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The coefficients R(tV, T) vary slowly with tempera-
ture and density. - Values of this constant for conditions
not represented in the table can therefore be easily
found by interpolation or extrapolation. Correspond-
ing calculations for higher series members of the Balmer
lines are not yet available, but since the R(X,T) de-

pend smoothly on the principal quantum number of
the upper state for Hp, H„and H~, the absorption

coeKcients for other Balmer lines can be estimated by
extrapolation.
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A theory for obtaining the conductivity of a uniform plasma as a function of frequency and temperature is
presented and compared with a number of recent treatments.

INTRODUCTION

ECENTLY, several different treatments of the
high-frequency properties of an anisotropic plasma

have appeared. ' ' In each case the time-dependent part
of the electron distribution function is obtained and
then used to determine either the conductivity tensor
or the propagation constant for a plane electromagnetic
wave within the plasma. The forms of the conductivity
tensor reported by these authors differ and the cause
of the differences is not clear. It is the purpose of this
discussion to indicate the nature of the differences or
similarities in the various treatments.

FORMULATION OF THE PROBLEM

We consider the plasma to consist of electrons, posi-
tive ions, and neutral particles. In the absence of any
electromagnetic disturbance, the plasma has a uniform
density and is electrically neutral. For simplicity, we
assume that in the presence of an electromagnetic Geld

only the motion of the electrons is affected. The pro-
cedure for determining the properties of the plasma can
be applied equally well when the motion of the ions is

included; the contribution of the ions can be inferred
from the results for electrons by noting the change of
mass and charge. Within the plasma the electrons are
described by their kinetic properties. Thus, the number
of electrons at time I whose position and range of
velocities lie within the interval r and r+dr and v and
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f(r, v, t) fs(v')+fr(r, v, t),

E(r, t) E,(r,t),
H(r, t) Hos+Hi(r, t),

(2)

where fo(v ), the distribution function in the absence
of the electromagnetic disturbance, is chosen to be the
Maxwell-Soltzmann distribution

fo(v') = rt(rrt/2srET)& exp —(ntv'/2ET). (3)

Here E and T are, respectively, Boltzmann's constant

' S. Chapman and T. G. Cowling, The Mathematical Theory of
Xonuniform Gases (Cambridge University Press, London, 1939}.

'W. P. Allis, Ilandbuch der P/sysik (Springer-Verlag, Berlin,
1957), Vol. 21.

v+dv is given by f(r, v, t)d'rd'v. The electron distribu-
tion function, f(r, v, t), must satisfy the Boltzmann
equation'

I)f/Ilt+v V„f+(q/rrt)(E+ttsvXH) V„f
o(f fo) —(&)-

Here E(r,t) and H(r, t) are the electric field and mag-
netic intensity, respectively. The quantities q= —

~q~

and m are the charge and mass of an electron, respec-
tively. In MES units, which will be used here, ~p and

pp are the characteristic constants of free space. The
loss term, —u(f—fs), is included to conserve number
density and momentum. For simplicity, the collision
frequency, v, is assumed to be independent of velocity.
The removal of both this assumption and the limited
loss term can be accomplished by following the method
of Allis. '

We consider a plasma that is close to thermal equi-
librium within which the following linearization condi-
tion holds:
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f
Ei(r, t) = (1/2s.)' E&(k,a&) exp(jk r —i~t)dgd~,

&fi/&t+v &„fi+au,X v. V„fi+vfi= —(q/m)Ei V' fo (4)

and the electron gas temperature, and e is the number introduce the Fourier transforms
density of electrons within the plasma. If we retain
terms linear in fi and Ei, then Eq. (1) can be written as

where ~,= —q(ti, /m)Ho is the electron cyclotron fre-
quency. Following Drummond, 4 we note the definition
of the Boltzmann operator and write the solution of
(4) as

fi(r, v, t) = 2—(q/m) (dfo/dv') ~ e "'[v.Ei(r, t))'ds, (5)
0

where the prime denotes the fact that the variables
r, v, t in the integrand are to be replaced by t'= t—s,
v'=R v, and r'= r—Jo'R(x) vdx. Here R(s) is a uni-
tary matrix with the following elements:

J&(r,t) = (1/2s-)' Ji(k,&o) exp(ik. r —i~t)d'kA&

Ji(k,(o)=e(k,cv) E,(k,(o),

where the elements of e are

(13)

o,i= —(2q'/m)~ ds Jt.';;(—s/2)A~i( —s/2)
0

into (11), then the vector current density has the
simple form

t cosco,s
E;,(s) = sin&a, s

0

sin(d cS

cosM s
0

0
0
1.

X ' d'$(dfo/d$') g gi, exp@(P), (14)

C ($)= —(2iki g/~, ) sin(co, s/2) ask, E, —i s+i&vs—,

With this form of R we see that

r'= r—(2/~, ) sin(~, s/2) R(s/2) v, —t,ss,

where v= vi,+v,s.
The vector current density,

where k=k,+k,s. For a uniform medium o, i repre-
sents the conductivity tensor associated with the
characteristic electric fields E(r,t), which for a uniform
medium are plane waves. The various elements of e
for the assumed form of fo(v') and for a uniform medium
are listed below.

J(r,t) = q vf(r, v, t)d'v,

can now be calculated by using (5). The specific com-
ponents of the current are given by

a'ii = (Bq /m) )I ds[coscv, s —Ni (1—cos(o,s)

X (cos~,s+cos2$)) expC (s),

Ji;(r, t) = —(2q'/m) d'w (dfo/dii'-)
o» = (eq'/m) ds[sinco, s —I,'(1—cos&o,s)

0

Xv;~j ds Ei,(r', t s)R;i,(s)vte —"*, (9)
0

where r' is given by (7). The velocity dependence can
be simplified by introducing the coordinates,

X (sin&a, s+sin2&) 7 expC (s),

o i3 ———(Nq'N, tt, /m) J
ds &o,s[(1—cos&v,s) sin@

0

(15)
+since, s cosP) expC (s),

)=R(s/2) v= R(—s/2) v', (1O) .(.)= (—.),
and, if we note the unitary property of R, the introduc- e'»(&) =e'ii(4'+ir/2)

tion of these coordinates into (9) leads to the expression

03J. c =0&3 —c,
032 c =0'23 c y

Ji, (r, t) = —(2q'/m)~~ ds e "'E,,( s/2)—
0

XXI„i(s/2) t d'$(dfo/dP) g, giE&li(r', t—s), (11)

where a summation over repeated indices is implied
and where r'=r —(2/~, ) sin(&v, s/2)f, sf,s Equation— .

(11) is in the form derived by Drummond. If we now

o 33 ——(nq'/m) ~l ds(1 —I,'&v,2s') expC (s),
0

where u=k(ET/cue, ')l=(electron velocity/wave ve-
locity); C (s)= (ice —v)s —2N, ' sin2(co, s/2) —NPcoPs'/2;
and p is the angle between k and the x axis.
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J= J,(E)+J„(E). (16)

The dependence of the current on the parallel and
transverse components of the electric field was ex-
plicitly taken into account by writing

Jz(E)= Jz(EI)+ Jz(EI ),
J&&(E)= J))(Ez)+ Ji((Eii).

For ease of calculation the contributions from E, were
calculated separately from E&1. Drummond noted that
with this decomposition Eq. (11) may be simplified by
requiring that the electric field satisfy Ma, xwell's equa-
tions in the form

curl curl E—(oP/c') E= izz,&o J. (18)

Then, by taking the contributions to the vector current
density arising from the transverse electric field, new
expressions for o.», o.», o.», o-22, as well as o31 and 032,
were obtained. From symmetry arguments, the other
off-diagonal elements were found. Finally, o.33 was
calculated from the contribution of the parallel com-
ponent of the electric field.

The fallacy in the argument arises from the assump-
tion that the parallel and transverse components of (18)
have the form'

(curl curlE, ),—(~/c)'E, =ipm Jz(Ez),
sa(V' E,)/cjs= izzoco Jll (Ez)

(curl curlEii)z=zzzgo Ji(Eii)~

(curl curlE„)„—((u/c)'E„= izzpa) J„(Eii).

(19)

~ J. E. Drummond, Report No. EDL-E14, Sylvania Electronic
Defense Laboratory, Mountain View, California, 1956 (un-
published).

DISCUSSION

In the absence of collisions and when &=0, these
elements of the conductivity tensor reduce to the ele-
ments of Bernstein's' Q (when typographical errors are
corrected), which in turn are equivalent to those ob-
tained by Sitenko and Stepanov, ' when account is
taken of their diAerent representation of the Fourier
series expansion of a.. As such, the elements of 0 in (15)
represent simply a rotation of the coordinates from the
case treated by Bernstein. Pradham's results are equiva-
lent to Bernstein's specified to propagation along the
dc magnetic field —except for Pradham's example,
which contains an error.

The elements of (15) do not agree, however, with
those obtained by Drummond. To simplify his equiva-
lent of (11),Drummond took components of the vector
current density parallel (~~) and transverse (J ) to the
dc magnetic field':

The decomposition of (18) into the above form tacitly
assumes that the parallel and transverse components of
the electric field are mutually independent. That is,
the independent modes of propagation within a plasma
are assumed to possess components either parallel to or
transverse to the dc magnetic field, but not both. How-
ever, in the.case of propagation in a plasma in a direc-
tion at an arbitrary angle to the dc magnetic field, even
in the absence of thermal effects the electric field of the
independent modes possesses components both along
and transverse to the direction of the dc magnetic field. '

Only in the case of propagation in a plasma in a direc-
tion along or transverse to the direction of the dc mag-
netic field is the form of (19) and (20) correct. For the
general case of propagation at an angle to the direction
of the dc magnetic field the elimination process based on
(19) is not valid, and the conductivity tensor obtained
by Drummond is incorrect. For the specific case of pro-
pagation parallel to or transverse to the direction of the
dc magnetic field, his form of the conductivity tensor is
equivalent to that obtained by Bernstein and to that
obtained by Sitenko and Stepanov.

APPENDIX

If we expand (15) in powers of u' and retain first-
order temperature effects only, and if

~
u~

&&1 (i.e., we
ignore Landau-type damping), then the elements 0;,
may be approximated by

0.» ——(zzq'/zzz) {(v —i(o)/[(v —zan)'+(o. 'j)
&( (1—cv 'u '[(v—ia&)' —3(u,']/[( v —uo) z+(u.']z
—3a),zuzz/[(v —i(a)'+4(o,zj

+2(squiz(sin'y)/(v —ice)')

O.iz
——(zzq'/zzz) (~,/[(v —i(u)'+a).zj)

X (1—6u),'u, '/ [(v—uo)'+4co, ')
—ca, u, [3(v—za)) —co. j/[(v —ice) +co ]

—co,uzz sin2y/(v —i(o) ),
Ozz= —(zzq /zzz){co uiu /[(v —iud) +to ~j )

X {2(v zan) cosP+—co, sing[co, z+3(v —i~)z]/
(v —i(u)'),

o zz (y) = —o.iz (y+ zr/2),

|721 (AJc O12 c y

~zz(4) =~ii(4+zr/2),

O31 c =O'13 c y

O32 c =O23 c ~

0 zz = [zzqz/zm(v ice)](1—3u, u, /—(v —z~)

co„zu '/[—(v i(o)'+(o,—'j)

C. H. M. Turner, Can. J. Phys. 32, 16 (1954);


