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probability for Xp=1.19; they are:

io„=0.396&&10' sec (assumption 1)
0.31/X10s sec (assumption 2)

0.409X10s sec (assumption 3),

where (f/) p= 845 sec is used according to Sec. V.
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By the use of a method recently proposed by Chew, the pion-nucleon coupling constant is determined from
differential cross sections for neutron-proton scattering. Data at 90 and 400 Mev were used. Details of the
extrapolation procedure are discussed and the statistical methods used in interpreting the results are ex-
plained. The resulting value of the coupling constant is between 0.06 and 0.07, depending on the range and
energy of the data included in the analysis. The discrepancy between this value and the usually quoted 0.08
should not be taken seriously, however, because several nonstatistical uncertainties could not be taken into
account. The origin of these uncertainties is discussed.

I. INTRODUCTION
' N a recent paper Chew' ' suggested a method of
~ - determining the pion-nucleon coupling constant
from differential cross sections for nucleon-nucleon
scattering. The method is based on the conjectured oc-
currence of poles in the nucleon-nucleon scattering
amplitude at certain unphysical values of the scattering
angle. If pi and qi are the initial four-momenta of the
nucleons, and ps and qs the final four-momenta, the
momentum transfer is defined as t = —(ps —pi)' and the
crossed momentum transfer as t = —(ps —qi)'. We use a
metric such that p'= y' —E', and our units are ft= c= 1.
There is then a pole at f=p, ' and another at t=p', where

p is the pion mass. In terms of the barycentric scattering
angle 8 and the barycentric three-momentum p, the first
of these poles' corresponds to cos8=+ (1+tt'/2p'), and
the second to cos8= —(1+tt'/2p'). If in the case of
neutron-proton scattering one associates pi and ps with
the proton, and q1 and q2 with the neutron, then in
terms of Feynman diagrams the erst pole gives the

*Work done under the auspices of the U. S. Atomic Energy
Commission,

f'A preliminary account of this work was given in Bull. Am.
Phys. Soc. Ser. II, 5, 404 (1958).

' Geoffrey F. Chew, Phys. Rev. 112, 1380 (1958).
2 Geoffrey F. Chew, I'roceedings of the 1P5h' ennea/ Internati onal

Conferemce ort High ENergy Physics at CER-N (CERN, Geneva,
1958), p. 96.' It might be instructive to point out that this pole also occurs
in the classical Born approximation which is simply the Fourier
transform of g'r ' exp (—pr). For a massless carrier of the field, the
corresponding pole is at the edge of the physical region, which is the
reason why the differential cross section for Coulomb scattering at0' is infinite.

contribution of the exchange of a single neutral pion
(forward scattering) whereas the second pole gives the
contribution of the exchange of a single charged pion
(charge-exchange scattering). In addition to the poles,
one conjectures also the existence of branch points,
corresponding to higher-order processes, when f or t
becomes (2tt)', (3tt)', etc. In terms of cosg these bra, nch
points occur at

cos&= ~ (1+4tt'/2p'), a (1+9tt'/2p') . (1)

They are thus considerably farther from the ends of the
physical region than are the poles. One may therefore
hope that the poles will tend to dominate the physical
region, especially near the ends. ' The residues of the
poles are known exactly and are proportional to g', the
pion-nucleon coupling coostant. In fact the pole terms
are formally identical with the two second-order one-
pion exchange diagrams in perturbation theory. It must
be pointed out, however, that we are not merely doing
perturbation theory. In the first place the coupling
constant and masses that are involved refer to actua, l

physica, l particles and not to bare particles as would be
the case in perturbation theory. Secondly, once the
existence and position of the poles are accepted, their
contribution to the scattering amplitude can be calcu-
lated without any reference whatever to perturbation
theory, for instance by the method used by Goldberger,
Xambu, and Oehme. 4

Chew's suggestion then entails determining the resi-

4 Goldberger, Nambu, and Oehme, Ann. Phys. 2, 226 (T957).
See especially pp. 243 to 245.
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due of a pole by multiplying the diRerential cross section
by the pole term's denominator and extrapolating to the
position of the pole.

It might be worth pointing out that the basic idea
underlying the present procedure has also been used for
other processes. The pion-nucleon coupling constant has
been determined in this way by Taylor, Moravcsik, and
Uretsky, and the application to various reactions in-

volving strange particles has been suggested by Taylor. '
In particular, evidence for a pseudoscalar E+ meson
from photoproduction data on the basis of this pro-
cedure has been found by Moravcsik. ' Finally the pro-
posal by Chew and Low for measuring scattering
amplitudes involving targets that do not exist in the
laboratory is also akin, in spirit, to the above procedure.
It appears, therefore, that the idea of determining
coupling constants or scattering amplitudes of one
process by extrapolating the experimental diRerential
cross sections of another process to the poles in the
unphysical region is becoming a very powerful tool in
elementary-particle physics.

II. SUMMARY OF THEORETICAL BACKGROUND

In this analysis we shall be concerned exclusively with
the charge exchange pole of neutron-proton scattering.
In case of proton-proton scattering the eRects of the
poles on the angular distribution appear to be masked

by the Coulomb eRect and by cancellations between the
scalar amplitudes. In that case, therefore, a complete
phase-shift analysis is required to obtain g . Indeed, such
determination of the coupling constant has been one of
the aims of the modified analysis of nucleon-nucleon
scattering, ' " and a quite accurate value of g' has
actually been obtained for 310-Mev p-p scattering. "In
the case of r4-p scattering, however, Coulomb e8ects are
absent, and thus one can immediately see a rise toward
each end of the physical region that may be taken as
indicative of the presence of poles. Ke consider only the
charge-exchange pole for two reasons. Firstly, there are
no measurements available of t4-p angular distribution
in the forward direction, whereas a considerable amount
of data has been taken in the backward direction.
Secondly, since the coupling constant for charged pions
is (2) i times that for neutral pions, the charge-exchange
pole will be four times as strong as the other one.

An element in spin space of the p ts scattering ampl-i-

tude may be written as

g m 4r4'(p2)754s4(gl) 4s4'(g2)7 SNr( pl)

~r's', rs +Gr'3', rrq (2)
p'2' xp+ cos8

' Taylor, Moravcsik, and Uretsky, Phys. Rev. 113, 689 (1959).' John G. Taylor, Nuclear Phys. 9, 357 (1959).
Michael J. Moravcsik, Phys. Rev. Letters 2, 352 (1959).' G. F. Chew and F. E. Low, Phys, Rev. 113, 1640 (1959).
Michael J. Moravcsik, University oi California Radiation

Laboratory Report UCRL-5317-T, August, 1958 (unpublished).
' Cziffra, MacGregor, Moravcsik, and Stapp, Phys. Rev. 114,

880 (1959)."MacGregor, Moravcsik, and Stapp (to be published).

where p is the ma. gnitude of the barycentric three-
momentum, m the nucleon mass, E'= p'+m', and xs ——1

+ (p'/2p'). Furthermore, g' is the pion-nucleon coupling
constant such that g'=(2m/I4)'f', and the expected
value of f' is around 0.08. The quantity G„, ,„, repre-
sents everything in the scattering amplitude except the
charge-exchange pole. It will thus remain finite at
coso= sp. The diRerential cross section is now given by

o (8) =-', Tr(TtT),

and may be written as

g' (1+cos8)'
~(8) = + +&,

4Z' (xs+ cos8)' (xs+ cos8)
(3)

g4
(1+cos8)'+Ax+Bx'.

4E'
(4)

To the values of y(x) calculated from Eq. (4), we make
a least-squares fit by means of a polynomial of the form

f(x) = P aux".
k=0

From Eqs. (4) and (5), we see immediately that

as= f(o) = (g4/4&') (1—»)'= g'~4/16&'p4 (6)
or

as f4m4/)p4(p——'+m') j
III. STATISTICAL REMARKS

In order to discuss the errors in our results, we list
here some of the relevant formulas from the theory of
least squares. For a derivation of these formulas, we
refer the reader to the work of Hildebrand" and CziRra
and Moravcsik. "

For each value of i= j., 2, , E let there be an
abscissa x; and a corresponding ordinate y;, with an
uncertainty $; in the ordinate. We wish to fit these
values with a polynomial of order e, of the form

f(x,)= P asxt".
k=0

"F. B. Hildebrand, IrI trodlcti orl to 1VNrneri ca/ Anulysi s
(McGraw-Hill Book Company, New York, 1956), Chap. 6.

"P. Cziffra and M. J. Moravcsik, University of California
Radiation Laboratory Report UCRL-8523, October, 1958 (un-
published).

where A and 8 are unknown functions of cosa and 8
which, however, are known to be finite at cos8= —x0.
The analysis is made more dificult by the fact that the
term in Eq. (3) in which we are interested vanishes at
coso= —1, so that it tends to be small just in that
region from which one might hope to extract the most
information.

Alultiplying Eq. (1) by x', where x=xp+cos8, we
obtain

y(x) —= (xs+cos8)'o (8)
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For a given set of data as the degree of the polynomial
is increased, p„at first decreases monotonically until it
reaches a plateau on which it will fluctuate mildly. The
value of e for which p„' first reaches the plateau was
taken to be the degree of the polynomial giving the best
6.t.'3

FIG. 1.Values of the pion-nucleon coupling constant f2 vs degree
of the polynomial (n) at 90 Mev using 24 experimental points, with
scattering angles between 129' and 180 . The numbers above each
point are the corresponding p' values. For n=5, f'=0.36 0 &6

with p2= 1.52.

To determine the a), s, we minimize with respect to the
a), 's the expression

IV. RESULTS

The calculation was performed at two diAerent ener-
gies, 400 Mev and 90 Mev. The data were all taken from
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Eqnation (10) may be formally solved as
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where the matrix G is the inverse of the matrix II.

FIG. 3. Values of the pion-nucleon coupling constant f' vs degree
of the polynomial (n) at 400 Mev using 12 experimental points,
with scattering arigles between 90' and 180'. The numbers above
each point are the corresponding p' values.
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the review article of Bess."For each energy we made
two sets of calculations, the first using the complete
available range of the scattering angle, and the second
using only a part of the range nearest to the pole. The
results obtained are given in Figs. 1, 2, 3, and 4. The
points marked "imaginary" indicate that ao (which is
proportional to f') was negative for these polynomials.
In Table I we list, for each of the four cases, the value of
f' as given by the best-6tting polynomial.

In Fig. 5 the 6ve polynomials obtained from the data
at 90 Mev, with the limited range of scattering angle,
are plotted. Shown also are most of the relevant ex-
perimental points.

9 IO

FIG. 2. Values of the pion-nucleon coupling constant f' vs degree
of the polynomial (n) at 90 Mev using 48 experimental points,
with scattering angles between 5.1' and 180'. The numbers above
each point are the corresponding p2 values.

"Wilmot N. Hess, Revs. Modern Phys. 30, 368 (1958).At 90
Mev we used the data of O. Chamberlain and J. W. Easley, Phys.
Rev. 94, 208 (1954); J. Hadley et al. , Phys. Rev. 75, 351 (1949);
and R. H. Stahl and N. F. Ramsey, Phys. Rev. 96, 1310 (1954).
At 400 Mev we used the data of. Hartzler, Siegel, and Opitz, Phys.
Rev. 95, 591 (1954).



DETERM I NATION OF PION —NUCI EON COUPLING CO&% 8 I" ANT 229

I I I I I I I I I

Q. l 4 — I I 9 34.& I 5.6 4.24 2.I 9 2.2 5 2.23 2.38 2.40

O. I 2—

0.10—

)2 0.08—

0.06—

0.04—

0.02—

Lo

o

I I I I

3 4 5 6

n

I ~

7 8
I

9 10

Fxo. 4. Values of the pion-nucleon coupling constant f' vs degree
of the polynomial (I) at 400 Mev using 23 experimental points,
with scattering angles between 12.7' and 180'.The numbers above
each point are the corresponding p' values.

Despite these difhculties the results as given in Figs. 1, 2,
3, and 4 are remarkably consistent. In practically all
cases, once the goodness-of-fit parameter (p') dropped
to a value indicating that a reasonably good fit has been
achieved, the values of f' obtained from the different
polynomials overlap. It appears that the method gives
consistent results.

It will be noticed that the errors in f' for the 400-Mev
data are much smaller than those for the 90-Mev data.
The distance of extrapolation from the end of the
physical region to the pole is tu'/2p', which is 0.052 at
400 Mev and 0.23 at 90 Mev. Ke see, therefore, that the
former requires a much shorter extrapolation and would
thus be expected to give the more accurate result.

Considering the inaccuracies inherent in the method,
the values of the coupling constant obtained here are
not too much at variance with the presently accepted
values of f'=0.08. To be sure, our values appear to be
somewhat lower than 0.08, and these lower values agree

The uncertainties as given in Table I and the figures
are misleadingly small. Only the errors in the experi-
mental cross sections as given by the experimentors
have been taken into account. Two important sources of
errors have therefore been omitted, since there is no way
known to the authors to take them into account. The
first is the fairly substantial energy spread of the
neutron beam in the scattering experiment. This aGects
the position of the pole, the values of the differential
cross sections, and finally the relationship between ao
and f' Lsee Eq. (7)j.The second source of error is the
considerable uncertainty in the degree of the polynomial
that should be chosen. The p„' test mentioned in Sec. III
is certainly not conclusive. No trustworthy test can
exist when one is trying to represent an essentially
infinite series by means of a polynomial. The quoted
errors were calculated merely by means of Eq. (13),
with the $, being the uncertainties quoted by Hess."

Number of
Lab o- experimental
ratory points on
energy differential
(Mev) cross section

90 24

400

400

Range of
scattering

angle (deg)

180 to 129

180 to 5.1

180 to 90

180 to 12.7

Degree of
polynomial

giving
best fit f2

0 062 +0.016

P P65 0 0gv+0.019

0.066 o o
+'."'

0 P59 0 007+0 a007

well with the equally lower values obtained from the
modified analysis of p-p scattering at 310 Mev."Never-
theless we feel that more evidence is needed before we
can say with any assurance that the pion-nucleon
coupling constant as obtained from nucleon-nucleon
scattering is in disagreement with the value obtained
from pion-nucleon scattering and pion photoproduction.

It was mentioned in Sec.II that the coupling constant
can also be obtained from the modi6ed analysis of
nucleon-nucleon scattering. ' "It might be illuminating
to compare briefly these two methods.

Apart from its preferable theoretical features, the
practical advantage of the modified analysis is that it
uses, in addition to the unitarity of the S matrix, all
experimental data, including results of triple scattering
and correlation experiments. Thus, if such data are
available, greater accuracy can be obtained in the de-
termination. Similarly, it is also easier to use the
statistical criteria to decide which order polynomial to
take for the extrapolation, or, in the language of the
modified analysis, how many angular momentum states
to express in terms of phase shifts. Thus, for instance at
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Fzo. 5. Plot of y(g) = (1+see/2pe+cosP)err(8) ss g= 1+rtte/2pe
+cos8, for polynomials of degrees n=1, 2, 3, 4, and 5, using the
data at 90 Mev with the limited range of the scattering angle. The
experimental points are also shown except that some points near
the end of the physical region are omitted. The end of the physical
region occurs at x=0.229, and the asterisk indicates the residue
corresponding to f =0.08.

TAsI.E I. Determination of the pion-nucleon coupling constant
fe from the angular distribution of I-P scattering at 90 and 400
Mev by the use of the polynomials giving the best Gt.
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370 Mev where fairly extensive data are available, a
reliable determination of the coupling constant has been
obtained with an error of 15/q or so. Also, as has been
mentioned, certain difficulties would be encountered in
the use of the present scheme in the case of p-p scat-
tering on account of the Coulomb eGect which, however,
can be easily taken care of in the modified analysis.

On the other hand, the modified analysis can be
carried out only if sufficient number and kind of data
are available. Thus, if only n-p scattering differential
cross sections at 400 Mev are used, it would be com-

pletely out of the question to attempt the modified
analysis. It is in such cases that the present method is
useful. In addition, the modified analysis becomes com-
plicated if not impossible at those energies at which
inelastic processes play an important role. In these cases
the present method, with all its uncertainties and
limitations, will in fact be the only useful one. It has the
advantage that nothing has to be known about the
phase shifts, and that the presence of inelastic processes
have no effect on it. Furthermore, its computational
difEculties are far less serious than those of the modified
analysis.
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f2
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113 47 16.6 3.1 3.3 2.5

Degree of
Polynomial 7 10

f2 Imag. 0.040&0.015 0.032&0.01 0.035 0 ~ 035 36 0.059+0.025
p2 1.6 1.12 1.2 1.3 1.2
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1Vote added in proof. At —the 1959 Annual Inter-
national Conference on High-Energy Physics, N. S.
Amaglobeli and Yu. M. Kazarimov of the U.S.S.R. re-
ported result of m pscatt-ering experiments at 630 Mev.
Using Chew's method of extrapolation they obtained
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