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Proof of the Linked-Cluster Expansion in Quantum Statistical Mechanics*
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In order to go over from a perturbation expansion of the grand partition function (the unlinked-cluster
expansion) to an expansion of the thermodynamic potential (the linked-cluster expansion) in powers of the
interaction, it is necessary to treat carefully those terms in which creation (or annihilation) operators for
the same state occur twice or more. The unlinked- and linked-cluster expansions for a system of fermions
are here shown to be equivalent by a direct comparison of the terms which occur in each. The relation be-
tween the two expansions is illustrated by the example of a system of fermions interacting only with a
single-particle potential.

HE expansion of the grand partition function for
a system of interacting fermions obtained by

Glassgold, Heckrotte, and Watson' can be expressed as
a sum over graphs which have the following structure
and properties:

(a) All lines are continuous and go from right to left
of the graph. Therefore the number of lines crossing a
vertical section of the graph is constant.

(b) Interactions are denoted by dots on the lines.
For a two-body interaction, a dot will occur at the inter-
section of two lines.

(c) Each line is labelled as a single-particle eigenstate
of the unperturbed Hamiltonian; the label can only
change at an interaction point. Generally, the spin and
momentum will be specified.

(d) The external lines on the right of the graph are
the same as the external lines on the left. We will refer
to the external lines on the right and left as the initial
and final states, and to the lines crossing a vertical sec-
tion between two interactions as an intermediate state.
The number of intermediate states is then one less than
the number of interactions in a graph.

(e) No two lines are the same in any intermediate
state, nor in the initial or final states: al/ states satisfy
the excllsion principle

(f) Each line must have at least one interaction
along its length.

Sp ——TrI exp (nh' —PIIp) ],
ft, = Lexp( —n+Pei)+1j—'.

(3)

(4)

factor (—1)&, where p is the number of permutations
required to go from the order of the final states to which
the initial states are connected, back to the order of the
initial states. This factor is +1 for both parts of Fig. 1.
It is, however, the statistical factors, that come from
taking the trace of exp(alV —PIIo), with which we are
mainly concerned.

A particular graph labelled X has lines kl, k~,

k„ in its initial state, and further lines s1, s2, , s
in its intermediate states. The graph makes a contribu-
tion to a particular diagonal element (iP

~

exp(otlV /II)
~
iP)—

if and only if all the states k1, k2, , k„are included
in iP and none of the states si, ss, , s are included
in iP. We can write the contribution as

(iP~ exp(nÃ —PIIp) ~iP)

Xai, (hi, hs, , h„; si, ss, , s ), (1)

if this condition is satisfied. The contribution of the
graph ) to the grand partition function is then

&Otic(hi' ' 'hr; Si' ' 'Sm)fttifkS' f&~'
X (1 fbi) (1—fag) ' ' ' (1 fs ), (2)—

where

No other restriction is made about the connectedness
of a graph, and Figs. 1(a) and 1(b) are both possible
graphs. Each interaction in a graph contributes a matrix
element of the interaction as a factor, and each inter-
mediate state contributes an energy denominator deter-
mined by the diGerence between the unperturbed
energies of the initial and intermediate states. It is con-
venient to regard a line as continuing through an inter-
action above the other line if it was above it before the
interaction, and below it if it was originally below.
Because of the antisymmetry of the particles, there is a
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Here B'0 is the unperturbed Hamiltonian, given by the
sum of the single-particle energies ey.

This way of evaluating the partition function will be
referred to as Method I. It must be noticed that, if the
same line occurs twice as an intermediate state, like s4

in Fig. 1(a), the factor 1 fs4 only oc—curs once. Similarly,
if a line occurs both as an initial state and as an inter-
mediate one, like k4 in Fig. 1(b), we have just a factor
fi 4. Both these graphs can be seen to have five degrees
of freedom and four interactions, so that each gives a
contribution proportional to the extent of the system.
According to the analysis of Hugenholtz, ' the contribu-
tion of a graph is proportional to the volume raised to
a power equal to the number of unlinked clusters less
the number of additional constraints. Graphs with two
clusters and one constraint, like Fig. 1(b), contribute to
the same order as graphs with one cluster and no con-
straint, like Fig. 1(a). The grand partition function
cannot yet be expressed as an exponential of contribu-
tions from linked clusters, because a graph like Fig. 1(b)
gives a contribution which is not simply the product of
factors from its two linked clusters. Firstly, there is no
factor 1 fa4 from the —intermediate state k4, and,
secondly, the points a and b are constrained to lie
between c and d by the exclusion principle.

For this reason, we want to show that this expansion
of the grand partition function is equivalent to a slightly
different expansion, which is essentially the Laplace
transform of the expansion obtained originally by
Jh&Iatsubara' and studied in more detail by Thouless4 and
by Bloch and De Dominicis. This expansion, which we
call Method II, has the advantage that it can be directly
expressed as an exponential.

We therefore want to show that the results of Method
' N. M. Hugenholtz, Physica 23, 481 (1957).' T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955).
4 D. J. Thouless, Phys. Rev. 107, 1162 (1957).' C, Bloch and C. De Dominicis, Nuclear Phys. 7, 459 (1958).

I can be obtained by summing over graphs with different
structures and properties, given below:

(a') All lines are continuous, but can go from right
to left or from left to right, changing direction only at
an interaction point on the line; we call them particle
lines and hole lines, respectively. There are no external
lines, and the lines are continuous, so that the number
of particle lines in an intermediate state is equal to the
number of hole lines.

(d') There are no lines in the initial or final state.
The energy of an intermediate state is the energy of its
particles less the energy of its holes. This is the quantity
that determines the energy denominator.

(e') A hole or particle line can occur any number of
times in an intermediate state, and the same line can
occur both as a particle and a hole in one state. There
is rio exclusiort, princip/e

(f') A line may join a point to itself, in which case
it counts as a hole line. It can only do this if there is an
interaction at the point.

The conditions (b) and (c) remain the same. Because
of the antisymmetry of the matrix elements of the inter-
action, we now get a factor —1 for each closed loop of
fermion lines in the graph. The matrix elements and
energy denominators come in the same way as they did
in Method I, and the only essential difference is that
there is now a factor f~ for each hole li—ne, and a factor
1 fI, for each partic—le line in the graph, irrespective of
how many times the same line is repeated. For example,
there is a factor (1—f.4)' in the contribution from
Fig. 2(a), and a factor f.4(1 f.4) in the c—ontrib—utio-n

from Fig. 2(b). The grand partition function is still

given by the sum of all graphs, connected or otherwise.
It is easy to show that the contributions of those

graphs that do not have two diferent lines representing
the same state are the same for the two methods. The
hole states in Method II are equivalent to the initial



L IN KED —CLUSTER EXPANSlON 23

states in Method I, and the statistical factors are the
same except for a factor —1 for each hole line. The
factors —1 for each hole and —1 for each closed loop
combine to give the factor (—1)4' in Method I, where

p is the number of permutations required to change the
ordering of the final states to the ordering of the initial
states to which each one is connected.

Ke therefore consider graphs in which one line, re-
ferring to the state k, occurs in several places in the same
graph. Using Method II, we consider a particular graph.
There are some points in the graph which the directed
line k enters, which we call entry points, and an equal
number from which the directed line k leaves, which we
call exit points. In each part of Fig. 2, the points a and
d are exit points for the line s4 or k4, and the points b

and c are entry points for that line. It may happen that
an exit point and an entry point coincide, in which case
we displace the entry point a little to the right in order
to keep the condition that a point may only be joined
to itself by a hole line.

Now we observe that the energy denominators and
the matrix elements of the interaction which are in-
volved do not depend on the way in which the e entry
points and e exit points are connected by the e lines k.
The n. ways of joining these points by the lines k differ
by the number of closed loops and by the number of
factors f), and 1 —f), whic—h occur. Figures 2(a) and
2(b), or Figs. 2(c) and 2(d), or Figs. 2(e) and 2(f), are
graphs which differ only by which entry point is con-
nected to which exit point. We can get these e!diferent
graphs from the initial one by making elementary per-
mutations successively. An elementary permutation is
obtained by taking two of the lines k, connecting the
points u to c and the points d to b, and then making
them connect the points a to b and d to c; we denote
this permutation by (cb) or (ad). Each elementary per-
mutation changes the number of closed loops by &1.
This permutation is the one that carries Fig. 2(a) into
Fig. 2(b), and it can be seen that Fig. 2(a) has three
closed loops, while Fig. 2(b) has four.

Now consider the way in which the 2e points are
ordered, from right to left of the graph. Suppose that
two entry points or two exit points c and b come suc-
cessively, as they do in Fig. 2(e). Then we can make
the elementary permutation (cb), which will not alter
the direction of any line, and so will change the contri-
bution of the graph by a factor —1 because of the
change in the number of closed loops. This is the per-
mutation which carries Fig. 2(e) into Fig. 2(f), and it
can be seen that the contributions from these graphs
dier merely by a factor —1. If we have two exit points
or two entry points adjacent, then the total contribution
of all the e ~ arrangements is zero. This is in agreement
with the results of Method I, since the corresponding
graph would violate the exclusion principle just to the
right of the two points if they are entry points, and just
to the left of the two points if they are exit points,

It remains to consider the case in which entry points

and exit points for the line k come alternately. In this
case there is one and only one corresponding graph in
Method I for which the exclusion principle is not vio-
lated. If the first point on the right is an entry point,
the corresponding graph has k as an external line, and
gives a factor f),. Figures 2(c) and 2(d) are examples of
this, and Fig. 1(b) is the corresponding graph. If the
first point is an exit point, the corresponding graph has

as an internal line, and gives a factor 1 f), —
Figures 2 (a) and 2(b) are examples of this, and Fig. 1(a)
is the corresponding graph.

The statistical factor which we get by summing over
all e J permutations is called ~F„&+' if the first point is
an exit point and ~F„' & if the erst point is an entry
point. The sign is determined by the sign of the arrange-
ment which is allowed in Method I (which depends on
the number of permutations needed to make the final
state correspond to the initial state). Explicitly, we have

Now, if the point 1 (on the right) is connected to the
point 2 adjacent to it, and we sum over the (44—1)!
permutations for the other points, we get a contribution
to F„(+) of (1—f),)F„~(+).If the point 1 is connected
to the point 2e, on the left, we get a contribution to
F„(+)of —(1—f),)F„4( ). If the point 1 is connected to
some other entry point, the summation over the (44—1)!
permutations for the remaining points gives zero, since
there are two adjacent exit points in the remainder.
Therefore, we obtain

F (+)= (1—f )$1~'„(+)—F.
In the same way we get

and so we have

Considering the case n=1, we find that the expression
in Eq. (8) is equal to one, and so we have

P (+)—1 f~

Therefore we have shown that, by summing over
the et permutations, we get just the result found by
Method I. The proof can easily be extended to the
case where more than one line occurs in several dif-
ferent parts of the graph, and so we have shown
that Method I and Method II are equivalent.
Figures 2(a) and 2(b) add to give Fig. 1(a), because
we have (1 f~4)'+f.4(1 fs—4) = 1 f44. I—n the same-
way, Figs. 2(c) and 2(d) add to give Fig. 1(b), since
we have f)P+f) 4(1 fa4) =f(4—

If the grand partition function is expanded by
Method II, it is easy to find its logarithm. If a graph
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FIG. 3. Some graphs in the expansion of the grand partition

function with a one-particle potential.

The graphs which denote the terms written down here
are all shown in Fig. 4. All the lines in these connected
graphs represent the state k. It can be seen that the
graphs of Fig. 4 are very diGerent from those of Fig. 3.

consists of several clusters, its contribution is equal
to the product of the contributions of each cluster, if we
take all possible orderings of the vertices of diGerent
clusters. This means that in order to get the product
we would have to add together Figs. 2(b), 2(d), and
2(f), and three other graphs not shown. Therefore the
thermodynamic potential is given by the sum of all
linked graphs, evaluated with the statistical factors of
Method II. A linked graph like Fig. 2(e) has no counter-
part in Method I.

As a simple example of the use of the linked-cluster
expansion, we take the case of particles interacting only
with a diagonal one-particle potential, whose matrix
elements are bA, This was also considered by Glassgold,
Heckrotte, and Watson, ' and they showed that the
partition function is exactly given by a sum of graphs
like those in Fig. 3. We will take the exact answer, and
write down the 6rst four terms of its expansion in powers
of bI,. We have

0—Qs ———P ' Ps log{1+fsLexp( —Pbs) —1]}
O'Zs {—Pbsfs+ ,'P—'bk'(fk f-s')—

—-',p'4'(fs —3fs'+2'')
+(1/24)P'bs4(fg, 7fs'+12—fss 6fs') —}-

O' Qs —{—PbsDs]+sP'bs'D~(1 —fs)]
—sP'bs'Lfs(1 —fs)' —fss(1—fs)]
+ (1/2&)P'4'L fs(1—fs)'

—4f"(1—fs)'+f"(I—fs)]— .} (1o)

Method I gives the expansion of the grand partition
function which arises naturally in perturbation theory,
but does not lead directly to an expansion of the ther-
modynamic potential. We have shown that it is equiva-
lent to Method II without using the dependence of
various terms on the total volume, so that the proof is
good even for a finite system. Method II diGers from
Method I in its neglect of the exclusion principle and
in the statistical factors used, and leads naturally to an
expansion of the thermodynamic potential as a sum of
linked clusters. In the limit of zero temperature, all
the statistical factors are one or zero, and so the two
methods diGer only in the treatment of the exclusion
principle. Thus we have here a generalization of the

Fro. 4. Graphs that represent the terms of Eq. (10) up to
fourth order in the potential.

theorem that the exclusion principle need not be used
for intermediate states in the calculation of the ground-
state energy by perturbation theory. ' The diGerence
between the two methods will be very important at
nonzero temperatures for the calculation of the expecta-
tion value of a diagonal operator, or if some self-
consistent potential is introduced.
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