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A study is made of the exactly soluble field theories which are characterized by Hamiltonians quadratic
in the field variables. As an example of such a theory, a model describing the electric dipole interaction of
photons and a nonrelativistic, harmonically bound electron is studied explicitly. For the cases when the
cutoff is sufficiently large to admit the "runway solutions, " it is necessary in order to obtain consistency
and a sensible physical interpretation that the theory be reformulated by a unique modification of the equal-
time commutation rules of the Geld operators. The problems which arise here in connection with the "run-
away solutions" are closely related to the troubles of ghost states and negative transition "probabilities"
which have been demonstrated or suggested to exist in other theories. It is hoped, therefore, that the pro-
cedure of reformulation required here may be a guide for the eventual resolution of the ghost-state problem
should it be demonstrated that such problems actually exist in the physical, relativistic field theories.

I. INTRODUCTION

ECEXTLY there has arisen a considerable amount
of evidence to indicate that field theories in the

~

~

limit of no cuto6 possess properties which are contrary
to those usually assumed in quantum mechanics. In
the Lee model, ' for example, it has been demonstrated'
that the bare coupling constant must be pure imaginary
with the result that the Hamiltonian for the theory is
not Herrnitian. This feature then necessitates a quanti-
zation procedure employing a Hilbert space with an
indefinite metric and, more important, causes consider-
able difhculty in the physical interpretation of the
theory. Spurious eigenstates of the Hamiltonian appear
and the transition processes involving these states occur
with a nonpositive "probability. "Except for one case'
which relies for its success upon the choice of specific
values of the parameters of the model, the Lee model
has apparently not been interpreted in a manner which
is free of ambiguities.

The problems which can be seen so clearly in the
Lee model may well be symptomatic of a disease under-
lying all of held theory. Ambiguities similar to those
present in the Lee model have already been shown to
exist in a truncated version of relativistic quantum
electrodynamics, 4 and although it has not been proved,
they may well be present in the full theory. In any case
it is clearly desirable to acquire a better understanding
of the problems present in as many theories as possible
so that they may be compared and then perhaps re-
solved in some general manner.

It is with this motivation that we continue here to
examine the structure of some exactly soluble field
theories. Explicitly we study the model of a nonrela-
tivistic, harmonically bound electron coupled to the
radiation held in the electric dipole approximation. We
wish to emphasize, however, that essentially the same

conclusions can be drawn from a study of the pair
theory, ' or probably, for that matter, from the study of
any theory whose Hamiltonian is quadratic in the
field variables. We have chosen to study the harmonic
oscillator model explicitly, rather than for example the
pair theory, simply because it has been the subject of
greater interest in the past and because it is at least
approximately descriptive of an actual physical
interaction.

It has been known for some time that the classical
equations of motion for the harmonic oscillator system
have unphysical "runaway solutions, " and it has been
shown by Dirac' that these solutions can only be
ignored, and the model thereby made reasonable, by
allowing the theory to become acausal over extremely
small space-time dimensions. Similarly, in the quantum
mechanical formulation of the theory, the equations of
motion for the field operators admit these exponentially
time-dependent solutions. In analogy to Dirac's pre-
scription in the classical theory, it has been suggested'
that the canonical coordinates associated with the
imaginary frequency be deleted from the Hamiltonian,
and the remaining, truncated version of the- theory be
quantized in the usual manner.

In this paper we study in somewhat greater detail
those aspects of the quantized harmonic oscillator
model which arise in conjunction with the "runaway
solutions. " We conclude, as was done before, s that we
must project out from the Hilbert space those states
which generate the exponential time dependence. Sy
so doing, however, it is clear that the theory is altered
from the one which is defined originally in the usual
formulation of the model. In particular, we find that
the modification of the theory implied by this trunca-
tion process manifests itself as an alteration in the
equal-time commutation properties of the field opera-
tors. They are no longer the usual delta function ex-

' T. D. Lee, Phys. Rev. 95, 1329 (1954).
'G. Kallen and W. Pauli, Kgl. Danske Videnskab. Selskab,

Mat. -fys. Medd. 30, No. 7 (1955).' W. Heisenberg, Nuclear Phys. 4, 532 (1957).
4 Landau, Abrikosov, and Halatnikov, Suppl. Nuovo cimento'3,

80 (1956).

1

~ G. Wentzel, Helv. Phys. Acta 15, 111 (1942).' See, for example, W. Wessel, Z. Physik 92, 407 (1934).
7 P. A. M. Dirac, Proc. Roy. Soc. (London) 167, 148 (1938).
8 N. G. Van Kampen, Kgl. Danske Videnskab. Selskab, Mat, -

fys. Medd. 26, No. 15 (1951).
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pressions. On the other hand, the field equations satisfied
by these operators are unchanged. The variations in
the commutation rules are of such a form that they
express the acausality of the theory which arises when
the unphysical states are eliminated. This acausality
occurs in a manner similar to the lack of causality
previously noticed by Dirac. ~

In Sec. II the theory defined by the equations of
motion and the usual commutation rules is solved
exactly. We formulate the theory with a cuto6 by
spreading out the electron over a region determined
by a form factor p(x). The no-cutoff limit is obtained
by allowing p(x) to approach a delta function. It is
demonstrated anew that as the cutoG increases, the
bare electron mass mo ——nz —8m decreases, and eventu-
ally goes to negative infinity in the limit of a point
electron. For values of the cutoff larger than the value
which gives rise to a zero bare mass, a continuum of new
eigenstates of the Hamiltonian appears, and those parts
of the field operators which connect to these states are
characterized by a real, exponential time dependence.
This situation is the quantum analog of the existence of
the "runaway solutions" in the classical theory.

In Sec. III the spectrum of the Hamiltonian is dis-
cussed and it is argued that the continuum of eigen-
states which generate the exponential time dependence
should simply be omitted from the Hilbert space. In
Sec. IV the theory is then reformulated with equal-
time commutation rules modified in such a way that
the unphysical, spurious states do not arise. Finally,
in Sec. V the work of the preceding parts of the paper
is summarized, and the possible generalization of these
results is discussed.

It should be emphasized that the acausality which
arises in the theory studied here is of exactly the same
origin as the acausality which has been known to exist
in the corresponding classical problem. Furthermore,
the procedure of simply eliminating the spurious eigen-
states is essentially a quantum mechanical method of
accomplishing Dirac's prescription of ignoring the
"runaway solutions" in the classical problem. This
procedure has previously been suggested' as the method
for dealing with these solutions in the quantized ver-
sion of the oscillator theory. It is interesting, therefore,
that as mentioned previously, exactly the same kind
of problems occur in the pair theory and probably also
in all theories whose Hamiltonians are quadratic in
the field variables. In the pair theory, for example, the
spurious states occur when the bare coupling constant
is forced negative by increasing the cutoff. The prop-
erties of these states and the method of ignoring them
are exactly the same as in the Dirac harmonic oscillator
model.

Finally, let us remark that at the present time we do
not know to what extent the problems of the theory
studied here are similar to those which appear to exist
in the relativistic field theories. It is planned to in-
vestigate the existence of such an analogy and to

determine whether the methods for interpreting the
oscillator model can eventually be extended for applica-
tion to more physical theories. The fact that this situa-
tion would imply a lack of microscopic causality does
not immediately rule it from physical interest. In this
regard, we mention the work of Feynman and Wheeler'
where it was concluded that the lack of causality present
in the classical version of the oscillator problem is not
cumulative in the sense that it is capable of adding up
to macroscopic intervals in bulk matter. As long as such
an addition does not occur, this lack of causality cannot
be ruled out on the grounds that it contradicts
experience.

II. EXACT SOLUTION OF THE MODEL

The Hamiltonian for the theory is"

Ln() —)~ (*)A(*,)d'*3'

+-', Er'(t)

1+- ~ d'x{n n(x, t)+V'A VA(x, t)}, (1)
2

which describes the interaction of the photon field A
with an electron bound harmonically to a center of
force with a strength determined by the spring con-
stant E. (We take h=c=1 throughout. ) A cutoff is
introduced by spreading out the charge distribution of
the electron over a region characterized by the spheri-
cally symmetric form factor p(x). Subsequently this
cutoff can be removed by allowing p(x) to approach a
delta function 8(x). The electric dipole approximation"
is apparent since the coupling contains no reference to
the electron's position r(t). The Hamiltonian in Eq. (1),
together with the usual equal-time commutation
relations

Lr, (t),p.(t)]= iS,;, (2)

LA, (x,t),rr„(x't) )= (A;(x,t),a,A. (x', t)j
= ib, I,b'(x x'), (3)—

infer the equations of motion

(mBP+E)r(t) = e)~p(x)B,A(x—, t)d'x+SmBPr(t), (4)

a'A(x, t) = (V' —a P) A(x, t) = ep(x)a, r—(t) (5).
At this stage it is interesting to note that the theory
can be defined in terms of either the Hamiltonian or the
field equations in conjunction with the commutation

' J. A. Wheeler and R. P. Feynman, Revs. Modern Phys. I7,
157 (&94S).' Throughout this paper we completely ignore the gauge condi-
tion ~.A=O. Since our aim is to examine the structure of a 6eld
theory rather than to describe the interaction of light, we feel
that this neglect is of no essential consequence."See, for example, L. I. SchiR, Quantum Mechanics (McGraw-
Hill Book Company, Inc. , ¹wYork, 1949).
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t' p'(k) k'dk
D(~) (&o') = (m —t&m)oP —E—4s.e'cv' ~ . (14)" aP+ie —k2

ow immediately
from Eqs. (11) and (12) and, the condition of Her-
miticity r(—co)LA( —k, —co)]= r*(au)LA*(k, &d)7. In the
usual manner we label the homogeneous solution

A(;„&, A(,„q) when the integrals through singularities
caused by vanishing energy denominators are defined

by giving the frequency a& a positive (negative), in-

finitesimal imaginary part +i e.

By writing k'= (k' —cu')+aP in the numerator of the
integrand in Eq. (14), we can cancel the first term
against the mass correction 5m so that we are left with
a finite integral in the limit of no cutoff, p'(k) = (2~) '.
The mass correction becomes

p(k) = p(x)e'" *d'x
(2m)»

(6)

A(k, co) = A(x t)e"*='d'ddt
(27r)'

(7)

r(co) = I r(t)e '"'dt,
(2s.)lJ

and use them to rewrite the equations in the form

L(m —()m)&u' —E]r(&u) = ie(o p(k)A(—k, (u)dk, (&&)

t&m=4)re' p'(k)dk,

rules. We shall adopt the latter point of view as being where we define A& ) as the solution of
the more fundamental, since our aim is to show that
the theory defined by Eqs. (2)-(5) is physically in- (('' —k') A( ) (k,&e) =0,
consistent with our model when the cutoG becomes
large.

and

%e shall then attempt to demonstrate that the cor-
rect theory is then defined by Eqs. (4) and (5) and by
altered versions of the commutation rules (2) and (3).

In order to solve the equations of motion (4) and
(5) we" employ the Fourier transforms The negative-frequency solutions foll

(cv' —k') A(k, a) = ice)p(k) r((u). (10)

These equations can be readily solved with the result
that for positive frequencies ~

—
ZOIC@

r (a)) = — p (k) A( & (k,co)d'k,
D() (~')"

( e'co' p(k) p(k') k")
A(k, &d) =) d'k'I ~'(k-k')+

a&' —k' D( ) (cu')

X A( ) (k', (u), (12)

and it is clear that for a suKciently large momentum
cuto6 the bare mass, f0=m —8m, becomes negative.
For values of the cutoG for which this situation occurs,
the D( &

(cv') function of Eq. (14) has an additional zero
for oP = —&oP (see Appendix A), and there exists another
pair of solutions of the field equations, which can be
added to the solutions given in Eqs. (11) and (12).
Assuming this to be the case (m —t)m(0), we can write

the general solution of field equations (4) and (5) as

r(t) = (Oie "0'+02e o') —ie ~~ d'k p(k) I

—
I -a(;„&(k)e "" —a(;„&*(k)e'"'

(2~0) i J (2) D(~) (k') D( ) (k')
(16)

and

1 t (kl~ 1
(Q)e "0'.+02e ") ie ~ d'k—p(k) I

—
I a(,„)(k)(e '"'—

(2coo)'* & E2) D( )(k')
a& ()*(k)e"

D(+)(k')

where

ep(k) (~op '
I
—

I (O e-"'—o e"")+ L(kl~l(-) Ik') &- )(k')e '"'+(—kl~(+) Ik')a(- )*(k')e'"']
k'+&d ' (.2 2 " (2k')'*

4re'- p(k)p(k')k"
(k I Q(~) I

k') =-t&'(k —k')+-i"+ie—k' D( )(k')'

ep(k) (&eoi l
t

d'k'
A(k t)= ——

I

—
I

(Oie "—02e ")+ '

I (klQ(+) lk')a(;„)(k')e '"'+(—klQ( &
lk')a(;„)*(k')e'i"]

@+~02( 2 ] J (2k')**

(17)

'2 We employ the methods of A. Klein and B. McCormick, Phys. Rev. 98, 1428 (1955); see also R. Norton and A. Klein, Phys.
Rev. 109, 991 (1958).
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and the a& ) (k) are defined in terms of the relation

p d'k
A()(x, t) =

(22r)x" (2k)t

g La (k)gtk ~ x ua—t+a 8(k)e tk—x+ott$ (19)

The first terms of Eqs. (16) and (17) contain real
exponential time dependence as well as a pair of as yet
undefined constant operators 01 and 02. It will be
recalled that these parts of the general solution only
exist, for large cutoff (i.e., 2)2—&)222(0), and it will be
shown later that those extra solutions must be included
if the fields are to satisfy the usual commutation rules,
Eqs. (2) and (3).

of the separate eigenstates of each of these two terms
in the Hamiltonian. The eigenstates of the right-hand
term were discussed above and they have the usual
interpretation as the scattering states of the system.
On the other hand, the spectrum of the left-hand term
in Eq. (20) (see Appendix B) is a continuum over both
positive and negative energies and appears to be com-
pletely spurious. It is suggested, therefore, that Eqs.
(2)-(5) do not correctly describe the oscillator model
when the momentum cutoG is larger than the value
which gives rise to a bare mass of zero. The theory can,
however, be formulated in a consistent manner by
simply ignoring the exponential solutions containing
Oi and 02. This version of the theory will be presented
in the next section.

Gdp

(01 ' 02+02 ' 01)
2R

+) d'k kLa& )*(k)a()(k)+a()(k)a( )*(k)$, (20)

where the real number R is defined by

(t) +(t)p
R= limit-*---'D( ) (~')

(21)

and is hence the residue of 1/D& )(&p2) at the pole
u'= —up'. In addition to the usual, infinite self-energy,
the integral term in Eq. (20) simply sums up the total
energy in all the normal modes represented by either
the incoming- or outgoing-wave eigenstates. Since these
incoming- or outgoing-wave scattering states are all
we would ordinarily expect for our model, a question
arises about the significance of the first term in Eq. (20).

By insisting that the Hamiltonian in Eq. (20) generate
the correct time displacement of the operators r(t),
A(k, t) given in Eqs. (16) and (17), we obtain the
commutation rules

III. STRUCTURE OF THE ENERGY SPECTRUM

If we substitute the relations for r(t), A(k, t) from
Eqs. (16), (17), and the corresponding expressions for
p(t), II(x,t) into the Hamiltonian in Eq. (1), we obtain
after some lengthy but straightforward manipulations
the result

IV. REVISED FORMULATION OF THE MODEL
FOR LARGE CUTOFF

We have seen that when the momentum cuto6 be-
comes sufficiently large to force m —8m negative, there
occur an additional pair of solutions of the 6eld equa-
tions which are characterized by an unphysical, ex-
ponential time dependence. Simultaneously there is
introduced an apparently spurious continuum of energy
eigenstates. In analogy with the work of Van Kampen,
we propose, therefore, that these solutions of the field
equations should not be included, and that the correct
expressions for the field operators are given by Eqs.
(16) and (17) with the first terms containing 01 and
02 absent. The resulting solutions for the field operators
and the resulting energy spectrum are then of the
same form as would occur if the cutoff were strong
enough to forbid the exponential solutions. The in-
terpretation of the theory can then be carried out as
usual with the S-matrix defined as

(k'AS~kt)=(a, &, t)*(k')eo, ai&;„)"(k)+'o), (24)

where
~

4 p) is the ground state of the system and repre-
sents the physical oscillator with no radiation present.
The evaluation of this matrix element is accomplished
by equating the two alternative expressions for A(k, t)
given in Eq. (17) (ignoring, of course, the term con-
taining 01 and 02) and expressing a&,„t) in terms of
a(;„)."The result of this calculation is that

(k'j~s~1 t)=v(k' —k)s e"'
=~'(k' —k)~tkD&-)( ')ia(+)( ') ( 5)

and, as expected,

LO((t), 02(t)]=2R, (22) and the unitarity of the S-matrix is therefore manifest.
Furthermore, if we follow the usual definition of the

scattering amplitude (k'j~T~kt), namely
La& &(k), a& &*(k'))=t&2(k—k'). (23)

Equation (22) can also be obtained directly by the
method of Appendix A, reference 12, by insisting that
the solutions in (16) and (17) lead to the conventional
commutation relations given in Eqs. (2) and (3). Since
the first and second terms of Eq. (20) are completely
uncoupled, the eigenstates of H are the direct product

2tt.e-'k'p2 (k)
(k'j~T~kt)=~, ,

D&+) (k')
(27)

(k'~ )S~ kt) =V(k' —k)S, ,
—22).iB(k—k') t), t(k'j (

T
~
kt), (26)

we obtaiil from Eq. (25) that
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Lp;(t),n~(x, t))=ib, geREj(x), (31)

where

L-r, (t),rr„(x,t))=Lp, (t),A, (x,t))=0, (32)

1
I
p(k)e'""d'k

s()=
(2.)~" k'+.P

(33)

and approaches a Yukawa function of range 1/&oo

comparable in extent to the classical electron radius in
the limit of no cutoff $p(k) ~ (2m)

—').
It is observed, therefore, that we are forced to

modify our original formulation of the theory pre-
sented in Eqs. (2)—(5), unless, of course, the cutoff is
small enough to forbid the exponential solutions, in
which case no problems arise and the usual commuta-
tion rules can be employed. For the case of interest,
namely, large cutoff or the limit of infinite cutoG (no
cutoG), we can reformulate the theory by stating the
equations of motion given in (4) and (5) together with
the commutation rules (28) and (29). It is this for-
mulation of the theory which leads to solutions with
no unphysical terms and which hence is capable of
interpretation.

Despite the unusual appearance of the commutators
in Eqs. (28)-(32), it can readily be verified that, except
for the linear momentum, there exist the usual opera-
tors (angular momentum, the Hamiltonian, etc.) which
generate the symmetry transformations of the theory.
All these operators have the usual commutation prop-
erties with the Geld operators. The fact that there

and it is evident that if D&+&(k) has a zero for k=ia&0,
the scattering amplitude possesses an additional pole in
the upper half complex energy plane. Since the vanish-
ing of D& &(k') for a negative value of k'is precisely the
condition which allows the "runaway solutions, " this
lack of causality arises in conjunction with the ex-
ponential solutions and therefore occurs whenever the
cutoff is sufficiently large to imply a bare mass less
than zero. Since except for the case of a point electron
(no cuto8), the theory is acausal because p(k) must
have a pole in the upper half k plane, we are forced to
conclude that the theory is acausal for all values of the
cutoG. If we attempt to remove the acausality due to
the nonlocality of the interaction, we ultimately intro-
duce this additional lack of causality which results
from the vanishing of D~ &(

—coo') ~

We now note, however, that if the exponential terms
in the field operators are to be ignored, we must clearly
also ignore the contribution of these terms to the com-
mutation rules. By calculations similar to those pre-
sented in Appendix A, reference 12, these can be com-
puted to be

LA;(x, t),IIp(x', t))
=i5,g(6'(x x')+R—cu(Pe'f(x) f(x')), (28)

Lr, (t),pg(t))=il, g(1+RE/(op'), (29)

Pr;(t), Ag(x, t))= ib, geRj—(x), (30)

exists no operator for the linear momentum of the
theory arises because the model is not invariant under
spatial displacements. In the case that the methods
used here can be generalized to more physical theories
which do conserve momentum, such a situation would
not be expected. to occur.

V. CONCLUSIONS

We have seen that the formulation of the quantized
Dirac harmonic oscillator model with the usual com-
mutation rules leads to a physical solution only if there
exists a small momentum cutoG. For the case of a large
momentum cutoG, and in particular for the limit of a
local interaction, it is necessary to reformulate the
theory by altering the commutation rules. Otherwise
we are forced to include additional terms in the solu-
tions for the field operators which have an unphysical,
exponential time dependence. At the same point it be-
comes necessary to change the commutation rules, and
mathematically for exactly the same reason, a pole is
introduced. into the scattering amplitude when the
photon energy k is extended to k=icoo. This source of
acausality is present whenever the momentum cutoG is
larger than the value which yields zero bare mass, and
consequently the theory is not causal even in the limit
of a local interaction.

We emphasize that the modihed commutation rules,
(28)-(32), are essentially uniquely determined by the
requirements that the field operators satisfy the equa-
tionsof motion (4) and (5) and. that they do not contain
the solutions with the unphysical, exponential time
dependence. It is clear from Eqs. (16) and (17) that
this uniqueness exists to the extent that the commuta-
tion rules for the incoming (or outgoing) fields a~;„&(k)
are required to be the usual expressions given in Eq.
(23). This choice is certainly the most natural one and,
as discussed in Sec. III, leads with the conventional
Hamiltonian in Eq. (1) to the familiar interpretation
of a~;„&*(k)a~; &(k) as the number of photons per unit
momentum impinging on the oscillator. We therefore
adopt the point of view that the freely propagating
incoming or outgoing fields must satisfy the usual
delta-function commutation rules in analogy with the
conventional formulation of a free-field theory, since
this technique leads to a simplicity in interpretation
which is desirable. Nevertheless, we should point out
that this uniqueness does not exist from the purely
mathematical standpoint. "

The problems which occur in the model discussed.
here appear to rise because the mass correction is posi-
tive and the bare mass is hence forced negative for
sufFiciently large cutoIIfs. On the other hand, for the
Lee model' 3 and for the truncated version of quantum
electrodynamics' the troubles which have appeared.
seem to be associated with the bare coupling constant.
Despite this distinction, it is our feeling that the

1 Eugene P. Wigner, Phys. Rev. 77, 711 (1950).
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problems demonstrated here for the oscillator model are
at least basically of a common origin with those prob-
lems which have been demonstrated for these other
theories. As we mentioned in Sec. I, the pair theory is
characterized by "runaway solutions" in exactly the
same fashion as is the model discussed. here. In the pair
theory, however, the trouble does arise when the coup-
ling constant is forced negative by an increasing mo-
mentum cuto6.

Finally, we would like to point out that the existence
of the "runaway solutions" is not simply a result of the
electric dipole approximation. "In addition, by increas-
ing the spring constant E to enhance the binding of the
electron we would expect the electric dipole approxima-
tion to be valid over a larger range of momenta. The
occurrence of the unphysical solutions, on the other
hand, depends only upon bm and not upon the spring
constant E. We might expect, therefore, to be able to
make the spring constant sufFiciently strong to insure
the validity of the electric dipole approximation over
the range where p(k) contributes and still have this
range of sufhcient extent to yield 5m=in. e'J p'(k)dk
large enough to yield a negative bare mass. We conse-
quently feel that characteristics of the theory discussed
here are at least qualitatively more general than the
electric dipole approximation, and in the event that
similar problems do actually occur in the relativistic
6eld theories, there exists a reasonable possibility that
they will be resolved by a procedure analogous to the
method in this paper.
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I. Zeros of the D Function

Case (i): mo )0, i.e. , bm (m
Rewriting Eq. (A.2) as a function of s, we obtain

&
k"p'(k') (z—k")dk'

D(s) =mos —E—4m e's)' (A.3)
l.—k'o [2

from which it follows that

(
k"p'(k') dk'y

ImD(s) =Im(s)
l

mo+4me'
~ l, (A.4)

E ~ [ski
and it is clear that D(s) cannot have any zeros off the
real axis if Im(s) WO. Moreover it is apparent from Eq.
(A.3) that D&+&(s) is real and negative definite for s on
the negative real axis, and from Kq. (A.2) that
ImD&+&(s) is nonvanishing on the positive real axis.
We conclude therefore that D&+, (s) has no zeros any-
where in the cut s plane.

r &
k"p'(k')dk')

+R«f —
l
mo f+4~e' I'

l (A.6)
l fs —k" [o i

If Im(s) &0, then for ImD(s) =0 we require

k'4p'(k') dk'—lmo f+4ore') =0,
fs —k'

f

Case (ii): mo(0, i.e., 8m) m

Let us write mo= —
l mo l, so that we obtain

&-k"p'(k') dk'y
ImD(s) =Im(s)

f

—
f
mo [+44re' ' l, (A.5)

l fs —k" f' i
&

k"dk' p'(k')
ReD(s) = —Jt —4~e2[s I'

fs-k" [-"

APPENDIX A

It will be recalled that

where

D&+&(o&') r(o&) = ie&oJt p(—k) A& & (k,&o)d'k, (A.1)

&dk' p'(k')
Di~& (k') =mok' —E—4&re'k' ' . (A.2)

~ k'Hie —k"

"A. Loinger, Nnovo cimento 2, 511 (1955).

Extending D(k') into the complex plane by letting s= k'
and defining D&+& (s) as the limit of D(s) as we approa, ch
the real axis from above (+) or below (—), we can
investigate the zeros of the function in a convenient
fashion.

in which case ReD(s) AO. Hence D(s) has no zeros off
the real axis.

Let us now look for zeros of D& &(s) on the negative
real axis. In this case it is convenient to set s= —x so
that

t.k"dk'p'(k')
D( fxf)= Imof fx[ I 4~—

f eflux—,
—(A.7)

f

x f+k"

and it is essentially obvious that there exists a zero for
some value of

l
x l, say

l
x

f
=&do', so that D

& & (—&oo') =0. It
is also clear from Eq. (A.7) that d/dlxl (D(—[xi)/Ixl)
&0, so that there can only be one value of s for which
D vanishes. We may summarize these results by saying
that in the event of mo) 0, there are no zeros of D&~& (s)
and for mp(0 there is one zero along the negative,
real s axis.
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IIo= ——,'ooo(a g+g a), (8.1)

where $n, +=i, and where the a, g employed here
differ from the Oi, Oo in Eq. (20) by the factor R:
Oi ——Rlu, Oo ——Rig.

To obtain the eigenstates of IIo given in Eq. (8.1),
we employ the familiar representation e —+ x, g~(1/i) V,
and solve the resulting Schrodinger equation,

oiooo(x'V+V ' x)Pe(x) =Ege(x), (8.2)

with the result that (confining ourselves to one dimen-
sion for simplicity)

APPENDIX B. THE SPECTRUM OF THE UNPHYSICAL
PART OF THE HAMILTONIAN

%e have seen in Sec. III that the unphysical part of
the Hamiltonian in Eq. (20) is given by

An interesting feature of the Hamiltonian (8.1) is
that it generates time displacements which are char-
acterized by real time exponentials, despite the fact
that IIO is Hermitian and hence has real eigenvalues.
This rather unusual result can be seen readily if we
examine matrix elements of x(t) and p(/) between
wave-packet states. It should be emphasized that such
matrix elements do not exist between exact eigenstates
of the energy and it is for this reason that this appar-
ently paradoxical result can be realized. In particular,
if we consider the matrix element

(F I*(~)IG), (8.7)

where IF) and IG) are wave-packet states defined, for
example, by

IF)= F(E) I4e)dE,

or

(x) =Nx '&' """'"" for x&0
=0 for x(0, (8 3) we obtain

(F I x(~) I G)
Ps'(x) =0 for x&0

=iV'x—'('—"~~"0) for x &0
(84) goo

=iV2 dxdEdE x't(E 8-) I"0&

or a linear combination of both alternatives. E and E'
are normalization constants adjusted so that

XexpLi(E' —E)t]F*(E')G(E) (8.8)

=E' dxdEdE'
Jp

"o
y .*(x)P (x)dx=~(E' E), —(8.5)

&& expi{L(E'—

E)/ohio]

lnx —(oot) F*(E')G(E). (8.9)
ol

0

I Pg.' (x)PE'(x)dx=b(E' E), — By changing the x variable of integration to y=xe"", it
(8 6) follows immediately that

depending upon the choice of solution. Since these
normalization requirements are only possible for reut

energies, we conclude that the spectrum of the Hamil-
tonian is a continuum over all real energies, positive and
negative.

(FIx(t) IG)=N'e "" ~ dydEdE, '

=e-~o'(F
I x(0) IG) (8.11)

Xy[i(E' E)/m0)FW—(EI)G(E) (8 10)


