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Linear Antiferromagnetic Chain
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It is shown that a linear chain consisting of a large number of atoms of spin —, with nearest neighbor
ferromagnetic or antiferromagnetic interactions is mathematically equivalent to a one-dimensional Fermi
gas with two-body forces. This equivalence is used to construct a wave function for which the expectation
value of the energy lies between the two approximations obtained by Hulthen. Also, a perturbation
treatment is given which permits, in principle, to obtain the exact antiferromagnetic ground state.

I. INTRODUCTION

The spin operators have the well-known properties
that any two components of S, anticommute while the
square of a particular component is ~ times the identity
operator. Also, they verify the equation

S,ys, =is, . (3)

The eigenvectors of S,~' are designated by the symbols
n, and P, ; the corresponding eigenvalues a,re —,

' and ——,'.
A complete set of states suitable for the description of
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'HE ground state of a linear chain of atoms of
spin —,'with ferromagnetic or antiferromagnetic

interactions between nearest neighbors is known. ' '
However, the problem is still of some interest, especially
for the antiferromagnetic lattice. In this case the nature
of the ground-state wave function is not completely
understood, particularly in regards to its long-range
order.

The analysis of this problem is carried out on the
basis of the Heisenberg model, ' the dynamical properties
of which are described by the Hamiltonian operator

H=2J P; (S,"S;,—-', ).
Here S, is the (vector) spin operator associated with
the atom in the jth position of the chain and J is the
exchange integral. It will be assumed that the atoms
in the system are numbered consecutively in the order
they appear from left to right. The sum in (1) extends
over the E atoms constituting the chain with the
understanding that Sii+i is to be identified with Si.

At this point it is convenient to establish the notation
that will be used in this paper. We choose an arbitrary
set of orthogonal cartesian coordinates x, Y, s. The
components of S, along these directions will be denoted
by S,&-'&, S,(», and S,'~, and the raising and lowering
operators S ' are defined by the relation

the sytem at hand can be specified by giving the
z component of spin for each atom. One such state is

I
o) =PiP2 P~

where all spins point in the negative s direction. All
other states are obtained from IO) by application of
the raising operators defined in (2). For example,
the state with reversed spins (i.e., spins pointing in
the positive s direction) at the positions ji, ju, j, is

~i'u zir=si'z'+ sin+ ' 'si + l0).

An estimate of the ground-state energy and wave
function can be obtained by means of a variational
procedure which consists in choosing an appropriate
trial wave function and forming the expectation value
of H. This expectation value is an upper bound for the
ground-state energy.

The trial wave function that is immediately suggested
by analogy with the ferromagnetic problem is the
Xeel state

@ =~iP~~sP4

The expectation value of the energy for this state is

&c„laic„)=—~iv.

It is a simple matter to form a sta. te having a lower
energy, for example, if we consider'

II (,P,+ P, ,+ ), —
j=l, 3, 5, ~ ~ ~

it turns out that

(~,
I
&

I
c,)= —&.2~Jiv,

which is considerably lower than (6). Neither C„nor
4, is an eigenstate of the Hamiltonian H.

It is of interest to consider the amount of long-range
order in (6) and (8) as defined, for example, by

4-~ '2 (S "S+~),

where P is an even integer. For the Keel state this
quantity is

4~- E, (c.lS, S,„lc.)=l, (lo)
for all even ) however large; for 4, we have

4;v-i P, (e,
I
S, S,

„ I
e,)=0,

' P. W. Anderson, Phys. Rev. 83, 1260 (1951).
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instead. Thus, C exhibits complete long-range order
whereas 4, displays no such property.

Hulthen' has used the variational principle to obtain
a smaller upper bound for the ground-state energy.
He constructed two states. The first has the average
energy —1.3156J.V while the second, which is obtained
by a more complicated procedure, yields an expectation
value of H equal to —1.349 J.V. Both results compare
quite well with Bethe's exact result —1.3863 JÃ.

The procedure of Hulthen has been generalized by
Iarshall' to the two- and three-dimensional lattices.
Kasteleijn' has considered the situation in which the
exchange coupling is anisotropic, introducing an extra
admixture of Ising interaction in the Hamiltonian
operator of the system. The exact solution of the latter
problem has been given by Orbach. '

The purpose of the present paper is twofold. Firstly
we shall show that it is possible to form a simple wave
function that gives an upper bound to the ground-state
energy equal to —1.3393 JS. The wave function that
we shall construct is, in a, sense, a generalization of the
state (8). Secondly, a perturbation expansion will be
indicated that allows us, in principle, to obtain the
exact ground state of the antiferromagnetic lattice. To
accomplish this program we prove that the problem
of finding the eigensolutions of (1) for 1V large is
equivalent to that of a one-dimensional Fermi gas with
two-body interactions. Then we show that the ground
state of the fermion system, neglecting the forces
between the particles, has the average energy given
above. Successively better approximations can be ob-
tained by considering the interactions of the different
pseudoparticles as a perturbation. Table I gives a
summary of the results of several calculations.

H=Hp+Hi, (12)

where Bo represents the energy of a system of non-
interacting Fermi particles and II& describes two-body
interactions among them.

TABLE I. Upper bound for the ground-state energy of the linear
antiferromagnetic chain according to several calculations.

Wave function

Neel LEq. (6)j
Singlet pairs (Eq. (8)j
Hulthen (6rst approximation)
Present work
Hulthen (second approximation)
Exact solution

Expectation value
of —H/JN

1.0000
1.2500
1.3156
1,3393
1.349
1.3863

'L. Hulthen, Arkiv Mat. Astron. Fysik 26A, Xo. 1 (1938).
'W. Marshall, Proc. Roy. Soc. (London) A232, 48 (1955).
7 P. W. Kasteleijn, Physica 18, 104 (1952).' R. Orbach, Phys, Rev, 112, 309 (1958).

II. TRANSFORMATION OF THE HAMILTONIAN

The main purpose of this section is to transform the
Hamiltonian operator H into the form

It is easy to see that p,'+) and p;( ' are each other' s
Hermitian conjugates. From the properties of the spin
operators it is readily established that the operators
p, (+) satisfy the following anticommutation relations

{~.(+) ~., (+)}—{)i.(—) )i., (—)}—0 (1/a)

{)i.(+) ~., (—) }—
()

Ke have used the notation

{A,B}=AB+BA;

(18b)

(16)

8,,' is equal to unity if j=j and zero otherwise.
If j&, j&, j', are arranged in increasing order we

have
C'21)p' ' ')r=li)1 )i)p ' ' 'p)r

i 0), (1~)

so that the use of p,,'~) does not, by itself, contribute to
the solution of our problem. However, if we introduce

g),*=X i Q, e'"'p, (+),

and its Hermitian conjugate p& we can transform H
to the form (12) in a rather simple way. Here, because
of the periodicity around the chain the quantity k
is given by

k = (2n-n)/iV, (19)

with X=0, 1, 2, S—1. Only these values of k need
be considered as two operators gj„-~and q~

* are identical
if k and k' differ by an integral multiple of 2x. It is
easy to prove from Eqs. (15), (18), and (19) that

{))i",ni '}= {n),))). }=0,

{pi*,))), }= Z(k —k').

(20a)

(20b)

The quantity 6 is defined by

b. (k —k')=1 if k=k'&2~7",
=0 otherwise.

7=01 2
(21)

The operator i)),*())),) represents the creation (destruc-
tion) of a pseudoparticle in the state characterized
by the wave number k. These elementary excitations
are Fermi particles and the occupation number of a
particular state k is ))p*qp. From (14) and (18) it follows
that the total number operator is

g„+r)„=Q, ~,(+)~,(—) —Q, S,(+)S,(—)

=-'1V+Q S'*' (22)

To obtain the last equality we have made use of the
identity

g, ( ) —g.(+)g.(—) (23)

Equation (1) can be rewritten in the form

H= —
—,'JX+2J Q, S,'*'S;+i"

+Q. (S.(+)S. (—)+S.(—)S. (+)) (13)

which is more adequate for our purpose than (1). We
now de6ne the following operators

&.(+) —( 2) j—1S (*)S (~). . .S. (i)S.(k) (14)
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for
JQ. (/4. (+)/4. 1(—)+/4. 1(+)/4.(—))

J Q, (5,(+)5, (—)+5,(—)5, (+))

It is easy to show

5,(+)S. (—)+5,( )5, (+) =/4. (+ /4. (—)+/4. (+ /4.
—

(24)

Strictly speaking Eq. (24) holds for 1~& j&lV but not
for j=iV. Nevertheless we substitute

3 /2

op ———t dko(k) = /V J(1—+2/2r).
2m ~~p

(33)

it is enough to restrict outselves to the case in which
the number of fermions present is —,'X. The ground
state pp of Ho is that in which all singleparticle
states such that 2r/2& k~& 32r/2 are occupied, while all
others are empty. The unperturbed energy of this
state, for large.V, is

in (13).Of course, this substitution changes H slightly,
but the eigenvalues and eigenfunctions of the new
Hamiltonian will be rigorously equal to those of (13)
in the limit when lV becomes infinite. Ke also have

J' Q . (/4. (+)/4. (—)+/4. , /(+)/4. (—))—
P 3 (2J cosk)2/&, "2/&, . (25)

The state qo is

( o
——II.q,.'I 0),

where the range of m is given by the inequality

2r/2 & m & 32r/2.

(34)

In the representation generated by the operators
q~* the most interesting part of the Hamiltonian is the
Ising interaction

H =2J Q, S *&5, (26)

Using Eq. (23) we can rewrite the Ising Hamiltonian in
the form

H, = ,' JiV 2J P-, 5,'—+&5,'-&

+2J P, 5,(+)5,(—)5, ,(+)5, ,(—& (27)

E.f(k)=(&/2 ) f(k),
~I,

Z(k) =22rX 'h(k),

2/k~= (22r/V ')'*$4*.

(35)

(36)

(37)

It is convenient, to simplify the passage to the limit.V —+ ~, to make the following definitions

If we make use of the definitions of the operators
p +) and g/,

* we find and

f(k) —+, dk f(k),
//c

(38)

Hr= 2JX—2J Z3 2/p*r/3+Hi

where

Hl 2JÃ ' P c——os(ll —/4)
l 1l2l3l4

(28) ~(k) P ~(k —2~.). (39)
7~(e

In Eq. (39) /)(k) is the Dirac /) function. With this
notation we can rewrite Eqs. (31) and (29) in the form

X /(, (/1+/2 l3 /4)2/// 2//—2 2t /32/l4 (29).
Thence, we finally get

f'
Ho= o(k)b*b, (40)

H=Hp+Hl,

Ho=2 3 o(k)n&, 'n/,

4(k) = —2J(1—cosk).

(30)

(32)

We remark that the total number of Fermi particles
present in the system need not be conserved. However,
the Hamiltonian operator H commutes with the total
number operator o. so that the eigenstates of the system
can be chosen in such a way that they are simultaneous
eigenvectors of H and o. We see, from (22), that o. is
essentially a measure of the s component of the total
spin of the system. Therefore, the statement that o- is
a constant of the motion is equivalent to the well-known
fact that, in the Heisenberg model, P; S;('& is a constant
of the motion.

Marshallo has shown that (we assume sV even) the
ground state of an antiferromagnet is a singlet, i.e., a
state for which (5')=0 and (P, S,")=0. Thus, to
obtain the ground state of the antiferromagnetic line,

where

Hl= /&(/1/2/3/4)$ll )l2 g/3(/4)
4~ /1/2 lp l4

(41)

(opp
~
Hl

~
opp) = —— m(mlmpmlm2),

2& mlm2
(43)

where the sum is over those states m that are occupied
in q 0. For large X we obtain

(« I H/I «) =/V J(2 2/~2), —
so that

(3 plHl «)= —VJ[2+(2/~)+(2/~')]
= —1.3393 J&V. (45)

/& (ill ol3/4) = (2J/2r) [cos (/1 —/4) —cos (/1 —l3)j
X6 (ll+ l2 —l3

—l4). (42)

We now calculate the expectation value of II for
the state po. To obtain this quantity we need
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We observe that the value obtained in (45) lies between
the two approximations exhibited by Hulthen. '

III. PERTURBATION ANALYSIS

A perturbation theory analysis for a Hamiltonian of
the form (30) has been given in detail by Hugenholtz. '
The procedure consists in obtaining the function

D(s)= &«l&(s) I vo) (46)

of the complex energy parameter s. R(s) is the resolvent
operator

N. H. Hugenholtz, Physica 23, 481 (1957).
' J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957);

see also C. Bloch, Nuclear Phys. 7, 451 (1958).

The quantity D(s) can be written in the form of a
series expansion of matrix elements of operators
containing integral powers of Hi and (Ho —s) '. These
matrix elements can be expressed in terms of contribu-
tions arising from different types of diagrams. In such
diagrams each creation or destruction operator is
represented by a line, while each interaction Bi appears
as a vertex to which four lines converge. The contribu-
tions to D(s) coming from connected diagrams (i.e. ,

diagrams which cannot be divided into two or more
sub-diagrams without cutting any lines) are proportional
to Ã, whereas the contributions due to disconnected
diagrams vary as higher powers of Ã. It is possible to
express the sum of the contributions of disconnected
diagrams in terms of those arising from connected
diagrams alone. We shall not give a description of the
procedure but merely quote the results useful for our
purpose. The ground-stat. e energy is

~o= oo+ &Fo l [Hi Hi(Ho oo) Hi+Ili(~~o oo)

XH, (Ho —.o)-iH, — j, l o o), (48)

where the subindex c means that only those contribu-
tions arising from connected diagrams are to be con-
sidered. The ground-state wave functions is

Po
——Ãol[1 —(H o

—oo) 'H, + (Ho ——
oo)

—'

XHi(Ho —oo) 'Hi — jr. l o o). (49)

The subindex L, indicates that only contributions that;
come from diagrams in which each int. ermediate state
and the final state are different from qo are to be taken
into account. The quantity 1VO' is the normalization
factor. Equations (48) and (49) were derived, for the
6rst time, by Goldstone. "

As an example, we give the second order correction to
the ground-state energy

-&«I [H, (Ho- oo)- Hih. l «)

dkidkodmidmo

sin'[(ki —ko)/2 j sin'[(mi —mo)/2]
X

coski+cosko cosmi cosmo

Xfi(ki+ ko mi m—o+2xr) . (.50)

The integrations over k are performed in the range of
states which are empty in vapo (i.e., over the intervals
0&~k &~m./2 and 3ir/2 &~k&~ 2m) while the integrations
aver m are calculated in the interval 7r/2&&m&~3ir/2.

IV. CONCLUDING REMARKS

Teller' has shown that, in the ferromagnetic case
(J(0), the ground state of the system is l0) and that
the corresponding eigenvalue is zero. This ground state
is degenerate, the degree of degeneracy being %+1.
To each eigenvalue of g, 5," there corresponds an
eigenstate of H and the total s component of spin, which
is degenerate with

l
0). We now look at this statement

from the point of view of our Fermi gas. YVe have an
energy band defined by (32) (with J&0) that is full
when it contains lV fermions. The ground state of the
the system containing an arbit;rary number r (0 ~& r ~& iV)
of particles in the band has always a zero energy. The
Hamiltonian (30) provides us with an example of a
many body system in which the ground state energy is
known exactly. Thus, (30) may be used as a test for
the accuracy of approximate techniques for obtaining
the ground-state energy of a many fermion system.

The state q 0 is a good approximation to the antiferro-
magnetic ground state only for the isotropic Heisenberg
Hamiltonian. It is in the case of an anisotropic coupling
that the virtues of the solution given by Kasteleijn
become apparent. The question of what is the long
range order of the ground state and how does it vary
with the anisotropy of the coupling (as defined, for
example, by Orbach) cannot be answered in a, simple
way by the present work.
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