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Rigid Frames in Relativity*
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A new approach is presented for de6ning and obtaining rigid frames of reference. The results are shown to
be equivalent to those of Rosen. The advantage of the present approach is that exact solutions can be
obtained in certain simple cases, as well as approximate solutions in general.

l. INTRODUCTION

'HK study of rigid-body motion dates back to
Born's paper of 1909.' Rosen' proposed covariant

conditions for rigid-body motion, which are equivalent
to the Born conditions. In Sec. 2 of this paper, we

propose a definition of a rigid frame of reference in the
restricted case of Rat two-dimensional space-time, which

may be shown (Sec. 5) to be equivalent to Rosen's
definition under the same restrictions. The present
formulation allows us to find exact solutions for the
rigid frames.

We de6ne a rigid frame by requiring a constant
spatial distance between any two points having fixed
spatial coordinates. This rigid coordinate system is

defined via a family of trajectories. Initially we choose
an arbitrary family such that one member of the family
is our original trajectory. From this we derive a differ-
ential equation whose solutions are the trajectories
which de6ne the rigid frame. Next, methods of solving
this nonlinear partial differential equation are discussed.
There still remains some ambiguity in the choice of this
rigid frame of reference, depending upon the choice of
the time coordinate. Two cases are treated; first, where

the time is defined as the proper time along each

trajectory, and second, time-orthogonal systems.
In Sec. 3, a speci6c example is considered, that of

uniform acceleration. We digress brieRy to discuss cer-

tain properties of the uniformly accelerated trajectories.
We then illustrate the methods of Sec. 2 with this

specific example.
In Sec. 4 we generalize our criteria for rigid motion to

include arbitrary motion in arbitrary space-time (the
criteria cannot, however, be satisfied in every case).

In Sec. 5 we prove the equivalence with Rosen's

conditions. The geometric interpretation of Rosen's

equations is clarified.
Finally an Appendix is devoted to a discussion of an

approximate method of solving the differential equation
of Sec. 2 for the transformation to the co-moving frame,

for use in cases where the exact solution presents par-

ticularly dificult problems.

*This research was supported in part by a contract with the Air
Research and Development Command, U. S. Air Force.
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2. GENERAL THEORY OF TRANSFORMATION TO
CO-MOVING REFERENCE FRAME

Consider an observer following a trajectory x= f(t),
and introduce the family of trajectories x= f(t)+xo,
where xo is a parameter. This can be considered as a
coordinate transformation from the frame (x,t) to the
frame (xo,t). In the new coordinate system the equation
of the original trajectory is @0=0. The new metric
obtained from ds'=dr~ —dt' is

dss= dxoo+2 fdxodt (1—f )—dt f=df/dt. —(2.1)
The general expression for spatial distance to a

neighboring point is given by'

g.4g.4&
dP=

~
g„— ~dx"dx' r, s=1, 2, 3. (2.2)

gt4

In our case Eq. (2.2) takes the form

t' gi4 ) dxo
dP=

~
gii — ~dxoo=

g44 ) 1 —f' (2.3)

The value of dxo obtained from Eq. (2.3) by taking dl
to be constant defines a trajectory infinitesimally near
to the original trajectory F0=0, with the property that
the spatial distance between the two trajectories, as
calculated from the point of view of the original observer,
is constant. This trajectory, expressed in terms of the
original coordinates (x,t), is

x= f(t)+ (1 f') ldl— (2.4)

Suppose we can find a family of trajectories x= f(t,p)
with the property that any two neighboring trajectories
(that is, trajectories with infinitesimally differing values
of p) are separated by constant spatial distance and
such that f(t,0) =f(t). If we apply the procedure which
led to Eq. (2.4) to the equation x= f(t,p) for a fixed but
arbitrary value of p, we obtain

x= f(t,p)+[1—f'(t,p))&dl, f= af/at. (2.5)—
Since this is assumed to be a separate member of the

family, we have the result

f(t p)+L1—f'(t,p)3'dl= f(t, p+dp)
=f(t,P)+f'(t, P)dP, f'=af/aP, (2.6a)

3L. Landau and E. Lifshitz, The Classica/ Theory of Jtield's
(Addison-Wesley Press, Inc. , Cambridge, Massachusetts, 1951),
p. 258.
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or

nl dP
+—=0,

(1—u') '* dn
(2.9)

where g is a function to be determined by the initial data
according to the following procedure. It is easily calcu-
lated from Fqs. (2.8) and (2.9) that

f(t, l) =u(t, l). (2.10)

Since f(t,0) is a known function f(t), p(n) can be de-
termined by setting l=0 in Eqs. (2.8) and (2.10) and
eliminating 3 between them. Specifically, we have

f(t) =not+&(ap), f(t) =no, no=n(t, 0). (2.11)

Solving the second of Eqs. (2.11) for t= t(np) and substi-
tuting in the first, we get

f[t (no) j=not (no) +4'(no) (2 12)

Since the functional form of p is independent of the
particular value of 0,, we can drop the subscript 0 and
obtain

y(n) = f[t(u))—nt(n). (2.13)

In practice it is often difficult to obtain this exact solu-
tion; therefore in the Appendix we discuss an approxi-
mate means of solving Eq. (2.7).

The transformation to the rigid coordinate frame is
not uniquely determined until we have chosen the time
coordinate. The most obvious choice on physical grounds
would be to use the proper time along each trajectory.
We may write the proper time as

(2.14)

where the last equality holds by virtue of the differential
Eq. (2.7). We may solve Eq. (2.14) for t as a function of
7 and l, which we may write in the form

t= g(r, l) (2.15a)
4 The solutions of this equation are obtained through use of

Charpit's method; see, for example, Frederic H. Miller, Partial
Differential E~qnaI&'ons (J. Wiley and Sons, Inc. , New York, 1941),
Secs. 44—45.

where higher powers of dp have been neglected. If we fix
the parameter p by the choice of p=l, we obtain the
differential equation

f2+ fi2 ] (2.7)

The solutions of this equation with the initial condition
f(t,0) = f(t) define a family of curves such that any one
curve maintains a fixed spatial distance from any other
curve.

The general solution to Eq. (2.7) is obtained' by
eliminating a. between the equations

f(t,l) =nt+ (1 n')—ll+y(n) (2.8)
a11d

We may now use Eq. (2.15a) to eliminate t from the
equation of the trajectories x= f(t, l), obtaining x as a
function of ~ and l, namely

x= f[g(r, l),l]=—h(r, l). (2.15b)

Equations (2.15) now determine the transformation
from the frame (x,t) to the frame (l,r). We may easily
calculate the line element in the latter frame to be

ds'= (hi' gP)—dl2+2(hih, gig,—)dldr
—(g

'—h ')dr' (2.16)

where the subscript on h or g refers to the partial
derivative with respect to that variable. It is possible to
simplify Eq. (2.16) by noting that, since r is the proper
time along a trajectory l= const, the coeKcient of d~'
must be —1. This may be verified directly from Eqs.
(2.15) and (2.14). We have from Eq. (2.15b),

h, = fg„ (2.17)

and from Eqs. (2.15a) and (2.14), we have

g, =dt/dr= (1—f2)

Thus, we see that

g2 h2 g2(1 f2) —1

Hence the line element (2.16) assumes the form

(2.18)

(2.19)

ds = (hP g~ )dl +2—(hih, gig, )dldr —dr2 (2.—20).
Furthermore, since the coordinate system (l,r) is rigid,
the application of Eq. (2.2) to the line element (2.20)
results in the identity

(hP —g, ')+ (h,h, —gig, ) '=—1. (2.21)

The line element in. this new frame is

8222 (Bm) '
ds'= (hP —gP)+2 (h~h, —g~gr) —

] (
dP

Bl L. Bt )

Bm BmBm
(hih, —

gag, )—
.. Bt Bl Bt

dldt

f Bnz) '
)

dt'. (2.23)
& at)

In order to obtain a time-orthogonal system, the func-
tion m must be chosen such tha, t the coefficient of the
cross term dldt vanishes. We thus see that the function

This identity may be verified explicitly in the same
manner as Eq. (2.19).

We notice that the coordinate system we have intro-
duced is not a time-orthogonal one. We shall now show
that it is always possible to introduce a time-orthogonal
system. Let us make a coordinate transformation from
the frame (l, r) to the frame (l, t) according to

(2.22)
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m is to be chosen in accordance with the requirements
on its partial derivatives, .

8222/Bt/0, 8222/8/= bitt, g—ig, (2.24)

With the aid of Eqs. (2.24) and (2.21), the line element
(2.23) takes the simple form

(8222) '
dsp=dv —

( (
dt2

&at&
(2.25)

Once we have made a particular choice of the metric,
and hence the rigid coordinate system, it is easy to
predict the results of measurements made by the

moving observer. For example, two observers at rest in
such a system would see a Doppler shift which they
would interpret as a gravita, tional e6ect.

usual relativistic law for the composition of velocities
to be

dx 'v+ vp

dt 1+VVp

(3.3)

t+'VpX

dt x+vpt
(3.5)

The general solution of the differential Eq. (3.5) is

We see from the second of Eqs. (3.2) that the time t'= 0
corresponds to the time

(3.4)

in the original system. If we use Eq. (3.4) to eliminate v

from Eq. (3.3), we obtain

3. UNIFORM ACCELERATION (x+t)' "p(x t)—i+"p=—a (3 6)

Before applying the above procedure to uniform
acceleration we shall digress a moment and discuss some
properties of uniform acceleration in special relativity.
Uniform acceleration is usually defined in terms of the
trajectories

X —t =g (3.1)

where a is the acceleration. '
It is well known that the hyperbolas (3.1) are in-

variant under the homogeneous Lorentz transformations
(taking c= 1)

x—et t—vx

)

(1 82) —;

(3.2)

~ For a complete discussion of ways of defining uniform accelera-
tion, see L. Marder, Proc. Cambridge Phil. Soc. 53, 194 (1957).

Under inhomogeneous Lorentz transformations the accelera-
tion is also the same but the trajectories are displaced.

Hence two observers connected by such a transforma-
tion would agree as to the numerical value of the
acceleration. ' We may prove the stronger statement
that the hyperbolas (3.1) are the only curves invariant
under the Lorentz transformations (3.2). It is clear that
the following two conditions are necessary for the
invariance of any curve under t'he transformations (3.2):
(a) The x intercept of the curve must be invariant;
(b) the slope with which the curve crosses the x axis
must be invariant. We shall show that conditions (a)
and (b) lead uniquely to the family (3.1) and hence they
are also sufhcient conditions for the invariance. Con-
sider two coordinate systems (x,t) and (x', t') connected
by one of the Lorentz transformations (3.2) corre-
sponding to a particular value of ~. Next consider a
particle following a trajectory that satisfies condition
(b). Then if at t= 0 in the original coordinate system the
particle's velocity was ~0 its velocity at t'=0 as meas-
ured in the other coordinate system must also be eo. The
particle's velocity dx/dt in the original system at the
time t which corresponds to t'=0 may be found by the

We must now impose condition (a). It is seen from Eq.
(3.6) that if t=0 we have x=&a '. Thus condition (a)
will only be satisfied if the curves represented by

( x—vt t—vx

,+
E(1—v')** (1—v')i)

( x—vt t vx ) '+"o—Xi,—.
, i

=a-'
( (1—v') -*' (1—v') -'')

(3.7)

we have

and hence

f(t) = (t'+"-')-:

f(t) = t (t2+ap-2)-'= np

(3.9)

(3.10)

«(1—~p')'
(3.11)

We see from Eqs. (3.9) and (3.11) that Eq. (2.13) takes
the form

A 1 A

+
a 2(1 n2) a ' — a (1—n2)l

=—(1—n2) ''. (3.12)

also have an x intercept of &a '. lf we substitute t=0,
x=+a ' into Eq. (3.7) we find

(1—v)'-'o (1+v)'+"'= 1—v'. (3.8)

The only solution of Eq. (3.8) for arbitrary v is vV=0.
Putting this value of vp back into Eq. (3.6) we obtain
precisely Eq. (3.1).

We shall now illustrate the methods of Sec. 2 with the
example of uniform acceleration. Picking a particular
trajectory from the family (3.1), corresponding to a
fixed but arbitrary a=co, we shall determine a rigid
frame of reference attached to it. From the second of
Eqs. (2.11) we must solve for t= t(np). Since



RI GI D FRAM ES I N RELATI VI TY

1qd44 '
ds'= dP'

(
—l+—

~

—dt'.
E ao& dt

, t'

f(t, l) =et+(1—u')li l+
E a&'

4. GENERALIZATION

The solution (2.8), (2.9) to the differential equation terms of l and t is easily found to be
becomes

(3.20)

(3.13)

Elimination of n between the two Eqs. (3.13) gives

(3.14)

This is the same family of trajectories as Eq. (3.1).The
parameter / is the distance, as seen by the moving
observers, between the trajectories specified by /=0 and
a given value of l. By comparison of Eq. (3.14) with

Eq. (3.1), we see that the distance between any two
curves is given by the diGerence of reciprocal ac-
celerations.

If we choose the time coordinate in the rigid frame as
the proper time 7-, the transformation to the rigid frame
is derived in the following manner. The relationship
between r and t, obtained from Eq. (2.14), is

(l+ao ')dt —=(l+ao ') sinh ' . (3.15)
"o [&'+(l+ao ')'3' l+ao '

Thus the first transformation equation (2.15a) becomes

In order to generalize the definition of rigid motion
given in Sec. 2, we return to the Landau and Lifshitz
expression for spatial distance:

( g.4g.4)
dP=

) g„,— ~dx"dx'.
E g„&

(4 1)

f gr4gs41
grr (

dx"dx =0)
g44 &,4

(4 2)

where the subscript ",4" denotes differentiation with
respect to x4. Since the dx" are arbitrary time-inde-
pendent quantities, we obtain

This equation, which expresses the spatial distance from
an observer at rest (i.e., with fixed x") to a neighboring
point, is valid in an arbitrary Riemannian space. The
term "rigid frame" implies that the world lines of two
particles with 6xed spatial coordinates maintain a con'-

stant spatial separation; in other words, in a rigid frame
if dx"/dt=O then dl/dt=0 Thus t.ime differentiation of
Eq. (4.1) gives us

7

t= (l+ao—') sinh
(l+ao ')

(3.16a)

gr4gr4)

g„&, (4 3)

If we substitute this into Eq. (3.14), the other trans-
formation equation (2.15b) becomes

x=(t+ao ') cosh
(l+ao ')

(3.16b)

dS =
7.2

dP+ did, d&' (3 17)—
(l+ao ')' l+ao '

In order to pass to a time-orthogonal system we must
make a transformation of the form 7 =4r4(t, l), subject to
the requirements (2.14). In the present example, these
requirements are

QP
Bt Bl t+ao ' (3.18)

Equations (3.18) may be integrated to give

r=m(t, l) = (1+a;i)n(t), (3.19)

~here 44(t) is an arbitrary function. The line element in

Using Eqs. (3,16), we can easily calculate that the
metric is specified by BS' 8$

C prr~

Bx" Bx"
(4.4)

into Eqs. (4.3), where xi'=xi'(x', . x4) is the desired
transformation law. It is easily verified that the trans-
formations of Sec. 2 are solutions of these equations.

S. ROSEN'S CONDITIONS

Rosen's point of departure for relativistic rigidity is
the classical definition of a rigid body as one with
vanishing strain tensor. By generalizing the classical
expression for the strain, he obtains the equation

Nq;r+Nr;q —I ~N err Nr rr44 N~—=O (5.1)

as his rigidity condition, where Nl" is the unit timelike
velocity vector, and the semicolon denotes covariant
difkrentiation.

A rigid frame is thus one whose metric tensor satisfies
Eqs. (4.3).

The following question arises: Starting in an arbitrary
frame, with metric g„„how would one And a coordinate
transformation to a rigid frame, whose metric g„,
satisfies Eqs. (4.3)? Clearly, the transformations would
have to be solutions of the differential equations ob-
tained by substituting



YVe can understand the geometrical significance of
Eq. (5.1) more clearly by rewriting it in the form

requirement nj"I„=1, we obtain

(5.7)
(u. p+, up ), (t)„ —u u„)(t),P —uPu, ) = 0, (5.2)

which we can recognize as Killing's equation projected
into the subspace orthogonal to I&.

The connection between Eq. (5.2) and rigid motion
can be better understood if we first recall a variational-
principle derivation of Killing's equation. Consider a
family of trajectories with the field of unit tangent
vectors u&, the individual members of the family being
specified by a parameter X. The four-dimensional dis-
tance along an arbitrary curve between any two mem-
bers of this family is given by

dx1' dx" y
~

ds=
I g„, I

d~. (5.3)
D, D, )

By requiring this distance to be stationary under uni-
form translation of the arbitrary curve in the direction
of I&, we obtain the variational principle

( ~'( dx" dx") *

a!
i g„,

dX dX

( dx~ dx") l

i g, „ i
~x-u. =o, (5.4)

dX dX)
where

8x = eN .

Upon carrying out the indicated operations and sim-

plifying, we obtain Killing s equation,

Substitution of (5.7) into (5.1) yields, after simpli-
6cation,

gp4gv4 1

g44 i4 (5 8)

6. CONCLUSION

Since solutions to the projected Killing's equation do
not, in general, exist in an arbitrary space, rigid frames
of reference do not usually exist. Even in spaces that
permit solutions, a rigid frame cannot be attached to an
observer following an arbitrary trajectory. One ad-
vantage of the approach presented in this paper is that
approximately rigid frames in the immediate vicinity of
an arbitrary observer may be found by a straightfor-
ward generalization of the procedure given in the
Appendix. One result of this somewhat lengthy calcula-
tion is that first order solutions for rigid motion can
always be found; at higher orders, however, the strict
rigidity conditions cannot be maintained.
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If either t4 or) has the value 4 in Eq. (5.8), the left-hand
side is identically zero; hence (5.8) reduces to our
previous condition (4.3).

u„.,+u, .„=0, (5.5) APPENDIX

as necessary and sufficient conditions for the four-
dimensional distance between the curves to be constant.

I.et us consider the expression

dP=y, „d dx)",xwhere y„„=g„, u„u.. (5.6)—
Since p„„is a projection operator into the space orthogo-
nal to the timelike vector I&, d/ is usually referred to as
spatial distance. If we now change the foregoing
derivation of Killing's equation by requiring that

P )I2

dl be stationary, we obtain the conditions (5.2).'
& Xy

We thus see that Rosen's condition for rigid motion is

just the requirement of constant spatial distance in the
above sense.

It seems clear on physical grounds that our approach
in Sec. 4 is equivalent to that of Rosen's; the only
difference being that the g„, occurring in Eq. (5.6) is the
metric in an arbitrary frame, whereas Eq. (4.1) is valid
only in a co-moving frame. In order to prove the
equivalence explicitly, we substitute n&, expressed in a
co-moving reference frame, into Rosen's condition (5.1).
Writing N&=a84&, where a is evaluated through the

' This approach to the projected Killing's equation is due to
P. G. Bergmann (private communication).

The approximation procedure outlined here will allow
one to find the rigid frame only in the immediate vicinity
of the original trajectory x= f(t). We begin by expand-
ing f(t, t) in a power series in t, thus obtaining

/n

f(t t) —Q f((n) f1(n)=
n=o g. t a/" z=-()

(A.1)

The problem is to determine f1(") in terms of the initial
condition f(',0) = f(t) and its higher time derivatives.
Let us substitute the expansion (A.1) into the differ-
ential Eq. (2.7) and equatelikepowers oft. The resulting
set of e uations is

f'(t,0)+f"(t,0) = 1,

(f (n+1)f (j—n+1)+f (n)f (1—n)) —0
n=o 44!(j—44)! j)0. (A.2)

This set of algebraic equations determines the f4(") in
terms of f(t) and its higher derivatives. The power
expansion up to terms in /', obtained through the use of
Eq. (A.2), is

f(t, t) = f(t)+tL1 —f'(t) I'
+-:t'f'(t)L1 —f'(t)3-'+ . .. (A 3)


