finds at
0.3'K B(He') T'=—445. From the unpublished results
of Keller ef a/. mentioned previously, one finds B(He') Tl
= —466 and —454 at 0.1 and 0.2'K, respectively. "
Using Eq. (23) with the Lennard-Jones potential (16),
one gets 6(k) = 2IIr —1.34ko, which at 0.3'K reduces the
theoretical value —625 for Bp,ET' to —540. We quote
these numbers not from the point of view of getting
quantitive agreement, but rather to emphasize that for
He' the %8 limit seems a considerably better leading
approximation than the ideal Bose gas, for which
B(Hc )T* would RpploRcll thc VRlilc —69.5.

If He' has an 5-state close to zero, then the same
cannot be true for He'. This is also clearly seen from the
S-phase behavior of Hc' (. omputed by de Boer et al. '
This phase rises more s1owly with increasing k than the
one of He' and never reaches m/2.

(y) The Case of Strong Binding

» t»s case p~&&1 and therefore the low-temperature
behavior of 8 will be dominated by the bound-state
contribution. It has been pointed out' that this ap-
proximate expression for 8 can also be derived directly
by considering the tota1 system to be a state of chemical
equilibrium between "atoms" and "binary molecules. "
Since neither for He' nor for He4 is this case applicable,
we will not make any further comments here. However,
the strong-binding treatment may be of relevance for
other particles, like for example the heavier noble gases,
where, for suitable temperatures, it may be better than
either, the repulsive or the WB method.

In concluding this section we would like to express our
sincere appreciation to Dr. W. E. Keller and to Dr. J.
de Boer. Their communications of some unpublished
results has been of great help to us.

'
BIIF——91A'/2'*, BFn I-**I——3 AI3/2'I'. (32) I& N&W DERIVATION OF THE WB LIMIT FOR g

It is possible to refine this result somewhat by using an
argument similar to the one leading to Eq. (27). One
finds in the %8 limit

B(k) =—5~(k) —k lim ~' dr(1 —E„'(r))+ (33)2'
where S~(k) is the unit step function going up (down) in

Since in the WB limit the range of the forces is
neglected in first approximation, the result of Eq. (31)
clearly only depends on the properties of the wave
function outside the interaction region. In this section

"See the last of references 8 and 9,"It is a bit surprising that the numerical values even at the
lowest temperatures do not approach closer to the theoretical
value. This is perhaps an indication of the sensitivity of the
numerical calculations at these temperatures.
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we show how to obtain the WH limit by replacing the
actual two-particle problem which involves a potential
by a suitable boundary-value problem. "

In order to state the problem in this way we return to
the expression (18) for b2. In the limit V~ pp the
eigenfunctions corresponding to E„(') are denoted by
&t

&"(R,r), i=2 or 0, where R, r are the center-of-mass
and the relative coordinates, respectively. The p„"are
supposed to be an orthonormal set. Define

p(" (Rp, p
I R,r,p)

=p„if&„(')' (R' r')(f „('&(R,r) exp( —pE &") (34)

with i= 2 or 0. The formal symbol P„stands, of course,
for a summation over possible discrete states and a
Inultiple integral over the continuum wave numbers.
Put

p —p(~) p(p)

Then, from Eq. (18)

Doing the R-integration in the sense explained above
we get

2b. =(2-p)-:„I'd.Q(.I.,p),

Q =Q(2) —Q(P)

(41)

Next we decompose the Q"' with respect to states with
angular momentum l, and we assume that the contribu-
tions to Q&') from l)0 are "free," that is, equal to the
corresponding ones for Q"& so that Q of Eq. (41)
becomes

Q
—Q() Q(o)

where the subscript 0 refers to the S-state part. In
principle we introduce here an error, but one which is
negligible for p ~ p&) (T~ 0), the limiting case we are
interested in. The Qp" depend only on the respective
magnitudes rp, r of rp, r. Put

b2 ——lim dR dr P(R, rI R,r,P).
v co 2P'

qo"'(«I r,p)
Qp"'(rplr, P) =

4n-rr p

(43)

There is an a,pparant contradict. ion in Eq. (36):On the
one hand, the limit V= ~ still has to be taken; on the
other hand, the p entering in the definition of I' already
refer to infinite volume. Still, the interpretation of Eq.
(36) is quite obvious: Only for infinite volume is the
separation of center-of-mass and relative motion strictly
possible. As we shall see in a moment, this separation
reduces the R-integration simply to const J'dR and this
integral has then to be interpreted as U. All subsequent
integrations are U-independent. The purpose of this
device is merely to bypass the rather irrelevant question
of the inseparability of R and r for Quite volume.

From Eq. (34) it follows that the I'") satisfy the re-
spective Bloch equations

It follows from Eqs. (37)—(40) that

aqp"'/ap= 2(a'q 'p/l9r') C(r)—q
&')

&&qp("/&&P = 2 (&&'qp("/&&r'),

while

q
& '& (rp

I
r,0) =b (rp —r) .

From Eqs. (41) and (43) we obtain

(44)

(45)

(46)

2b2=(2~P) r "dr[qp'"(rIr, P) —qp' (rIr,P)g. (47)

Except for the 5-wave approximation, this expression is
still exact. In fact from the general definition (34) it
follows that

BP(')/BP = (—'A&i+26„)P("—C (r)P("

BP(')/BP = (-'6 (+2A,)P(",

whereas from the completeness of the @ we have

(37)
qo'"(«I r,p) —qo"'(«Ir, p)

(38)
2

=R(rp)R(r)ee'+ — dk exp( —2Pk')

exp[ —(R—Rp) '/2P gJ'(') = Q") («I r,p),
(2-P)-:

(40)

where the cofactor of Q&" is the fundamental solution of
the di6'usion equation

BF/Bp = 26Iii '.

"We are indebted to Professor Mare Kac for a private com-
munication in which he pointed out to us the connection between
the present formulation of the problem and diffusion theory.

P(o(RP rP
I

R r 0) =((R—RP)b(r rp) (39)

It remains to specify boundary conditions. Kith
respect to R the answer is simply that there are none. As
moreover the equations for the P(') as well as the initial
conditions are separable in R and r, we have

X[R&t,.(rp)R), (r) R&,")(rp)R)( &(r)j, (48)

where we assume that there is only one discrete state of
energy —e and with wave function R(r). Inserting (48)
into (47) gives bm= 2&X 'Bp, see Eqs. (19) and (20).

At this stage we specifically turn to the WB limit and
argue as follows: Let the interaction C be zero for r&0-.
Then if there exists an energy level, either real or virtual,
very close to zero, the derivative of the corresponding
wave functions must almost vanish for r=0-. Now qp&') is
proportional to an integral over the relative wave
number k of all S-states specified by k where, according
to Eq. (48), each state k has the weight exp( —2Pk'). As
for p -+ po the main contribution comes from the region
near k=0 we are therefore led, in the %3 limit, to
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substitute for Eq. (44) the new equation

BrIp(2)/BP = 2 (82&Ip(2)/Brp) (49)

Finally, as in the WB limit 0 is negl'ected, we shall adjoin
to (49) the boundary condition obtained by letting
0~0:

integrand and letting n —+0 after integration. This
gives

I'"'(k) = sin25/4k. (56)

Now consider I'" and I'"' near k= 0 which is the relevant
region for the low-temperature behavior of B0. We have

(c)gp&2)/c)r), =p
——0. (50)

1(dbms

limI'"'= —
I

—
I

2 Edkj p

(57)

It remains to specify the boundary condition for Eq.
(45). Since the choice of polar coordinates makes r= 0 a
singular point, we must require

qp&P) (r=0) =0. (51)

The solution of the two diffusion problems (45), (49)
with respective boundary conditions (51), (50) and
with common initial condition (46) are

Hence

~.")( oI ,~) = (8 ~)-'( +"),
~.'"("l,~) = (8 ~)-i( —.),

n =expf —(r&rp) /8Pj.

op= ~p")—~o")=2(8~P) '~+.

(52)

(53)

It follows that the integrand of the r-integral in Eq. (47)
is (42rr2) 'qp(r lrp). Note how essential the cancelation of
(r is in obtaining I7p from Eq. (52): a term in gp pro-
portional to o would have produced a contribution that
would diverge for V —+ ~. Thus we have now verified
that the limit in Eq. (18) exists and the final answer is

b2
——v2/(2V), (54)

which is equivalent to Eq. (31).
The present procedure of treating the %9 limit by

means of a set of diffusion equations with specified
initial and boundary conditions will serve as a muster
for the treatment of the corresponding problem for the
third virial coeKcient, see Sec. VII.

Finally it may be good to note here that also in the
repulsive case the quantity 80, in the limit T—+ 0, again
depends only on the behavior of the wave function
outside the range of interaction. This can be seen as
follows. Bp fsee Eq. (20)) can be written as

1.
asr p 2—lim ———I in (k).

kM P2

V. THE BINARY EXPANSION METHOD

(59)

I ee and Yang' have shown how to express the cluster
operators Ug in terms of certain two-body operators. In
this binary expansion procedure one conveniently makes
use of a representation by graphs. We shall here give the
results in the form of a set of recipes which especially
emphasize that the graphs in question may be con-
sidered as "blown-up" versions of the Ursell graphs of
classical theory, in a sense now to be described.

First let us recall how the Ursell graphs are defined.
Since in the classical theory the trace operation becomes
an integration over phase space, Eq. (6) becomes, in our
unltsp

V/!bi'(V) = — ~dpi dyidri dri Ui', (60)

where Ui' is expressed in W„' as before, see Eq. (5). Put
n

W '=exp( —PII&")s)=e ~r" g (1+f,;),
i& 7'=1

f,;=exp( —PC;;)—1,
(61)

limI'"= t dr limfR22(r) —Rp& ')'(r))=0, (58)
0

k=0

where in Eq. (58) we have legitimately interchanged the
r-integration and the limit operation. Equation (57) is
valid for b(k=0) =222r where n is the number of bound
states. Thus we find that when T —+ 0 the contributions
to 8 come entirely from the outer region. It is easily
seen that an expansion of I'"' near k=0 yields correctly
the first and only the first term of Eq. (28). Thus, from
the term )( ' in Eq. (28) on, the inner region is being
explored as is also obvious from the definition of r0 ..

I nn4 t dyfg (as)2(y) g (P)2(r)$)s J 2

in — I dyf+ 2(r) g (as)2(y)$

(55)
U '= Q Ui'(G)

(0)

«'(G) =e "'lI f',
(@)

(62)

(63)

where T„=P p& is the kinetic energy. Then it turns out
that U&' is given by'~

Ep&")=sin(kr+b).

Observe that Ik'"' is an improper integral. Let us give it
a precise meaning by inserting a factor e "" in the

'7 It follows from the definition of Uq' that the y-integrations in
Eq. (60) can trivially be done. In fact, one usually defines U&'
without the factor exp( —pTi). For the present it is convenient to
use the definition just given for the purpose of a comparison with
quantum theory.
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where 6 is a connected graph of / labeled points. To a
line of G between the points i and j one associates the
factor f,; Th. e summation in Eq. (62) goes over all such
graphs. For example, for /=3 the graphs are those
drawn in Fig. 1 and we have

U3 e ~ '(f12f23+ f23f31+f81f12+f12f23f31) . (64)

I et us now turn to the U&, that is, the quantum case
with Boltzmann statistics. As a first example we take
U3. By following the I-ee-Yang procedure it can be seen
that this operator can again be represented as the sum
of four operators, to each of which corresponds one of
the Ursell graphs of Fig. 1. In detail the procedure is as
follows.

Draw one of these Ursell graphs, for example Fig.
1(b). Then draw lines through the vertices 1, 2, 3
perpendicular to the plane of the graph which in the
example yields two intersecting planes. Then proceed by
the following set of recipes.

(1) Starting from the bottom, draw a block in one of
the planes. Example: see Fig. 2(a) where the shaded
area between 1 and 3 represents a block.

(2) Then draw a block in the other plane starting
from the top of the previous block. A graph which has

(b)

FIG. 2. Tvro examples of connected quantum graphs corresponding
to the Ursell graph of Fig. 1(b).

pendicular to their planes. In each such figure put in
blocks in such a way that (1) one starts from the
bottom; (2) one builds the (n+1) th block starting from
the top of the 12th block; (3) if the nth block is in the
plane of the particles (t,j), then the (28+1)th must be
in a different plane; (4) for each Eb one distinguishes the
orders in which the blocks are built up; (5) one associ-
ates to an Ursell graph an Ursell quantum graph by
summing over all Xb., (6) one associates to V1 the sum
of all Ursell quantum graphs so constructed.

Suppose that by building up the blocks, we have a
particular quantum graph with kth block in the (ij)
plane. To this block we associate the operator

C(P.; si) =&(Pb; si) exp( —Pb 2' P-'), (65)
n=l

(a) (b) (c)
FIG. i. Classical UrseB graphs for /=3.

where 8 is the binary operator introduced by I ee and
Yang'.

at least one block in each plane will be called a con-
nected quantum graph.

(3) Thus Fig. 2(a) represents a connected quantum
graph of two blocks. There are two of those two-block
graphs as one might alternatively have started with the
lower block in the (1,2)-plane. Figure 2(b) also repre-
sents a connected quantum graph, where now an addi-
tional block has been drawn, again starting upward
from the previous block. Again there are two three-
block graphs. Continue to build such graphs with higher
numbers of blocks Ãb.

(4) To the Ursell graph of Fig. 1(b) we associate the
infinite sum of all connected quantum graphs where the
summation goes over 2&g b( ~. This infinite sum we
call the Ursell quantum graph. For each Eb we get two
summands corresponding to the two ways in which the
blocks can be arranged, as indicated above for Nb=2.

(5) Proceed in the same way for each of the graphs
of Fig. 1. One further example is given in Fig. 3 where
one of the six connected quantum graphs for Kb= 3 (the
minimal number in this case) is drawn corresponding to
Fig. 1(d).

(6) To the operator Us we associate the sum of the
four Ursell quantum graphs.

We proceed likewise for general U~. first draw the
associated Ursell graphs, then draw lines upward per-

~(p, tj) = —c" expL —Pb(P"+P '+c'* )j. (66)

The prime on the summation sign in Eq. (65) means
that 13Wi, j; Pb is an auxiliary parameter.

To the sequence of blocks of a given connected
quantum graph we associate an ordered product of C's
such that the sequence of blocks from bottom to top is
represented by the corresponding product of C's from
right to left. Next we associate to a connected quantum
graph of 28 blocks (23&l—1), the operator

n" „dP1 dP- expL .(P EP—~)&1j—
&&C(p„;s„j„)C(p. 1; 8 1,j„1) C(P1., it, j1), (67)

FIG. 3. Example of a connected
quantum graph corresponding to
the Ursell graph of Fig. 1(d).
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where the integration domain of the ps is restricted by

(6g)

VVe are thus led to associate to each Ursell graph 6 the
operator

Ui(G) =e s'i~~ . dPr dP~ exP(Tip s)
k=1

where the round summation S means: (1) summa, tion
over all numbers n(i, j) of blocks between particlesi and

j from n(i, j)=1 to oo; iV=P, ,;n(i, j); (2) for given
rs(i, j) one also sums over all allowed permuta. tions of the
blocks. Remember that some permutations are for-
bidden as one can never have two C's as nearest neigh-
bors which refer to the same point pair. The number

X(N(i, j)) of connected quantum graphsfor given n(i, j),
or in other words the number of allowed permutations
is computed in Appendix I. The fact that we consider
one specific Ursell graph G of L points is implicitly
dictated by the choice of point pairs (i J„jz) in Eq. (69).
Finally we have

&r l exp( —pp') lrs&

=(ri~ Ur~rs&=X ' expc —(ri r—s) /4P$ (73)

Secondly we need the matrix elements of B(P,ik) Ac-.
cording to" Eqs. (66) and (5),

B(P,sk) =BUs(Pik)/BP+(P, s+Ps')Us(P, ik) (7.4)

Hence the matrix elements of V2 are required. With

R = s (ri+ r2), r = i'i —rs,

we have, again for t/'~ ~
(75)

(r, '.r.'I U,
I
r„r,)

= (2~p)-' «pi —1/2p(R —R')'l&r'I ~ Ir&, (76)

where the relative motion part (r' ~u
~
r) is given by

&r'~etr&= (2m'rr') ' P~(2l+1)(pi(0)

X -', rr Q„R.„i(r)R„((r')es'-t

To obtain the general matrix element of a C-operator
we need, a,ccording to Eq. (65):first the matrix elements
of exp( —pp'), where p' is the kinetic energy of one
particle. EVe have, in coordinate space (for V ~ ~)

Ui= Q Ui(G),
(0)

(70) +)t dk exp( —2Pk') (Ei,((r)RI, i(r')

which is the quantum analog of the classical rela-
tion (62).

Nate the following special cases. For 1=1 there
is but one Ursell graph consisting of one point so
Ui= exp( —pTi). For /= 2, the Ursell graph is just one
link between points 1 and 2. Thus the Ursell quantum
graph is just one one-block graph and

(1 2) —e
—sT2)l dp eslTs( g&is)e

—Pl(TR+412i (71)
0

—Rs(&'i(r)Rsi&" (r')} . (77)

The continuum wave functions Ehi(r) and Aqi~oi(r) are
defined as in Sec. III; the discrete radial functions g„&
are normalized to unity.

From Eq. (76) it follows that in the momentum
representation

(er', e'I Us
I ai, as&=b(Q —Q')&qr', as'I»i tie, e&, (78)

This equation is very instructive for a comparison with
classical theory. In fact, Eq. (69) must also be valid if
we ignore the noncommutativity of kinetic and po-
tential energies, that is to say in the classical limit.
Proceeding in this way with Eq. (71), we get

U. ~ Us' e-S'sf, s,
——

&qr', qs'
~
zcs

~
tfr, ifs&

f
=exp[ —sP(Q —Q')']X(2~)-' drdr'

Xe-'«"'-"i&r'( ~
~
r),

Q =qr+tls~ 6= s (tlr ili).

(79)

in accordance with Eqs. (62), (63) for 3=2. See also
Appendix I. From 3=3 on, every Ursell quantum graph
consists of an infinite number of terms.

Equation (69) as it stands is nothing more nor less
than a formal operator identity which relates the l-body
cluster operator Ui(G) to sums of products of the two-
body operators 8 of Eq. (66). It is this Eq. (69) which
forms the starting point for the binary expansion
computation of such quantities as the bI,. We collect
here a few general formulas which are constantly needed
for such calculations.

Kith the help of the matrix elements of C, the general
Eqs. (69) a,nd (70) lead to expressions for the bi in the
form of an infinite series. About the convergence of this
series nothing is known at present. Since the expansion
goes in some sense in the number of blocks or binary
kernels, its usefulness clearly depends on whether a

"See also reference 5. In the further use of Eq. (74) we will
always understand that the operator identity Us&0,sk) =0 holds
true in all representations. Note that this identity is not always
valid for singular potentials. However, in this paper we will always
have regular potentials.
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successive increase of the number of blocks or binary
kernels gives contributions that fall o6 sufFiciently
rapidly. From Eq. (77) it is clear that if bound states are
present, grave convergence difhculties may arise" in the
temperature regime where Po„i»1. Therefore till now
the expansion has only been used in the repulsive case,
but even here the convergence question is open. It is
noteworthy that in the classical limit the series for b&

converges whatever the potential is; see Appendix I.
VI. C(T) AT LOW TEMPERATURES FOR

THE REPULSIVE CASE

Ke recall that for any statistics C is expressible in
terms of the corresponding b's by Eq. (3). In this section
we shall be mainly concerned with the BE case; at the
end we shall make a brief comment on CpD.

Thus we must find bi E, /= 1, 2, 3. From Eq. (17) we
have bI~E=bi ——A. '. Next we recall that at low tem-
peratures b2 is given by

f; =2-:X- [-'+2@,j,
as was seen in connection with Eq; (25). As explained in
Sec. III we may use the expansion (28) in the repulsive
case, so t, ha, t

3—exp (r+—r—')'
8

dk exp( —2Pk')))(k, r, r'),

r)(k, r,r') =Ri(r)Ro(r') —.Ri(o) (r)R), (r'). (86)

We treat p by a, similar method as used in connection
with Eq. (55). Put

'0 'gout+'g in' (88)

R)(as) („)R)(o.) (r ) Ro(o) (r)Ri(o) (r ) (89)

));„=R),(r)Rk(r') —Ro(")(r)Ri,.(")(r'), (90)

witli R(, ( ' sin(kr+()——), as in Sec. IV. Thus

which is still rigorous. Now just as we went to the 5-
wave approximation in discussing b~, we must do like-
wise for (r I

e
I
r'), given by Eq. (77). In this way we get,

a,fter integrating over angles,

2 9/g oo oo — 3
j

drdr exp ——r—r '
3~)4~c ~o 8P

2Q 2X'8 /'

+ (,, )+O(&,,) (80)
cosk(r+r )+cotl) sink(r+r )

rl.„„k,r,r' =
1+cot'()

=X'3 ",

2 1.——lim —Tr[(12
I
U,

I
13)+(21I U, I13)

3! U

(82)

+ (»
I
&o

I
»)+ (»

I
Uo

I
») l(3 I

U)
I 2), (83)

Next we turn to bP E for which we have, from Eqs. (6)
and (15),

f)o = f)o, (o) '+f)o, (&) "'+&3,(2)

2 1
bo(o) E=—»m T'(2

I
~i

I
1) (3 0'i

I
2) (11 f)'i

I 3)
3I U

= —ka sink(r+ r') +k'a' cosk(r+ r')

+k'a'(a ——',-r()) sink(r+r')+ . (91)

—2'8 2Q 7l

+ a'(a ——,'ro).
X' 2'X'

(92)

Here we have once more used the expansion (27) which
is again broken off at O(k') because beyond this order
the D-wave contributions must also be taken into ac-
count. Inserting Eq. (91) into Eq. (86), we find for the
contribution of g,« to b3($) p

f),(,)"E ———lim —Tr(123 I'lloyd
I
123).

3! V'

In order to get the ideal gas contribution (82), we have
used Eq. (73). In the expression (83) some simplifica-
tions have been made which follow from the definition

(12) and the symmetry of the trace operation.
We erst treat Eq. (83) in more detail. From Eqs. (73)

and (76), we have

29/2 oo oo — 3
drdr' exp ——(r—r')o

3+X4~p ~p 8P

3—exp (r+r')'——
~

ak exp( —2Pk')
8 p

2'*

b, (,)
' ———"drdr'[(r

I
n

I

r')+ (r I
u

I

—r')+ (—r
I
u

I
r')

y6 Q
X(R),(r)+R ' '(r)) (R,„.(r') —Rk(")(r')). (93)

(8g) We must now find the contribution from ));„.As the
integrand of Eq. (86) is symmetrica, l in r and r', we

may write this contribution as

3
+(—rlul —r')j exp ——(r—r')', (85)

8P

The existence of many-body bound states will give rise to
additional complications.

Because of the last factor the r'-integration is restricted
to the range of the forces. Since for low temperatures the
main contribution of the k-integral comes from small k,
and since for small k and small r' both E/, and E/, ~ ') are
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proportional to k, we may put

R&(r') —R„«&(r')=—ky(r') (94)

where P(r') tends rapidly to zero for r'~ ~. The r-
integration, on the other hand still extends over the full
range. However, it can be seen that the contribution
coming from the r-region inside the range is of order
(range)'X ' which is negligible in our approximation.
Furthermore, for r beyond the force range it is readily
seen that, to our approximation, Ri(r)+Rii '&(r)

2sinkr. One may also approximate the factor in
square brackets of Eq. (93) by

(3rr'/2P) exp (—3r'/8P).

The k- and r-integrations can. now be performed and one
obtains for the contribution of q;„ to b3(~~~K.

&qi', q'If'"Iq, q &

=—,(e pL
—P(q'+q ')3}

XL2qMfq(2P)') —(2P) '*exp(2Pq')$,
(101)

q= l I qi —q2I, u(x) =)I exp(~2)d~.
0

Thus, up to this order (and not any further), the general
expansion of the binary operator is identical with the
special case of hard spheres, ' always provided that one
identifies sphere diameter and scattering length.

According to the defin. ition (12), b3i2&n~ consists of six
terms one of which is the Boltzmann b3,

24d'/37 '

where, according to Eq. (94),

(95)
1

b3 =—lim—Yr Us.
3 I

P'
(102)

1
dr r lim —LR&, (r) —R„&"&(r)$.

6 ~0 '~t| (96)

which can be checked by a direct calculation using the
exact expression for (r I

lNr'); see Appendix II.
We now come to b3~2) . It is here that three-body

e8ects begin to play a role; it is also here that we need
the binary expansion for the first time. It is convenient
to evaluate the necessary traces in momentum space.
Since we only ask for bP ~ up to the order (characteristic
length)'Xl&, , we shall need, besides the expansion of U3
ie blocks, the expansion of a block or binary operator in
terms of the characteristic lengths. As a preparation we
collect first the matrix elements of B(P,ik) in momentum
space and up to the second order in these lengths—
which is as far as we shall need them here.

Using the same notations as in Eq. (79), we put

&qi'q2'I ~
I qi, q2&=~(&' —&)&qi', q2'I f

I qi, q2&, (98)

and expand

&qi', q2'Ib lqi, q2&

&qi~q2 I
b'"

I qi, q2)+&qi', q2'I &"'
I qi, e&+ (99)

From Eqs. (74) and (79) we find, using the first two
terms in the expansion of (rlelr'), exactly as in the
discussion of Eq. (86),

For the special case of a hard sphere potential, our
scattering length a is equal to the diameter of the sphere.
Furthermore, in this case ro= 2a/3, while it is seen from
Eq. (96) that d=a. Hence

2'a 2u' Sm.u'
b3~i&sK ——— — +, (hard spheres), (97)

X4 X' 3 (2)~V

We shall calculate b3 first. From the general prescription
of constructing connected quantum graphs, the minimal
number of blocks involved in the graphs which make up
U3 is equal to two. This minimal case is just the one
drawn in Fig. 2(a). As we need b3 up to order a9, ', it is
clear that all the graphs we need are: (e) the one of
Fig. 2(a) with the binary kernel developed up to at
most c'; (P) the graph of Fig. 2(b), with 8 everywhere
approximated by its term a; (y) the graph of Fig. 3,
with 8 treated as in case (P). The results are as follows.

Case (n).—Whenever, as in the graph of Fig. 2(a), we
have only one block between each pair of lines it
is readily seen that only the diagonal elements
(qi, q2 I

b
I qi, q2) enter the trace calculation. Observe

further that there are six graphs of the type of Fig. 2(a),
since there are three Ursell graphs of this type, in each
of which we can order the blocks in two ways. Thus the
contribution to b3 can be written as

6
~

dqidq2dq3 expL p(gl'+$2'+pi') j I dPldp2
3!(2n-)' ~ ~J

Xexpt)3i(qi'+ g2')+P~(q2'+q3') ]
x&e,el f (P~) I q2, q3&&qi, q2I f (&i) I qi, q2& (103)

where

Pi+P2&P

We get two kinds of contributions to b3. one ~a', ob-
tained by replacing in (103) both b's by bo& as given by
Eq. (100). It is easily seen that this contributes an
amount

(104)

&qi', q, 'I bo&
I q„q,&=

8
expL —p(qp+ q 2)j (1pp) to f&3Secondly we ,can, in two ways, replace one b by

~2 b('), the other by b(". These two choices give equal
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contributions, the sum of which can he written as

where

—2'a' „dp. (p p.)~—(p,p.),
P3~7/2 g z

(106)

=a'
dqidqgdqgexpr P(qi+ q2+qq )jJ dpi'(P=Pg)

4X"I2 '

0

X $2qM(q(2Pg) i) —(2P~)
'

exp(2Pgq') j, (105)

where q=
~
qi —q2~/2. Introducing again Q and q of

Eq. (79), this becomes

at the bottom for 'll&s one must sum over 3.l.l permuta
tions of the labels at the top for given labels at the
bottom. We shall again consider separately the three'-- ( ), (p), (~)

Case (n) T.
—o the order considered, (ij ~

b
j kl) is sym-

metrical both in (i,j ) and in (k,l). From this it is easily
seen that four of the six permutations give the same
result as for the Boltzmann case, while the remaining
two permutations are equal to each other and are each
given by

6
"dq&dq~dq3 expL —p(qP+q2'+q~') j

3!(2 )'"

I(P,P2) =
J

q'dq exp( —2Pq') {2qMLq(2P,) l]
17r'2 2—(p p)—(2P&) l exp(2P&q')) = . (107)

16P2'(P —P~)"

It is then readily verified that the contribution ~ a' to
bs becomes

2'era~/X6 (108)

X dpldp2dp3 dP g12(P1)p)g»(P2, p) & (109)

where

av(p, p) =expL —2P(P' —(q'+%)p+q'qJ) j, (»0)

Case (p).—Again there are six equivalent contribu-
tions of the type of Fig. 2(b). Each of the three blocks is
approximated by b(". We get,

6 (—a)'
dqidq2de exp' —P(qi'+q2'+qs')3

3!(2) & ~ & ~

X "dPidP2 exp&+ (Pi+P2) (qi'+q2') 3

X(ql q2lb(P2)~qi+q2 q3 q8)

X(qi+q2 —q3, qalb(Pi) I qi, q2). (114)

Thus, although no integration over virtual momenta is
involved, we nevertheless meet in (114) the occurrence
of off-diagonal elements of b, due to three-body exchange
effects.

The further evalua, tion of (114) becomes particularly
simple by introducing the following linear combination
of the q's, characteristic for three-body problems:

qi+ q2 —2qa= 2q,

qi —q2=0,

qi+q2+q3=3p.

Introducing these into (114) it is easily seen that to
order a', each of the two permutations represented by
(114) gives again the contribution (104). Thus the
a -term of 63~2)

and pi+P2+P3&p. Integrating first over p, then over
the q, , and finally over the P's, the result is

12a'/) '. (116)

—
m (2'a')/X'

Case (y).—Here the integral to be considered is

6 ( —u)'
dqidedq3 exp) —P(qP+q2'+q3 )]

3!(2m)'( ~' )

There are two a'-contributions from (114):The one
with the lower block replaced by b»~, the upper one by
b&') gives

—u' p e dpidp2
1(~p ~P2, Pi),

24'"P' ~ ~ (P+3Pg)

while the one with the upper block replaced by b&'), the
X

~
dpidp2dp3 dp gi2(pi, p)&13(P2,P). (112) lower by b&2& giveJJJ

—
m (2'u')/3) '. (113)

This concludes the calculation of b3 to our order, and we
must now turn to the other terms in b~(2~~K. The various
terms of %La~ can be represented by the same connected
quantum graphs used for U3. However, while for U3 the
labels at the top of the lines must be the same as those

Doing the integrals in the same order as before, the
contribution is

22a3 f
I dpidp2 I( ',P+P2, P2). -

~'I'(3P)-:

The evaluation of these two expressions with the help
of Eq. (107) gives the same value for both, namely
m.a'/2'V. We did not succeed in finding a simple reason
to show that these two expressions should be equal.

Combining this last result with the one stated in
expression (108), we therefore see tha, t the graph of
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Fig. 2 (a) gives a contribution to bq(2&BF which is equal to

2t(10~a')/& 6. (117)

(122) becomes

«1V9, L
—0.003+2 (at/X,*)'j. (123)

Case (P).—By following the prescription given above,
it is readily seen that the contribution to b3~@~~ is ob-
tained from (109) by replacing in that integral
g»(p&, 1&)g&2(p2, p) by

2 g', (pi, f&)g»(p2, 1&)

iQ j=l

Comparing the integrals (109) and (112), it is clear that
one obtains in this way twice the contribution (111)
plus four times the contribution (113).Thus the graph
of Fig. 2(b) contributes

—7~ (2"a')/3X'. (118)

Case (y).—By the same method as used for the
previous graph the reader will verify that one again
obtains the result (118).Hence from (116), (117), and
(118) we have

12a' 26 )24.a'~
b (&"=

X' 3 E X'
(119)

2:7r
—(202a'+3a'ro —16d') . (120)

24M

Using also Eq. (80), the low-temperature expansion of
the third virial coefficient is therefore

—
~1 2 l 4a'

CBB=X9.'
(

———
[
——

(8 3'*j
&r(2) i

+ (226a' —33a'ro —16d') . (121)
T2X3

AVe remind that this is as far as one can expand
without taking D-wave contributions into account.

For the FD case (spin s) Lee and Yang' have shown
for the hard sphere gas that

From this result and from Eqs. (82), (92), and (95) we
finally get

1 1 2:a 1.0u'
b BK— +

A 3' X X

b2B B= 9/2"*X'. (124)

Secondly, our XVB definition for the two-body system
enables us to give an expression for the part bs(~)B~ of
bPE; see Fq. (81). LOf course b3(0&BE is again given by
Eq. (82).] In the spirit of the WB limit we assume that
there exists at most one bound two-body S-state.
Correspondingly we must modify the expression (86)
for b3&I)~K and it is readily seen that we now get

' drdr' exp) ——(r—r
8P )

3—exp~ (r+r')' —
~

—&( ' R(r)E(r')ee'—
8P ) l2

+ t dk exp( —2Pk')»(k)r, r') I, (125)
0

where t,he notations are as in Eqs. (87) and (48). From
the latter equation we see that the quantity in curly
brackets is equal to (2/7r)(q(&('&(rIr', P) q&(or(o(r', P—)). It
was shown in Sec. IV that the qo('& are given by Eq. (52).
Substituting all this information into Eq. (125), we find

Clearly the ideal gas term is quite negligible and so one
would expect that at very low temperatures C would be
positive and proportional to T '.

Keller' gives values for C(He') at 3.8' and 3'K which
are positive; their ratio approximately corresponds to a
T ' dependence and the same order of magnitude as
follows from a,~6.4A (see Sec. III). However, as
already noted in Sec. III, at these temperatures the
validity of expansions like (123) is dubious.

VII. CgE IN THE WB LIMIT

In the treatment of C, the notion of weak binding has
reference to the properties both of two-body and of
three-body systems. Ke discuss these two aspects
separately.

(a) The tvJ&o body aspe-ct. —Here the WB limit will be
defined exactly as was done in Sec. IV. This has two
consequences inasfar as C is concerned: first, C&z de-
pends on b2BE, see Eq. (3). According to Eqs. (3) and
(32), we have in the present limit

1PX' -)1 2
~

a'
c, (.&=

(2s+1)' E8 3'& X'
(122)

p8
b3(n" =

I —,——I- (126)

It is obvious from the above arguments that this ex-
pression is also valid in the general repulsive case with
a again denoting the scattering length. Here we cannot
expand further without taking I'-waves into account.

As stated in Sec. III, only for He' might the repulsive
case perhaps have some applicability. In this case Eq.

(b) The three body aspect. It wa-s not. ed in Sec. VI—
that in the remaining part bs(2)~" of b3~E three-body
effects become important. As was done in that section,
we erst concentrate on the Boltzmann part b3 of b3, 2)

given by Eq. (102). Our procedure will now be quite
similar to that of Sec. IV: Corresponding to each term
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of Uq expressed in the W's
I

see Eq. (5)j, we shall again
introduce a P-function.

First a few definitions. The coordinates of the three
particles are r~, k= 1., 2, 3. The eigenfunctions for the
state m of the Hamiltonian EI(8) Lsee Eq. (16)j will be
denoted by p ")(r;) and the eigenvalues by E„&3).If only
one pair interaction C;~ is present, as in the mixed
terms W&(j k)W&(i) of Eq. (5), the corresponding eigen-
functions and eigenvalues will be called @ &") E ""
where i, j, %= 1, 2, 3 cyclically. Finally &&)„&", E„(') will

denote the corresponding quantities in the absence of all
interaction. All eigenfunctions shall refer to the limit of
infinite volume.

We now define the I-'-functions:

, FIG. 4. The three-body variables of Eqs. (134), (135).

~("(r)'I rk, P)

=Z e-")"'(r")e-")(")exp( —PE.("),

&(2"(r)'I rk P)

=Z 4-" "*( ')4 -""( ) p( —P&-" ")

~-" ()"rIr. ,P)

(0)e(r10)&t, &0)(r„) exp( —PZ (0))

in terms of which

(128)

(129)

K=k)+k2+k3,
k =', (-kg —k,)
~=-', (2k3—k,—k,).

Therefore, in obvious notation,

Q; 6;=3hg+2A, +she.

Equation (133) may be written as

(136)

(137)

The various r, y variables are displayed in Fig. 4. The
momenta (K,k,r) conjugate to (R,r, p) are expressed in
terms of the momenta k; conjugate to r, in the following
way:

63= lim
P'=oe 3 tP' J

(Er)dred ral E(') (r, I
r, ,P)

—Z I'" "(r'I r',P)+»")(r'I r', P)1 (»0)
i=a

y&a) (r air, 0) l)(R Ro)()(r r )l)(y &0) (138)

We can now immediately separate oG the center-of-
mass motion. Proceeding similarly to the transition
from Eq. (36) to Eq. (41) one 6nds

3R

~drdt) Q(r~t) I r~t)~P) ~

3!X ~

(131)
Q(«eo I

r e P) =Q")(«eo I
r e P)

where we have used the convenient shorthand

Insofar as the limit V= is concerned. , we shall proceed
presently in a manner similar to that discussed after
Eq. (36).The P& ) satisfy the respective 81och equations

()p(a)/&lP= Lp. g, @(a))p(a)

@&(3)= g @. . @(2,o —@. cj&(0) =0
i) j

Furthermore, for all E'& ) the initial condition

(132)

The Q& ) satisfy

—2 Q" "(«,soir e P)

+2Q'"(r(), ool r, y,P). (140)

P&a)(r,'I r;,0) =D l)(r, —r ) (»3) ~Q"/~P =L» +2~.—c"(»e) jQ(") (141)

holds true.
Next we define the following three-body coordinates:

with the common initial condition

Q"(«eo I r, (.,P) =~(r ro) ~(e eo)— —
R= 3 (r).+r2+rs),
X= 1"1—1'2)

p= r3——',(r)+r~).

Ke shall also need the combinations

1' = 1'2—I'3= —2f—p)
1

g'= r, 2(r,+—r,) :r l =t,-—
r"= rg —rg ———-';r+p,

e"-r —k(ra+ r~) =—-'r —kt

(135)

The angular momentum operator L (referring to the
relative motion) is given by

L=I.,+I.„ (143)

Q(a) P Q (a)
I =0

(144)

and commutes, of course, ' with the operator on the
right-hand side of Eq. (141), for all (~). Thus we can
decompose each Q' ' with respect to angular momentum:
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The S-'state part Qo& & of Q' ' can be written as

Qo'"'= 2 Qo i"
Z=O

where, according to Eq. (143),

I,'Qo i"=I 'Qo i"=l(l+1)Qo i".

(145)

where a=cos&, sp=cos8p. Then

GO QO ~+$

bo
——- ' dr ' dp dsqo(r, p, s I

r,p, s,P), (150)
3t~'&p ~p

where, according to Eq. (140),

go= qo"' —P, go" o+2go"'.

Observe that, depending on the C~"), the individual

Qo, i&"& may or may not be coupled to each other by
Eq. (141).

The formalism developed from Eq. (127) on is general
and rigorous. We now turn to the de6nition of the %3
limit for the three-body part of the problem and to the
treatment of the Q-equations in this special case.

So far the YVB limit has been speci6ed by the two
relations (30), where e is the absolute value of the two-
body bound state or the energy of the two-body virtual
state, whatever the case may be. YVe shall now in
addition assume that, under these circumstances, the
three-body system as well has a level close to zero with

energy e&, where e3 may either be a binding energy or a
virtual level energy; and that, simultaneously with
Eq. (30), we can also satisfy

Pso«1. (147)

3$
«d 9 Qo (r 0 I

r 0 P) (14S)

If the two-body system has a level e near zero, it is
clear that, with the additivity of forces always assumed
in this paper, the corresponding three-body system wi11

be bound more strongly. It seems physically plausible,
however, that when e is very close to zero, e3 will not be
far from zero either.

The treatment of the Qi"& in the WB limit, now fully
defined, proceeds in two steps:

(1) Only the S-state part Qo& & of the various Q& &'s

are considered to be diferent for diGerent n. The
corresponding neglect. of the differences in the Qr, &~&,

I.&1 for various o. is entirely reasonable in the extreme
low-temperature regime we are interested in, as long as
the forces are not too strong. In this situation the Qr, i i-

terms for L&1 cancel each other in Eq. (140) so that
Kq. (139) may be written as

All qp~ satisfy the initial condition

Vo" («po so Ir p s 0) =~(r—«)~( —po)&(s—so), (152)

as is seen by projecting out the 5-wave part of the
right-hand side of Eq. (142).

(2) The potentials I "i and Ci' " are replaced by ap-
propriate boundary conditions and all terms O(o./X)
tsee Kq. (30)$ are neglected. Thus if we put'o

Vo" =2 i tpi(s) Co. i'"'(r,p) (153)

it follows from Eqs. (141), (144), (145), and (149) that

8qo, i& &(r,p) (d' l(l+1))
!2l—

ap I dro rs

3 p d' l(l+1) q
+-II ——

I Vo, i"(r,p) (154)
2 kdp' p'

Here the q's for different l appear not to be coupled to
each other. As follows from the remark after Eq. (146),
such couplings may nevertheless appear due to the
nature of the boundary conditions which now are going
to be substituted for the potentials. We next proceed to
the specification of these conditions.

Although ultimately we shall employ the boundary
conditions only in the limit where the range o- of the pair
interaction is neglected, it is nevertheless necessary 6rst
to state these conditions for 6nite 0-. In this case the six-
dimensional phase space region v of common interaction
of all three particles (for fixed but arbitrary center of
mass) can be visualized as in Fig. 5. Here the two circles
with center 1 and 2, respectively, and with radius 0-

denote a plane cross section of the interaction spheres
centered on particles 1 and 2. The distance 12 is equal
to r, the variable p is measured from the point 0, see
Eq. (134); and the angle e is measured as indicated in

where Qo is the algebraic sum of the S-state parts of the
Q' & in Eq. (140). However, in the case of S-states,
Qoi & (r, , po I

r, p,P) depends only on the respective magni-
tudes r, p of I' and !0 and on the angle 8 between these
vectors; likewise for the dependence on the I'p and yp

variables, Put

Qo"=Qo" (r p so!ro,p,os,P)

Pro. S.Region of com-
mon interaction of three
yarticles.

go' i(ro po so!r p s P)
Sz'rr ppp p "(Pg(s) is the lth Legendre polynotnial.
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the figure. As long as r&o, the particles 1 and 2 are
within each others' force range and as long as particle 3
is anywhere inside the overlap AI'BQ of the two spheres
(we shall call this region of overlap "the lens" ) then,
always for r&cr, all three particles are in common
interaction. v is obtained by integrating the lens volume
for given r with respect to dr, with 0&r&o.. (One finds
) =Sm'0'/6. )

Note that the surface of v consists of three parts:
(1) The "r-part, " s(r) This. is reached when r=g, an. d
each inner point of the special lens r=a. is a surface
point.

s(r): r=a; 0&8&~; 0&p&-,'a&3. (155)

(2) The r'-part, s(r'). For r &0, any point on the surface
part APB of the lens is a surface point of v. The distance
P2 is just equal to 0. Thus, using also Eq. (135),

s(r'): r'= o, 0 &r/o. & 1; 0&8&-',w;

0&p& (0'—~r')-*' (156)

(3) The r"-part, s(r"). For r &a, any point on the sur-
face part AQB of the lens is a surface point of ). The
distance Q1 is equal to r"; see Eq. (135).

s(r"): r"=; 0&r/o &1; —,'~&8(n,
0&p& (0'—-',r') l. (157)

These three surface parts do not overlap (they are each
equal to Sm'o'/3). The total surface is

s=sr sr' sr". (158)

For any n, the solution of the diffusion equation (154)
is completely determined if boundary conditions on s
(and at oo) are specified. We first state the conditions
for q(3).

In the WB limit the 3-body system has an energy
level, real or virtual, close to zero. According to Eq.
(154), the corresponding function qo o"& will spill out of
v with a normal derivative which will be close to zero
everywhere on s. We shall assume" that the same prop-
erty holds for qo, ~& ), l&0. Proceeding in analogy with
the treatment of the two-body problem of Sec. IV, we
shall therefore require that the normal derivative of q&3)

vanish on s, that is to say

"Since there is an energy level close to zero, the corresponding
qo, &&') will be nearly Qat for r —+ ~, p —+ ~, for any l. However, it
is clear that for large l (and perhaps already for l &1) this flatness
does not extend toward the boundary of v. Thus the assumption of
vanishing derivative of g0, &&3) on the boundary of v is quite sensible
for l=0, but gets worse and worse for increasing l.

On the other hand, it will be seen from what follows that ie the
limit o =0 the precise form of the boundary condition on q0, ~&3), l &0
is immaterial, as long as the replacement of the potentials by
boundary conditions is done in the same way for the three-body
problem described by go&') as for the three associated two-body
problems described by the F0&2 '). In fact if one were to require
g0, && ) =0 on the boundary of v, for all L&0 and all a (which is
perhaps more plausible) the final answer would remain the same,
always in the limit 0 =0.

where

( Bqo(') sinn aqo('& )
cosn

Bp p 88 ~ 8(p~)

( 8qo") sinn aqo") )cosa
Bp p IN I 8(z&')

=0)

=0

(160)

cosn= (o'+p' ~r')/20p, sinn= (r/2o)sin. 8. (161)

qo(o) is now completely determined by Eqs. (152—154)
and (160, 161). As regards the latter two, we shall
actually only wish to apply them for 0-=0. In this limit
we now show that

~ 2l+1
qo

= p 6 )(s)(p)(so)G)(ro! r,p)1 i(po! p,p), (162)
l~

where

G i(ro! r,p)

= (rro)~~ dk exp( —2Pk')kg)(kr)P)(kro), (163)
0

= (ppo) l d&( exp( —3PK'/2)(o) ) ()(p)i) )(((po). (164)

The $), r)) are defined as follows:

p) ——Ji+;(kr), r)) ——J)+., ()(p), l)0;

while, for /=0,

go&@ case: Po ——J;(kr), i)o ——J;(((p). (166)

The expression (162) clearly satisfies the Eq. (154). It
also satisfies the initial condition (152).We have in fact

LG( !rro0) =8(r—ro); I )(po! p, O) =8(p —po), (167)

independently of I (Fourier-Bessel identity). Insert this
in Eq. (162); then Eq. (152) follows from the com-
pleteness of the 5'g.

Now we turn to Eq. (160) for o.=O. There the first
relation is satisfied because, " for l)0, (r&P))' r' for
r ~ 0, while for /= 0 we have (coskr)'„o= 0. The second
and third relation couple the various l-parts to each
other, but only for finite o.. For 0=0 Eqs. (162—166)
would in fact not satisfy all boundary conditions. How-

2'In this paragraph a prime will denote differentiation with
respect to r or to p, whatever the case may be.

Here we must re-express the variables r', ,
r" in terms of

r, p, 8. A simple geometrical consideration shows that
Eq. (159) is equivalent to

(8qo(o) )
E ar ),()
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(qo'").= o (174)

is the proper boundary condition, so that also qp(" is

'3 Wherever in the de6nition of g's and g's no explicit speci6ca-
tion of the 8-interval is made, it is always understood that
0&e&~.

ever, for 0-=0 one easily sees that all is well." First, the
l&0 terms are all right because, for p —+0, (p&rti)' p'
and p &g~~p'. Secondly, the 1=0 terms do not depend on
8 so that the relations in question are again satisfied as
(p'no)'= o «p =0

Next we turn to the quantities qp( ") and consider first
qoi' '&. According to the definitions (132) only the par-
ticles (1,2) are here in interaction while particle 3 is free.
The boundary conditions appropriate to the KB limit
therefore now have reference to the two-body system
(1,2). Here the part s(r) of s is in a special position, as
s(r) denotes the boundary of the (1,2) interaction,
wherever 3 may be. YVe shall therefore require analo-
gously to Sec. IV that

(~qo" "/~r). ( ) = o.

The parts s(r'), s(r") contract, like s(r), to the (r,p)
origin for 0- —+ 0. Due to the choice of coordinates the
origin is a singular point; and we must require

(qo" "),(, )
= (qo" "),i,-i ——0, (163)

just as we used Eq. (51) in the discussion of b2. It is
readily verified that, always for 0.~0, qp(2 3) is also
given by Eqs. (162—165), but (166) must now be re-
placed by

qoi~ ai case: $0
——J,(kr), go

——J;(imp). (170)

Also for qp(, i) and gp(2' ) one of the three parts of s is
in a special position, namely s(r') and s(r"), respectively;
see Eq. (135). By the same reasoning as for qoi' '&, we
have

(~qo" "/~r'). (') = (~qo" "/~r").( -)= o,

(qo" ").(.i= (qo" ").(" ) =o,
(qo" ").i )= (qo"").(")=o

The solutions are once more given by Eqs. (162—165)
while (166) now becomes

qp"'& case: &0
——J;(hr), v)0

——J;(imp) for 0&0&-,'m-,

=J,*(i~p) for -,'m &8&m. (172)

qoi"& case: (0——J;(kr), qo J~(~p) for 0——(0&i2n-,
=J,*(i~p) for —,'~&8&m. (173)

The 0-intervals specified in Eqs. (172—173) follow" from
the detailed definitions (156—157) of s(r') and s(r").
Clearly while for o- —+ 0 the r and p regions entering in
the definition of s tend to zero, 8 will continue to run
from 0 to m. It is essentially this 0-dependence of the
boundary conditions which makes it hard to formulate
these conditions from the start with a.=0.

Finally, it will be clear that for qp("

given by Fqs. (162—165) while

qp'" case: $0=-~1(&r), rto -J—;(~p) . (175)

Ke now have the answer for the quantity qp defined

by Eq. (151).A great simplification occurs because all

qp& ~ have the same l)0 part. Note that this is an
automatic consequence of taking the limit. 0.=0. For
0./0, things are much more complex. Thus all /& 0 parts
cancel in Eq. (151) and we get from Eqs. (162—175),
after integrating over k and a uzi over s':

=G+y Q+ Q ++Cl, (176)

( (r «)'—l ( (r+«)'l I

n~~ —— exp (

—— —

/
+exp ]-

8P ) 0 8P

( (p —po)' ) ( (p+po)' )
)& exp] — [+exp( —

) , (177)
6p ) E 6p

where the o++ term stems from qp'", the n+~ terms from
the q(' '& and the o. term from qp(". Hence finally,
from Eq. (150),

b3 3'/12X——'

At this stage we would like to make one general com-
ment on the procedure followed in this section. Let us
return for a moment to Eq. (130) for b3. The 9-dimen-
sional integration domain in that equation consists of
the following parts: first a region O'V corresponding
to the domain of phase space where all three pa.rticles
interact. This domain is the common intersection of
three "tubes" with volume O'U' where each "tube"
corresponds to a phase space domain in which a pair of
particles is within the range 0- while the remaining
particle is free. Finally, there is the domain V' where
all particles are outside each other's range. Each 8' ),
when integrated separately, yields a result that tends to
infinity as V'. Here one factor V is trivially accounted
for by the center-of-mass motion. There still remains an
individual divergence V', however. This divergence
finds its reQection in the fact that if in Eq. (176) we put
r = r p, p =pp, and then integrate an individual n sepa-
rately, the result diverges like U'. The fact that we find
a U'—rather than a V'—behavior is due to the circum-
stance that we have been able to restrict our problem
first to the consideration of I.=O states only, see Kq.
(148), and thereupon to (=0 only, see the remarks after
Eq. (175).

It will therefore be clear, and this is the point we wish
to emphasize particularly, that the finite result (178),
due to cancelations of the singularities V& and

V' of the integration over the individual 0. s of Eq.
(176) has been obtained by means of u proper nzatcMiig

of three body to two body box-ndary cortdi-tiorts That ba.
may not depend on V is, of course, nothing but the
cluster property of U3. Whenever in a many-body
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problem potentials are replaced by suitable boundary
conditions, this question of a matching of the various
conditions must necessarily arise.

Ke now must go from b3 to ba(~) . In the WB limit
the result is simply

bo&»
' = 6bo= 3'/2X . (179)

The proof goes as follows. From the definitions (84) of
bo&» and (12) of tto, one readily sees that for each of
the six terms of Tr%.3 one can define corresponding
functions P(3) P(' ') P&0) which always satisfy Eqs.
(131—132).Also in a 11 six cases the sequence 1'& ' —+ Q&"' -+
qo' ' is the same as for the normal permutation to which
63 corresponds. Again the boundary conditions are
identical to those previously given, for all six instances.
Each of the six terms has its own characteristic initial
condition, however. Indeed, the right-hand side of Eq.
(142) reads as follows Lsee also Eq. (135)$:

(123):
(2 1 3):
(2 3 1):
(3 2 1):
(3 1 2):
(1 3 2):

&(r—ro)&(e—
t, o),

b (r+ ro) 6 (ti too), —
b (r' —ro') b (ti' —tio'),

b(r'+ r, ')S(g' —g, '),
&(r"-ro")&(1,

"-
t, o"),

b(r"+ ro")b(e"—t o").

(180)

=9.4X 10'/T' cm'/mole. (181)

Hence if the WB limit is applicable to He4, the third
virial coefficient should be large and positive at tem-
peratures of, say, below 1'K. We have made no estimate
of how potential-dependent terms would correct the
answer (181).

Here (1 2 3), (2 1 3), etc. denote the permutations that
label the individual terms of Tr(1 2 3 ~'ttos

~
1 2 3). The

first line of Eq. (180) corresponds to the case of bo

previously treated. As to the second line, the only
difference is that now in Eq. (162) the contributions for
odd l enter with opposite sign. Thus in combining the
(1 2 3) and (2 1 3) terms the terms odd in t cancel, as is
characteristic for a BE system. We could confine our-
selves previously to the contributions l'=0, however, so
that (2 1 3) contributes as much as (1 2 3) does. Fina. lly,
since b3(2~

E is additively composed of the six contribu-
tions corresponding to all permutations, the (r',p')
and (r",p")-pairs of Eq. (180) contribute as much as the
(r,p)-pair does.

Using Eqs. (3), (82), (124), (126), and (179) we find
for the third virial coeKcient for a BE gas, in the WB
limit,

Si 77 8
CgE= der'9

8 9v3 3or

The main interest of this section is therefore a methodical
one. We are now in a situation in which the binary
expansion method is not applicable, see Sec. V. The
method to be considered here is a generalization of the
chemical equilibrium approach which has also been
used' for the second virial coe%cient in the presence of a
strongly bound two-body state.

I et us call the atoms of the gas X&, and their binary
and ternary bound systems X2 and X3, with binding
energies ~2 and e&, respectively. We shall assume that
there exists only one such two-body and one three-body
bound state, each with unit weight. The extension of
what follows to more bound states will be obvious. We
shall furthermore assume that the particles X& satisfy
BE statistics; the extension to the FD case wil. l also be
straightforward.

In the strong-binding approach we consider the gas as
a mixture of cV; particles of kind X; in chemical equi-
librium. If in addition we assume that the three BE
gases X; are ideal, the equation of state of the system is

pV'

kT

P .».2 N, o

»+ —+v +
V2

(182)

V
iV„= — dp

(P'—-- exp P) ——o„) —1, (184)t~ )
(with oi —=0). Here A „=exp(Pp„), where p„ is the
chemical potential of X„.Chemical equilibrium implies
that

z1 „=Ag". (185)

Finally, if l'ttt is the total number of X atoms in the
system, then

X,+2Ã, +3',= iV. (186)

From Eq. (184) we can find 2„in terms of »„and then
from Eqs. (185), (186) the»„can be expressed as
functions of Ã. Developing in both stages up to terms

I/' ' we find

»,=» 2a»'+ (8a' 3b+—2c)iV'—,

iV =alP (4a'+c)N'—(187)

Here P,», , y;»;o are the second and third virial coeK-
cients, respectively, of the gas of kind i. Although the
gases are ideal there do, of course, exist nonvanishing
virial coefficients due to their BE character. As the gases
are supposed to be interacting ority via the equilibrium
reactions

Xo Xo+Xi Xi+Xi+Xi, (183)

there are no terms»;»; (i' ) present in Eq. (182).
The Ã; can be found from the BE-distribution

Vlu. c(x) rOR IHI: CXSE Oz STRO@G elwDING

From thc defilnition of strong binding, glvel'i ln Scc. I,
it follows that this regime has no applicability for He.

whclc

a=2''4'e~ "/V b=3&X'eP"/V', c=a)'/(2'V). (188)
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pi ——lI.z/2', ~,=Xz(-', —2/3-'). (189)

Thus upon rearrangement in powers of V ',

It will be seen that if we insert Eqs. (187), (188) into
Eq. (182), and again expand the right-hand side of that
equation up to 0(V '), the terms P;, y; with z)1
must be dropped. From Eqs. (25) and (121) it follows
that
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Ui(G) is given by Eq. (69) with the constraint (68)
on the integration variables P&. We can formally replace
this constraint by an auxiliary integration

where

8= —M'[2'e&"+1/2'], (191)
C= 2lPV [2ee "+16 'e~" 3ie~'3+—(—,';—1/3 )j. (192)

gpss

Ui(G) =e ~r& — ' dt~ —
~ .

I dp, dpv
2z~The "nonexponential" terms of Eqs. (191), (192) are of

course the ideal BE contributions. Note that these last
two equations could also have been obtained from Eq.
(3), where the 1Vfayer b's are taken to be

Xexp[(Ti —t)P Pi]C(Pg) C(Pi), (A.1)

(190) APPENDIX I. FURTHER REMARKS ABOUT U&(G)

812—e&'9 'i%2 (194)

where aiz is the scattering length for (Xi,Xz)-scattering.
(3) One might perhaps also try to include in yi,

besides the ideal gas term, the complete continuum part
of the three-body BE interaction as treated by binary
expansion which gives a leading term in C

(»5)
see Eq. (121).In addition terms will appear g9.-'e&'&,

etc.
However, the remarks in connection with tl&e ex-

pressions (194), (195) are only of a heuristic character.
A systematic simultaneous treatment of bound-state
and continuum contributions needs a further thorough
investigation.

b, =X—', b, =X—'[2—:+2:ee'&],
(193)

f =X- [3--:+3-:ee"g

corresponding to the neglect of all contributions but the
ideal and discrete ones. Ke further observe:

(1) If we had taken for Pi the ideal contribution [see
Eq. (189)j plus the two-body continuum state terms,
we would have arrived at the exact expression for BgE
in which the bound-state term appears by the separate
equilibrium argument.

(2) One might perhaps try to estimate the effect. of
the nonideality of the BE gases, inasfar as their mutual
interaction is concerned, by including in Eq. (182)
terms like PizEi)VzV ', which are Present in the general
virial expansion for nonideal mixtures. From Eq. (187)
it is seen that the term just mentioned has a 0(V ') part
which contributes to C. The physical eQ'ect here con-
sidered is the scattering of X1 on X2 and the leading
order of contribution to C is

where the path of the newly introduced t-integration is
from —i~ to +i~ in the t-plane and to the right of all
singularities (in j) of the integrand.

Equation (A.1) can conveniently be used to find the
number K, (zz(i j)) defined after Eq. (69). The procedure
is to go to the classical limit where U~(G) reduces to
Ui'(G), as exemplified for /=2 by the transition from
Eq. (71) to Eq. (72). With the help of the definition of
Ui'(G), see Eq. (63), and of Eq. (A.1) one thus arrives
at the identity

&121 &22 2
' '

&F2 m

X(~(zi,ji), ,~(z-,j-))
n(i] jI)=1

«~™ —C"ux
I
—dig, (A.2)2mit . &=i t+C'~'i jy-

where the point pairs labeling the f's are chars, cteristic
for the Ursell graph under consideration. Observe that
in the classical limit we may replace the operation 5
defined after Eq. (69) by the summation P of Eq. (A.2)
with a weight y. This is so because in this limit, where
the order of the C-factors in Eq. (A.1) becomes irrele-
vant, each of the allowed permutations of C-factors
must contribute equally. Thus the number X(zz(ij)) is
equal to the absolute value of y. To find x we use the
definition (61) of f,, and also the identity

II Lexp( —P~~) —1j
X=I

—

( 1)~n
I dice~ . l ( 1)m ig= +( 1)m z

2zrz " l & t+xi,

x~ -+ + (A3)
~)l4 t+Xg+Sp /+Xi+ ' ' +X~
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From Eqs. (A.2) and (A.3) one 6nds, after some
rearrangement,

00 m

x(, , )= ' d e 'g L hf' ')(e), (A.4)
0 ) =1

where L„~ ') is an associated Laguerre polynomial. "
Examples: x(1,1,1)= —6; x(2,1,1)= 6; )((2,2,2) =30.
Thus the corresponding X values are 6, 6, 30 as can be
verified by drawing the quantum graphs in question.

We could also have obtained the number K directly
by purely combinatorial methods. Thus the above
argument also provides proof of the convergence to b~'

of the binary expansion series for b ~ in the classical limit.
Finally, we note that the expression (A.1) is also

suited to give an alternative formal expression for the
trace in momentum space of U) (G). It follows from Eqs.
(65) and (A.1) that

Tr U) (G)

(r Inlr') = p(r, r'),
2'mArr'

$(r r') = f

—r r'2
exp

SP

—(r+r')'

—(r+r' —2a)'-

r&a, r'&a,
—(r—r')'

exp —exp
SP SP

This expression and the corresponding form of TrU), (G)
may perhaps be of interest for a comparison between
various formal expansion techniques currently used for
many-body problems.

APPENDIX II. b3(I) E FOR HARD SPHERE GAS

For hard spheres the relative motion matrix (rlulr')
Lsee Eq. (77)$ becomes, in the S-wave approximation, '

I
1 e~f

=~ dq) dq) e
—er«~))f,'~ dt —~~

2+i ~

&&(q ID.(~~&~) I
q'&(q' ID.(~~-~&~-~) I

q"&

&&(q'~ "ID.(~ ~
I q&, (A 5)

Inserting this in Eq. (85), we get

8
G(a) y

otherwise.

(A.S)

where
I
q&= lq„",q,&»d

&q'ID. (~&) I
q"&

d .~(~«)-)a,ik
0

where

3
G(a) = drdr' exp — (r+r')'—

SP

3—exp ——(r—r')' $(r,r').
8

X exp) —rf) Tr(q") —f'"'—f '"3 f") (rf fr) The expansion ir powers of o is much facifiraterf hy
noting that

Here Tf(q) denotes the c-number kinetic energy of l
particles with momenta (q), ,q)). We now make use
of Eq. (74) and integrate the 8U2/Bp-term by parts. The
integrated term gives no contribution at P=O as U2(0)
=0 and no contribution at p= ~ as Re(t) may be taken
arbitrarily large and positive. In this way one finds,
with the help of the definition of U2,

(q'
I
2).('&)

I
q"&

t+H;),+2'&(q") q" q f,
'" T f(—q)— —

(A.7)
'4 The following definition is used:

s" (ff—1)
L (—i) (e) —Q ( 1)h

a=1 k I (n —k)

oo P 3= 2 )h
——

~ dt P exp ———(t+a)',
pJ, 2P 2P

t=-', (r+r') —a,

from which one immediately obtains

(BG/Ba), 0 3) /2=', ——
(8'G/Ba') . 0

——-'„

(c)'G/f1a') =f) ———15m/2')). .

The first three terms of the Taylor expansion of b3(&)~E

as given by Eq. (A.8) immediately gives Eq. (97)."
'~ bPE up to order u' has previously been obtained by Huang,

Yang, and Luttinger with the help of the pseudopotential method;
see reference 4. See also T.D. Lee and C. N. Yang, Phys. Rev. 116,
25 (1959).


