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A new approach is presented for defining and obtaining rigid frames of reference. The results are shown to
be equivalent to those of Rosen. The advantage of the present approach is that exact solutions can be
obtained in certain simple cases, as well as approximate solutions in general.

1. INTRODUCTION

HE study of rigid-body motion dates back to
Born’s paper of 1909.! Rosen? proposed covariant
conditions for rigid-body motion, which are equivalent
to the Born conditions. In Sec. 2 of this paper, we
propose a definition of a rigid frame of reference in the
restricted case of flat two-dimensional space-time, which
may be shown (Sec. 5) to be equivalent to Rosen’s
definition under the same restrictions. The present
formulation allows us to find exact solutions for the
rigid frames.

We define a rigid frame by requiring a constant
spatial distance between any two points having fixed
spatial coordinates. This rigid coordinate system is
defined via a family of trajectories. Initially we choose
an arbitrary family such that one member of the family
is our original trajectory. From this we derive a differ-
ential equation whose solutions are the trajectories
which define the rigid frame. Next, methods of solving
this nonlinear partial differential equation are discussed.
There still remains some ambiguity in the choice of this
rigid frame of reference, depending upon the choice of
the time coordinate. Two cases are treated ; first, where
the time is defined as the proper time along each
trajectory, and second, time-orthogonal systems.

In Sec. 3, a specific example is considered, that of
uniform acceleration. We digress briefly to discuss cer-
tain properties of the uniformly accelerated trajectories.
We then illustrate the methods of Sec. 2 with this
specific example.

In Sec. 4 we generalize our criteria for rigid motion to
include arbitrary motion in arbitrary space-time (the
criteria cannot, however, be satisfied in every case).

In Sec. 5 we prove the equivalence with Rosen’s
conditions. The geometric interpretation of Rosen’s
equations is clarified.

Finally an Appendix is devoted to a discussion of an
approximate method of solving the differential equation
of Sec. 2 for the transformation to the co-moving frame,
for use in cases where the exact solution presents par-
ticularly difficult problems.

* This research was supported in part by a contract with the Air
Research and Development Command, U. S. Air Force.
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2. GENERAL THEORY OF TRANSFORMATION TO
CO-MOVING REFERENCE FRAME

Consider an observer following a trajectory x= f(¢),
and introduce the family of trajectories x= f(£)-+x,,
where xg is a parameter. This can be considered as a
coordinate transformation from the frame (x,¢) to the
frame (#o,¢). In the new coordinate system the equation
of the original trajectory is x,=0. The new metric
obtained from ds?=dx?—di? is

ds?=dxg?+ 2 fdxedi— (1— f2)d2, f=df/dt. (2.1)

The general expression for spatial distance to a
neighboring point is given by?

o gr4gs4
A=\ g..— darda, r,5=1,2,3. (2.2)
844

In our case Eq. (2.2) takes the form

g142 dxy?
dl2=(gu—~—~)dxo = 0,.
f2

The value of dxo obtained from Eq. (2.3) by taking d/
to be constant defines a trajectory infinitesimally near
to the original trajectory xo=0, with the property that
the spatial distance between the two trajectories, as
calculated from the point of view of the original observer,
is constant. This trajectory, expressed in terms of the
original coordinates (x,t), is
x=f(O)+ (11— f)idi. (24)
Suppose we can find a family of trajectories x= f(¢,p)
with the property that any two neighboring trajectories
(that is, trajectories with infinitesimally differing values
of p) are separated by constant spatial distance and
such that f(£,0)= f(#). If we apply the procedure which

led to Eq. (2.4) to the equation x= f(¢,p) for a fixed but
arbitrary value of p, we obtain

v=fp)+[1—fp)Jdl, f=af/or  (2.5)

Since this is assumed to be a separate member of the
family, we have the result

Jp)+U—F(t.p)Tdi= f(t, p+dp)
=ft.p)+ 1 p)dp, [=0f/op,
#L. Landau and E. Lifshitz, The Classical Theory of Fields

(Aggéson-Wesley Press, Inc., Cambridge, Massachusetts, 1951),
p- .

(2.3)

(2.6a)
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or .
(= fJ= fldp/dl, (2.6b)

where higher powers of dp have been neglected. If we fix
the parameter p by the choice of p=1I, we obtain the
differential equation

P =1 2.7)

The solutions of this equation with the initial condition
f(#,0)=f(¢) define a family of curves such that any one
curve maintains a fixed spatial distance from any other
curve.

The general solution to Eq. (2.7) is obtained* by
eliminating « between the equations

f@ED)=a+(1—a?)i+¢(a) (2.8)
and
) ol d
e +2, (2.9)
oa (1—a?)? da

where ¢ is a function to be determined by the initial data
according to the following procedure. It is easily calcu-
lated from Eqs. (2.8) and (2.9) that

faD=a(t). (2.10)

Since f(#,0) is a known function f({), ¢(a) can be de-
termined by setting /=0 in Eqs. (2.8) and (2.10) and
eliminating ¢ between them. Specifically, we have

f(=ad+¢(@), f()=as a=a(0). (2.11)

Solving the second of Eqs. (2.11) for #=1(as) and substi-
tuting in the first, we get

JTt(e0) = crot (cx0) 6 (o). (2.12)

Since the functional form of ¢ is independent of the
particular value of a, we can drop the subscript 0 and

obtain
¢ (@)= fLL(a) ]—at(a). (2.13)

In practice it is often difficult to obtain this exact solu-
tion; therefore in the Appendix we discuss an approxi-
mate means of solving Eq. (2.7).

The transformation to the rigid coordinate frame is
not uniquely determined until we have chosen the time
coordinate. The most obvious choice on physical grounds
would be to use the proper time along each trajectory.
We may write the proper time as

T:fot(hf?)%d;:fotf’dt,

where the last equality holds by virtue of the differential
Eq. (2.7). We may solve Eq. (2.14) for ¢ as a function of
7 and /, which we may write in the form

t=g(r,l). (2.15a)

* The solutions of this equation are obtained through use of

Charpit’s method; see, for example, Frederic H. Miller, Partial

é)ijferential Equations (J. Wiley and Sons, Inc., New York, 1941),
ecs. 44-45.

(2.14)
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We may now use Eq. (2.152) to eliminate ¢ from the
equation of the trajectories x= f(¢,), obtaining x as a
function of 7 and /, namely

w= fLg(r) 1= h(r,]). (2.15b)

Equations (2.15) now determine the transformation
from the frame («,¢) to the frame (J,7). We may easily
calculate the line element in the latter frame to be

ds*= (hi*—g?)dl+2(luh.— gig.)dldr
— (g:2—h.?)dr?, (2.16)

where the subscript on % or g refers to the partial
derivative with respect to that variable. It is possible to
simplify Eq. (2.16) by noting that, since 7 is the proper
time along a trajectory I=const, the coefficient of dr?
must be —1. This may be verified directly from Egs.
(2.15) and (2.14). We have from Eq. (2.15b),

k= fgr, (217)
and from Egs. (2.15a) and (2.14), we have
go=di/dr=(1—f21, (2.18)
Thus, we see that
gli=hr=g2(1—fH)=1. (2.19)
Hence the line element (2.16) assumes the form
ds?= (h*— g 2)dl*+-2 (hihe— gig.)dldr—dr*.  (2.20)

Furthermore, since the coordinate system (I,7) is rigid,
the application of Eq. (2.2) to the line element (2.20)
results in the identity

(= gi®)+ (hih,— gig-)*=1.

This identity may be verified explicitly in the same
manner as Eq. (2.19).

We notice that the coordinate system we have intro-
duced is not a time-orthogonal one. We shall now show
that it is always possible to introduce a time-orthogonal
system. Let us make a coordinate transformation from
the frame (/,7) to the frame (I,{) according to

r=m(i,0).

(2.21)

(2.22)

The line element in. this new frame is

om om\ 2
ds’= [ (hf—gl2)-|—2—~(hllz,—glg,) - ("‘“) ]dlz
al al
om dm Om .
+2[*T(hlhr—glgr) —"“‘”T:Idldt
.ot al ot

~ (%7;)21152. (2.23)

In order to obtain a time-orthogonal system, the func-
tion m must be chosen such that the coefficient of the
cross term didt vanishes. We thus see that the function
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m is to be chosen in accordance with the requirements
on its partial derivatives,

om/di=0, om/dl=hh,—gg.. (2.24)

With the aid of Eqs. (2.24) and (2.21), the line element
(2.23) takes the simple form

Im\ 2
ds?=dP— (——) de.
at

Once we have made a particular choice of the metric,
and hence the rigid coordinate system, it is easy to
predict the results of measurements made by the
moving observer. For example, two observers at rest in
such a system would see a Doppler shift which they
would interpret as a gravitational effect.

(2.25)

3. UNIFORM ACCELERATION

Before applying the above procedure to uniform
acceleration we shall digress a moment and discuss some
properties of uniform acceleration in special relativity.
Uniform acceleration is usually defined in terms of the
trajectories

A2—2=a2,

3.1)

where a is the acceleration.’

It is well known that the hyperbolas (3.1) are in-
variant under the homogeneous Lorentz transformations
(taking c=1)

x—l

¥ = ,
(1-)!

I—ox

t= .
(-2t

(3.2)

Hence two observers connected by such a transforma-
tion would agree as to the numerical value of the
acceleration.® We may prove the stronger statement
that the hyperbolas (3.1) are the only curves invariant
under the Lorentz transformations (3.2). It is clear that
the following two conditions are necessary for the
invariance of any curve under the transformations (3.2) :
(a) The x intercept of the curve must be invariant;
(b) the slope with which the curve crosses the x axis
must be invariant. We shall show that conditions (a)
and (b) lead uniquely to the family (3.1) and hence they
are also sufficient conditions for the invariance. Con-
sider two coordinate systems (x,t) and (x',¢') connected
by one of the Lorentz transformations (3.2) corre-
sponding to a particular value of ». Next consider a
particle following a trajectory that satisfies condition
(b). Then if at #=0 in the original coordinate system the
particle’s velocity was vy its velocity at =0 as meas-
ured in the other coordinate system must also be v,. The
particle’s velocity dx/di in the original system at the
time ¢ which corresponds to #=0 may be found by the

5 For a complete discussion of ways of defining uniform accelera-
tion, see L. Marder, Proc. Cambridge Phil. Soc. 53, 194 (1957).

6 Under inhomogeneous Lorentz transformations the accelera-
tion is also the same but the trajectories are displaced.
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usual relativistic law for the composition of velocities
to be
dx v+

dt~1+vvo.

(3.3)

We see from the second of Egs. (3.2) that the time /=0
corresponds to the time

I=vx (3.4)

in the original system. If we use Eq. (3.4) to eliminate v
from Eq. (3.3), we obtain

dx i+ovex
—= . (3.5)
dt x+ Vol

The general solution of the differential Eq. (3.5) is

(x4-1)tv0(x— ) Hro=qa"2, (3.6)
We must now impose condition (a). It is seen from Eq.
(3.6) that if /=0 we have x==a". Thus condition (a)
will only be satisfied if the curves represented by

x— 0l
( +
(1—9?)%

t—ox

(1—1}2)5)

x—vl t—ox \ e
X( T ) =a;2
(1—®)F (1—?)}

also have an x intercept of =a~%. If we substitute (=0,
x==a"!into Eq. (3.7) we find

(1—p)oo(1+4o)Hro=1—192, ({5.8)

The only solution of Eq. (3.8) for arbitrary v is 9,=0.
Putting this value of 9, back into Eq. (3.6) we obtain
precisely Eq. (3.1).

We shall now illustrate the methods of Sec. 2 with the
example of uniform acceleration. Picking a particular
trajectory from the family (3.1), corresponding to a
fixed but arbitrary e=a,, we shall determine a rigid
frame of reference attached to it. From the second of
Egs. (2.11) we must solve for =¢(ay). Since

3.7

f()=(+a?)?, (3.9
we have .
f(t) =t(t2+ao_2)_%=ao, (310)
and hence
ag
frmme (3.11)

do(l“a()?)%

We see from Egs. (3.9) and (3.11) that Eq. (2.13) takes
the form

1

2 11 o
4)(&):[002(1—012) ' (102] _(Zo(l—az)%

1
——(1—a)t.

ao

(3.12)
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The solution (2.8), (2.9) to the differential equation
becomes

1
fEh=at+(1 —a2)§(l—|———) ,

Qo

a 1
I+— ) =0.
(1—042)%( +a0)

Elimination of & between the two Egs. (3.13) gives
Feh =14 (+ah)¥] (3.14)

This is the same family of trajectories as Eq. (3.1). The
parameter [ is the distance, as seen by the moving
observers, between the trajectories specified by /=0 and
a given value of /. By comparison of Eq. (3.14) with
Eq. (3.1), we see that the distance between any two
curves is given by the difference of reciprocal ac-
celerations.

If we choose the time coordinate in the rigid frame as
the proper time 7, the transformation to the rigid frame
is derived in the following manner. The relationship
between r and ¢, obtained from Eq. (2.14), is

(I+acV)dt !
—-= (I4a¢™") sinh'——. (3.15)

t
T—_j(; [P+ (e )] IHaq

Thus the first transformation equation (2.15a) becomes

t— (3.13)

t=(l4+a¢™) sinh—;.
(IHad™)

If we substitute this into Eq. (3.14), the other trans-
formation equation (2.15b) becomes

(3.16a)

x=(I4+a™) cosh—Tv— (3.16b)
I+

ag

Using Egs. (3.16), we can easily calculate that the
metric is specified by

7'2 2T
It [1_ ]d12+ dldr—dr.  (3.17)
I+ do—l

(Hai)?

In order to pass to a time-orthogonal system we must
make a transformation of the form r=m(i,l), subject to
the requirements (2.14). In the present example, these
requirements are

om om m
—#0, —= . (3.18)
at al l+do~1
Equations (3.18) may be integrated to give
r=m(il)= (+ai)n(l), (3.19)

where #(f) is an arbitrary function. The line element in
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terms of / and  is easily found to be

1\dn7?
ds*=dPP— [(z+—)—¢] diz.
A dt

4. GENERALIZATION

(3.20)

In order to generalize the definition of rigid motion
given in Sec. 2, we return to the Landau and Lifshitz
expression for spatial distance:

8rads
dlZ=(g,s— l 4)azxmzxs.
844

(4.1)

This equation, which expresses the spatial distance from
an observer at rest (i.e., with fixed x") to a neighboring
point, is valid in an arbitrary Riemannian space. The
term “rigid frame” implies that the world lines of two
particles with fixed spatial coordinates maintain a con-
stant spatial separation; in other words, in a rigid frame
if dx7/dt=0 then dl/dt=0. Thus time differentiation of
Eq. (4.1) gives us

gr4gs4
(g,s— ) dxrdxs =0,
g /4 )

where the subscript ““,4” denotes differentiation with
respect to a%. Since the dx” are arbitrary time-inde-
pendent quantities, we obtain

8rafsa
(grs— ) = 0.
844 4

A rigid frame is thus one whose metric tensor satisfies
Eqgs. (4.3).

The following question arises: Starting in an arbitrary
frame, with metric g,,, how would one find a coordinate
transformation to a rigid frame, whose metric g,
satisfies Eqgs. (4.3)? Clearly, the transformations would
have to be solutions of the differential equations oh-
tained by substituting

(4.2)

(4.3)

3T» 03"
Euv="""8poy
dx* ox”

(4.4)

into Egs. (4.3), where &*=&#(«%,---a%) is the desired
transformation law. It is easily verified that the trans-
formations of Sec. 2 are solutions of these equations.

5. ROSEN’S CONDITIONS

Rosen’s point of departure for relativistic rigidity is
the classical definition of a rigid body as one with
vanishing strain tensor. By generalizing the classical
expression for the strain, he obtains the equation

(5.1)
as his rigidity condition, where #* is the unit timelike

velocity vector, and the semicolon denotes covariant
differentiation.

Uy U; y— Uy U Uy — Uy, U, =0



1614 E. T. NEWMAN
We can understand the geometrical significance of
Eq. (5.1) more clearly by rewriting it in the form

(the pt+145; @) (8 —uu,) (8, —uPu,) =0,  (5.2)

which we can recognize as Killing’s equation projected
into the subspace orthogonal to #~.

The connection between Eq. (5.2) and rigid motion
can be better understood if we first recall a variational-
principle derivation of Killing’s equation. Consider a
family of trajectories with the field of unit tangent
vectors ##, the individual members of the family being
specified by a parameter N. The four-dimensional dis-
tance along an arbitrary curve between any two mem-
bers of this family is given by

M Moo dardar\
i [ (5 o
A1 N d)\ d)\

By requiring this distance to be stationary under uni-
form translation of the arbitrary curve in the direction
of u*, we obtain the variational principle

A2 dx* dxv\ }
5 f (gﬂ, ——) a\
A d}\ d}\

Az dxr dx'\
=f [(g#r——% ] dxd\=0, (5.4)
A d)\ d}\

,@

(5.3)

where
ox%= eu®.

Upon carrying out the indicated operations and sim-
plifying, we obtain Killing’s equation,

Uy, =0, (5.5)

as necessary and sufficient conditions for the four-
dimensional distance between the curves to be constant.
Let us consider the expression

2=y, durda”, (5.6)

Since v, is a projection operator into the space orthogo-
nal to the timelike vector ##, dl is usually referred to as
spatial distance. If we now change the foregoing

derivation of Xilling’s equation by requiring that
Az

\ dl be stationary, we obtain the conditions (5.2).7
1

We thus see that Rosen’s condition for rigid motion is
just the requirement of constant spatial distance in the
above sense.

It seems clear on physical grounds that our approach
in Sec. 4 is equivalent to that of Rosen’s; the only
difference being that the g,, occurring in Eq. (5.6) is the
metric in an arbitrary frame, whereas Eq. (4.1) is valid
only in a co-moving frame. In order to prove the
equivalence explicitly, we substitute #*, expressed in a
co-moving reference frame, into Rosen’s condition (35.1).
Writing #*=ads*, where a is evaluated through the

where v, = gur—Uul,.

7 This approach to the projected Killing’s equation is due to
P. G. Bergmann (private communication).
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requirement #*u,=1, we obtain
Uy = gas tgua. (5.7

Substitution of (5.7) into (5.1) yields, after simpli-

fication,
Buagrs
8ur— =0.
844 ,4

If either u or » has the value 4 in Eq. (5.8), the left-hand
side is identically zero; hence (5.8) reduces to our
previous condition (4.3).

6. CONCLUSION

uu=g44*%54u,

(5.8)

Since solutions to the projected Killing’s equation do
not, in general, exist in an arbitrary space, rigid frames
of reference do not usually exist. Even in spaces that
permit solutions, a rigid frame cannot be attached to an
observer following an arbitrary trajectory. One ad-
vantage of the approach presented in this paper is that
approximately rigid frames in the immediate vicinity of
an arbitrary observer may be found by a straightfor-
ward generalization of the procedure given in the
Appendix. One result of this somewhat lengthy calcula-
tion is that first order solutions for rigid motion can
always be found; at higher orders, however, the strict
rigidity conditions cannot be maintained.
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APPENDIX

The approximation procedure outlined here will allow
one to find the rigid frame only in the immediate vicinity
of the original trajectory x= f(f). We begin by expand-
ing f(¢,) in a power series in /, thus obtaining

o | n

fh= 3 i, pun="t
! 3

n=07! ™10

(A1)

The problem is to determine f;(™ in terms of the initial
condition f(*,0)=f(¢) and its higher time derivatives.
Let us substitute the expansion (A.1) into the differ-
ential Eq. (2.7) and equate like powers of /. The resulting
set of equations is

i 1

S0+ 77(t0)=1,
(fl<n+1>fl(f~n+1)+f'l<n>f'l<j—n)) =0,

=01 !(j—mn)!
7>0.

(A.2)

This set of algebraic equations determines the f;(™ in
terms of f(f) and its higher derivatives. The power
expansion up to terms in /2, obtained through the use of
Eq. (A.2),is

fah=fO+11- 207

HILOU=LOT - (A3)



