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Interpretation of Magnetic Properties of Dysprosium*

S. H. LIUp D. R. BEHRENDT, f. S. LEGVOLD) AND R. H. GOOD, JR.
Institlte for Atomic Research aad Departmertt of Physics, Iotoa State Urtieersity, Ames, Iosoa

iReceived June 11, 1959; revised manuscript received August 28, 1959)

Dysprosium is ferromagnetic below 85'K, antiferromagnetic between 85 and 179'K, and paramagnetic
above 1t|9'K. The spontaneous magnetic moment lies always in the basal plane, and there is anisotropy
in this plane below 110'K. In the present paper it is shown that the magnetic properties can be interpreted
in terms of a two-sublattice model and a phenomenological theory similar to a theory proposed by Keel.
Detailed agreement for the magnetization curves in the ferromagnetic and antiferromagnetic regions is
obtained.

I. INTRODUCTION

'HE magnetic properties of polycrystalline dys-
prosium were measured by Trombe, ' ' and by

Elliott, Legvold, and Spedding4; they found it to be
ferromagnetic below 85'K, antiferromagnetic between
85'K and 179'K, and paramagnetic above 179'K.
Recently Behrendt, Legvold, and Spedding' succeeded
in growing a single crystal and measuring the magnetic
properties as a function of direction in the crystal in all
three regions. They found the material to be highly
anisotropic, such that the spontaneous moments lie
always in the basal plane. Above 110'K the dysprosium
is isotropic in the basal plane but below that tempera-
ture it has a sixfold anisotropy with the (1120) direc-
tion' easy. In their paper they gave the experimental
results for the magnetization as a function of tempera-
ture, applied field, and direction in the basal plane for
both the ferromagnetic and antiferromagnetic regions.

Neel' proposed a very interesting, partly phenomeno-
logical, theory to explain the properties in the ferro-
magnetic and antiferromagnetic regions. In his theory
one considers the material to consist of two sublattices
with strong ferromagnetic exchange forces within each
sublattice and with weak interactions between them.
The interactions between the sublattices determine
which type of ordering, parallel or antiparallel, mini-
mizes the free energy. When a field is applied, one
writes the total energy as a sum of the interaction with
the applied field, an exchange energy between the
sublattices, and a magnetocrystalline energy. The last
item is the energy associated with the axis of magnet-
ization. The equilibrium configuration, and thus the
magnetization curve, is found by minimizing the total

energy with respect to the orientations of the magnetic
moments of the sublattices. To explain the ferro-
antiferromagnetic transition Neel assumed the magneto-
crystalline energy to be of the form

Ess= —sEp(COS g~+Cos gg) Ei Cosg~ C—osg~,

where 8~, 8~ are the orientations of the sublattice
magnetic moments with respect to the axis of magnet-
ization. The saturation moment of a sublattice, the
magnetocrystalline energy constants, and the exchange
energy parameter are chosen to give agreement with
the experimental data at each temperature.

It is clear that Neel's original calculations do not
apply for dysprosium because the single crystals showed
properties inconsistent with his initial assumptions.
In fact, between 110'K and 179'K a unique axis of
magnetization does not exist because all directions in
the basal plane are equivalent magnetically.

Above 110'K the isotropy in the basal plane suggests
that the interaction between the sublattices depends
only on the angle between their magnetic moment
vectors. Thus instead of Neel's magnetocrystalline
energy terms, one may assume a two term Fourier
expansion for the interaction energy,

Sr= a cos(g~ Pts)+b cos2—(g~ its). —

The second term is necessary to explain the antiferro-
ferromagnetic transition. This assignment, though not
unique, does give a consistent fit with the experimental
magnetization curves at all temperatures and orien-
tations.

II. BASIC EQUATIONS AND EVALUATION
OF PARAMETERS

The following expression is postulated for the
angular dependence of the magnetic interaction energy
per unit volume of the material:
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E= st& cospg sMH cosfs+a cos(po ljktt)

+b cos(2&~—2&a)&-,'h cos6&A&sk cos6&~. (1)

Here the subscripts A, 8 refer to the two sublattices;
—.,'M is the magnetic moment per unit volume of each
sublattice; H is the internal magnetic field in either
the (1010) or (1120) direction; p~ and pa are the angles
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between the sublattice magnetizations and the magnetic
field; u, b are the interlattice interaction constants; k is
the anisotropy constant; and the plus sign applies when
H is in the (1010) direction and the minus when H is
in the (1120) direction.

For most purposes the dependence of M on II may
be ignored. An estimate of this dependence can be
made from the gneiss formula

M =M,L/(Ii/k T) (H+XM) j,
where M, is the saturation magnetization, I is the
I angevin function, p, is the magnetic moment per ion,
and X is the molecular field constant. From the para-
magnetic susceptibility data, ' one estimates p, to be
10.6 Bohr magnetons and ) to be 470. The dependence
of M on H is found to be negligible except at tempera-
tures higher than 130'K. The gneiss formula is used
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Fro. 2. Empirical values of sublattice magnetization at zero
external magnetic 6eld. Tci is the ferromagnetic to antiferro-
magnetic transition temperature and Tc2 is the antiferromagnetic
to paramagnetic transition temperature. The points are values
obtained by fitting the experimental magnetization curves with
the formulas given in Sec. II and a smooth line is drawn through
them.

ence on p,i+pii one sees that, at the minimum,

4~= —ps,

so the problem reduces to finding the minimum of

E= MH cosp~+—a cos2&~+b cosQg.

4A

m'/2

Depending on the size of H, E as a function of pz may
have either of the dependences shown in Fig. 1. For
small field H, case n applies and p~ at the minimum of
E is near ~/2; for large field, case P applies and p~ at
minimum energy is zero. There is a discontinuity in
the equilibrium value of pz as a function of H at the
point where the two minima are at equal values of E.
As long as the minimum is so near P~ ——~/2 that an
expansion for small cosP~ applies, one finds that at
weak fields the equilibrium value of pz is given by

FIG. 1. Typical dependences of E on @z, as given by Eq. (5}.
For weak 6elds B, case 0. applies and the least value of E is near
@g=&m.. For strong fields case p applies and the least value is at
It X=O.

below to give M(H) at these higher temperatures when
the magnetization is parallel to the field and otherwise
the dependence of M on H is ignored.

The parameters M, a, b, k (and M, at temperatures
above 130'K) are to be chosen to give agreement with
the experimental data at each temperature.

First the temperature range 110'K to 179'K will be
considered. The material is isotropic in the basal plane
so one can put k equal to zero. Equation (1) can be
written as

E= —MH cos-,'(g~+pii) cos2 (P~—Pii)
+a cos(@g—$s)+b cos2(II@—$g), (3)

and then the minimization is easily carried out by
regarding p~+gii and p~ —ps as the independent
variables. Physically it is clear that only 0&gz&qm
and —-', s &/ii&0 need be considered. From the depend-

cosP~ =MH/(4a 16b), — (6)
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FIG. 3. Empirical values of interaction energy parameters u
and b, as introduced in Eqs. (3) and (10), The points are values
obtained by fitting the experimental magnetization curves with
the formulas given in Sec. II and smooth lines are drawn through
them.

and that the discontinuity takes place at the field value
given by

M'H2 —8(a—4b)MH+16a(a —4b) =0.
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the actual values were found numerically in each case.
The transition from Eq. (11b) to Eq. (11c) takes place
at 3fH=36k. Figures 2, 3, and 4 exhibit the values of
the parameters chosen and Fig. 5 (B) shows the agree-
ment with the experimental data at 100'K.

The next consideration is the temperature range 85'K
to 110'K with the field in the (1120)direction. Equation
(1) applies with the minus signs. One can see that the
simple relationship

FIG. 4. Empirical values of the anisotropy constant for the
sixfold anisotropy of a sublattice in the basal plane. The points
are values obtained by fitting the experimental magnetization
curves with the formulas given in Sec. II. The smooth line indi-
cates a temperature dependence of

l M(T}P', as predicted by
Zener's theory.

The net magnetization of the material 0- is given by

0 = sM cosgg+ s3II costi&,

does not hold because it would imply that at small field
the magnetic moments are perpendicular to the field in
the hard direction of magnetization (1010). In the
absence of an external field, the spontaneous moments
lie in (1120)directions so that the equilibrium conditions
are

rry 4'& 0)i ~sir~ ~a~~ ~'

where p.i, ps are the angles at which E is a minimum.
Equations for the magnetization curves are then

o.= M'H/(4a 16b)— In0 2-
I2P oK~ l4P4K

rr =M'H/(4a 16b+36k), — (11a)

for weak fields, Eq. (2) for strong fields, and with a
discontinuous jump between at a field value given by
Eq. (7). In Figs. 2 and 3 the values of 3I, a, and b

which give the best agreement between theoretical and
experimental magnetization curves are plotted and the
actual agreement for three of the magnetization curves
is shown in Fig. 5(A).

Next the temperature range 85'K to 110'K will be
considered. The problem is now more complicated
because of the anisotropy. When the magnetic field is
in the (1010) direction, Eq. (1) can be rewritten as

E= MH cos-', (P~+Pri)—cossr (P~—Ps)
+8 cos(gg Ij5ii)+b cos2 (@~ radii)—

+k cos3 (rbg+rbri) cos3(P~ rbri). (10)—
There are several qualitatively different types of mini-
mum energy configurations possible, depending on the
relative sizes of the parameters. The one that leads to
agreement with the experimental data has the sub-
lattices oriented antiparallel before the transition and
parallel after. An analysis similar to that of the previous
paragraph gives the following equations for the net
magnetization:
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MH =36kL (0./3E) —(16/3) (r/M)'
+ (16/3) (o/3E) 'j, (1ib)
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where the first equation applies for weak. fields, the
second for intermediate fields, and the third for strong
fields. An analytical formula for the field at the transi-
tion from Eq. (11a) to Eq. (11b) would be complicated;

FiG. S. Comparison of typical theoretical and experimental
magnetization curves: A and 3 in the antiferromagnetic region,
and C in the ferromagnetic region. The solid lines are the theo-
retical curves and the marked points show the experimental
results from reference 5,
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The first condition gives the minimum exchange energy
and the second the minimum of anisotropy energy.
When k is large enough the system is at &A= atm,

pa= ——s'~ (or a physically equivalent orientation) for
small H, and then there is a discontinuous jump to
I)A 0, ps= 0 when H exceeds a certain value. One can
discuss the magnetization curves by making expansions
about these configurations. In terms of the angles 8 and
e, defined by

O'A+QB s rr+8) QA QB =7r+ e)

the energy before the jump is

E= a+ b—k+ Ar—&3MHe+ ,'(o 4—b+—9k) e'

+ ', MHbe+ (-9/2) kbs, (12)
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where higher powers of 8 and e have been disregarded.
Treating 6 and e as independent variables, one finds
that at minimum energy

e= &3MH/4—(o, 4b+9k),—
8 =+&3(MH)'/288k (a 4b+9k)—

The net magnetization is

0= s M COSQA+ s M COSPg

= —M(sin —',e) (st cossb+ —', sinstb).

To the first order in H one finds

FIG. 6. Empirical values of the anisotropy constant for the
twofold anisotropy of a sublattice relative to the c-axis. The
points are values obtained by fitting the experimental suscepti-
bility with Eq. (20). The smooth line indicates a temperature
dependence of [M(Tl j', as predicted by Zener's theory.

is to be used. The resulting magnetization curve is

MH =36k((o./M) —(16/3) (o/M)'.
+ (16/3) (o/M)'j, (17a)

o-= M, (17b)

the saturation taking place at

o =3M'H/16 (u 4b+9k), — (13) HAH =36k. (18)

and this gives the initial slope of the magnetization
curve. Similarly for high fields, one finds that the first
order solutions for the equilibrium position are

&A=pa=0, o.= M.

The transition takes place at the field

H= 2a/M.

(14)

(15)

Figure 5(B) shows the comparison of the theory with
the experimental data.

In the ferromagnetic temperature range, T&85'K,
the constant a in the leading term of interlat tice
interaction energy is negative. The total energy is a
minimum when

QA QB)

and Eq. (1) becomes

E MH cospA+a+b&k cos6—&A, (16)

where the proper sign of the anisotropy energy should
be chosen according to the direction of the magnetic
field as explained under Eq. (1). Equation (8) becomes

o =M COS@A.

If the field is applied in the easy direction, the material
simply remains magnetized and o-=M. In fact, a finite
field is required to magnetize the sample; this is
probably an effect of domain structure. If the field is
applied in the (1010)direction, the plus sign in Eq. (16)

Figures 2 and 4 show the choice of M and k which
gives best agreement with the data and a comparison
of magnetization curves is given in Fig. 5(C).

In addition to the magnetization curves, this model
can be used to discuss the large anisotropy relative to
the c-axis. Assuming the field H is applied in the
c-direction and considering the antiferromagnetic
region, one may take the energy to be

E= ,'MH cos8A ,'MH —co—s8s+a—c—os(8A+8B)

+b cos2 (8A+8~)+-', k' cos28A+-', k' cos28s, (19)

where 0A, 8~ are the angles between the magnetization
vectors of the sublattices and the c-axis, and k' is the
anisotropy constant for this direction. Minimization of
this energy for 8A, 8& near m./2 leads to the susceptibility

g =M'/4(k'+a+4b) (20)

The value of k' can be determined from the previously
established values of M, a, b and the measured suscepti-
bility. ' The same formula with a, b=o applies in the
ferromagnetic region. The results are displayed in Fig. 6.

III. DISCUSSION

The curve of the sublattice magnetization when
plotted as a function of temperature (Fig. 2) resembles
that obtained from the conventional molecular field
theory. That the curve goes smoothly through the
ferromagnetic to antiferromagnetic transition tempera-
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ture gives support to the basic assumptions that the
sublattices are ferromagnetic, but their interaction
may create ferromagnetism or antiferromagnetism.
The antiferromagnetic to paramagnetic transition
temperature is the Curie temperature of a sublat tice.

Figure 3 shows the temperature dependence of the
interlattice interaction energy constants u and b. The
strong temperature dependence of these parameters
shows that the interaction is diferent in nature from
the ordinarily assumed exchange energy,

X'Mg Ms,

where X' is almost temperature independent.
Figures 4 and 6 give the sublattice anisotropy

constants as functions of temperature. The solid curves
show the dependence predicted by Zener's theory' for
a ferromagnetic lattice. In this theory the anisotropy
constant depends on the temperature through the
relationship

k(T) ~ LM(T) jl"t"+" (21)
'C. Zener, Phys. Rev. 96, 1335 (1954). See also F. Keffer,

Phys. Rev. 100, 1692 (1955); and P. Pincus, Phys. Rev. 113,
769 (1959)~
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FIG. 7. Magnetic contribution to the speci6c heat. The solid
line shows the experimental result and the dashed line the theo-
retical result, as given by Eq. (22).

where n is an integer. The agreement is good if m=6
for k and m= 2 for O'. The M" dependence of the sixfold
anisotropy constant implies a spatial dependence of
the anisotropy energy of the form —,'k coss8 sin6&. This
term does not appreciably aGect the discussion of the
magnetization curve when the external field is out of
the basal plane because k«k'. The agreement of k'
with M' shows that the assumed spatial dependence of
this anisotropy energy is correct. However, one can
not expect a very good agreement at low temperatures
because k' is so strong that it can no longer be treated
as a perturbation to the spin-wave system (see Pincus').
The application of a, b terms out of the basal plane
also introduces some small corrections on k'. However
the shape of the magnetization curves is too insensitive
to the eGect of the a, b terms to tell definitely whether
the use of these terms out of the basal plane is sensible
or not.

The specific heat of the dysprosium was measured by
Griffel, Skochdopole, and Spedding. ' The magnetic
contribution to the specific heat can be found by
subtracting the lattice and the electronic contributions
from the experimental data as described in their paper.
The resulting data are shown in Fig. 7, together with
the curve

cd d(-,'XM')/d T——, (22)

as suggested by the molecular field theory and using
magnetization values from Fig. 2. As before, X is taken
to be 470. The effects of the interaction between
sublattices, as estimated by the values of a and b, are
negligible. The agreement is fair but this model gives
no understanding of the anomaly at T~j.

In conclusion, this model gives reasonably good
agreement with almost all of the data. This agreement
does not imply uniquely the types of anisotropy and
interaction terms used above, but it does suggest the
direction in which a more fundamental treatment of
the problem should proceed.

' Griffel, Skochdopole, and Spedding, J. Chem. Phys. 25, 75
(1956).


