HIGH-CURRENT SUPERCONDUCTIVITY

through only a portion of the total temperature drop
across the contact.) Taking reasonable values for ¢ and
k at liquid-helium temperatures (assuming the normal
metal is copper), we find P=10"% watt, AT=10"2
degree.

The above circuit will increase the current density
through the superconducting whisker from zero to 10°
amp/cm? in 107 sec. Thus the current rises so fast that
the whisker does not go normal at all. Rather the low-
current superconducting state ‘“‘decays” directly into
the high-current superconducting state. It should be
pointed out that the circuit constants have to be
changed if we wish to reverse the above procedure and
go from the high-current state to the low-current state
by opening the switch. This is because the decay time
£o/s for the high-current state is a couple orders of
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magnitude smaller than that for the low-current state,
a fact which follows from the reciprocal dependence of
& upon the half energy gap e. It appears that the
circuit of Fig. 3 offers a practical experimental arrange-
ment for achieving high-current superconductivity.

In conclusion, we mention one possible application.
Imagine an elongated loop of wire containing a persist-
ent current in the high-current superconducting state at
room temperature. The loop will act like a zero-resist-
ance passive element for external currents fed in one end
of the loop and out the other, provided the external
currents are much smaller than the internal persistent
current (thus insuring that the external currents do not
upset the high-current superconducting state). In effect
we have a room-temperature zero-resistance transmis-
sion line.
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The cohesive energy of metallic iron is calculated for the body-
centered cubic structure in a singlet spin state at 0°K. The
potential field acting on each electron is taken to be that of the
ion core and of the remaining valence electrons in the same
lattice cell; thus the calculation becomes equivalent to one for
the free atom as the lattice constant is increased. Tight-binding
wave functions are used, but they are modified by expanding the
contributions from neighboring atoms in a power series within a
cell, and orthogonalizing to core states. Evaluating the complete
wave function in each cell eliminates the need for multicenter
integrals otherwise required in the tight-binding method. The
wave functions for wave vectors in directions of high symmetry
have a rather simple form, and can be described by a few parame-
ters. States near the bottom of the 3d band tend to have a more
diffuse charge distribution than do the states near the top of the

1. INTRODUCTION AND OUTLINE
1.1 Introduction

NERGY considerations have long played an im-
portant role in physical calculations, and the
energy of a system is a particularly important quantity
in quantum mechanics. Thus the modern development
of solid-state physics is based in part on successful
calculations of the cohesive energy of alkali metals. In
spite of the importance of cohesive energy calculations,
they have been carried out for only a relatively small
class of solids. The cellular method was applied first to
sodium,! and has since been extended with many re-
finements to other alkali metals. The quantum defect
method eliminates the need for constructing a potential

1 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933); 46, 509
(1934).

band. Thus the x-ray scattering factor per electron for a partially
filled 3¢ band will be less than that for a full band. Calculations
of the energy of the solid are made for three values of the atomic
sphere radius, 7,, using atomic wave functions from the 3d%s
configuration. The indicated configuration in the solid is close to
3d’4s, making the calculation approximately self-consistent. The
calculated width of the occupied portion of the 3d band is 0.33 ry.
We find the cohesive energy of metallic iron to be 0.434-0.2 ry per
atom, which is consistent with the experimental value, 0.32 ry.
The equilibrium lattice constant and the compressibility are both
found to be in good agreement with experiment. An attempt to
replace the Coulomb hole used in the main calculation by an
exchange hole, using a single Slater determinant wave function,
gave far too little binding.

function; it has been applied to the alkali metals with
good success,? and also to the noble metals.? A detailed
calculation of the energy of beryllium was made by
Herring and Hill,* and cruder calculations for other
metals were carried out by Raimes.® Statistical methods
have also been applied to a number of elements.$

The methods used for calculating the cohesive energy
of nonmetals are somewhat different from those applied
to metals. The method of linear combination of atomic
orbitals has been applied to ionic crystals with con-

2 H. Brooks and F. S. Ham, Phys. Rev. 112, 344 (1958).

3 K. Kambe, Phys. Rev. 99, 419 (1955).

4 C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).

§S. Raimes, Phil. Mag. 41, 568 (1950); 43, 327 (1952); Proc.
Phys. Soc. (London) A66, 949 (1953).

6 P. Gombds, Die Statistische Theorie des Atoms und ihre
Anwendungen (Springer-Verlag, Vienna, 1949). See also a number
of later papers in Acta Phys. Hung.
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siderable success.”® A technique involving two-electron
orbitals was developed by Schmid for diamond,® and
has been used for zincblende.!

In contrast to the fairly limited work on cohesive
energy, many methods, some of them quite powerful,
have been developed for calculating one-electron
energies in solids. There are a number of reviews of
band structure methods and results,* and new methods
are being evolved.’? Callaway'® summarizes both the
band structure work and the cohesive energy calcu-
lations. Slater* gives a comprehensive review of the
electronic structure of solids.

1.2 Outline of the Calculation

In the present work we propose to show the feasi-
bility of cohesive energy calculations for transition
metals, and in particular for iron. We calculate the
cohesive energy of body-centered cubic iron at absolute
zero, for a singlet spin state. We have not attempted
to account for the ferromagnetism of iron, nor do we
try to predict the crystal structure of lowest energy.
The energy difference between the ferromagnetic and
the nonmagnetic state, or between two crystal struc-
tures, is much smaller than the cohesive energy. A
calculation which attempts to account for these differ-
ences might well be an order of magnitude more difficult
than the present one. For this reason we restrict our
attention to the nonmagnetic state, and to the observed
structure. Most of the methods used here have been
described previously.!®

An important feature of this calculation is the
assumption that each cell of the crystal is neutral, i.e.,
that the potential acting on one of the valence electrons
is that of the ion core and of the remaining valence
electrons in the same cell. This is not exact, since the
electron will exclude charge from a region centered at
its own position rather than at the center of the cell.
We neglect the potential in one cell of the lattice
resulting from the charges in neighboring cells and, for
most purposes, assume the lattice cell and the potential
energy to have spherical symmetry.

Two major simplifications result from the approxi-
mation that each cell of the crystal is neutral. First, we
can treat each cell of the solid as a unit. This makes the
calculation of the energy of the solid quite similar to

"P.-O. Loéwdin, Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd., London, 1956), Vol. S, p. 1.

8 L. P. Howland, Phys. Rev. 109, 1927 (1958).

9 L. A. Schmid, Phys. Rev. 92, 1373 (1953).

( 1"553 Asano and Y. Tomishima, J. Phys. Soc. (Japan) 11, 644
1956).

11 J. R. Reitz, in Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1955), Vol. 1, p. 1;
F. Herman, Revs. Modern Phys. 30, 102 (1958).

2 7. C. Phillips, Phys. Rev. 112, 685 (1958).

18 J. Callaway, in Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1958), Vol. 7, p. 99.

1 J. C. Slater, in Encyclopedia of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. 19, p. 1.

18 F. Stern, Ph.D. thesis, Princeton, 1955 (unpublished).
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the corresponding calculation for the free iron atom,
and can lead to a cancellation of errors when the
difference of these two quantities is taken to find the
cohesive energy. The second advantage is that our
approximation remains valid for large lattice constants.
This is important, since the 3d shells on neighboring
atoms in metallic iron overlap very little and are—in
effect—far apart. Treatments involving an exchange
hole can lead to difficulties at large lattice constants'é;
these difficulties are avoided here.

An innovation in our work is a new treatment of the
tight-binding method. The small overlap of neighboring
3d wave functions makes this method suitable for
transition metals. In order to avoid the multicenter
integrals usually required,”' we use the tight-binding
Bloch wave function in a somewhat modified form. In
the atomic cell centered at the origin, the tight-binding
wave function is equal to the local atomic orbital plus
contributions from all neighboring atoms!?:

q:'a(k;r) =¢q(r)+ Z;£:0 CXP(ik'rn)ll/a(l'*l’n)- 1)

We depart from the conventional treatment by ex-
panding the contribution of the neighboring atoms in a
power series in r. We have done this for both the 3d
and 4s bands in iron, keeping terms through second
order in the 3d band, and through fourth order in the
4s band. We show in Sec. 2.4 how the coefficients in
these expansions give information about the energy
and charge distribution of the wave function.

Equation (1) applies to the cell at the origin, but in
the cell centered at r. the wave function differs only
by the phase factor exp(ik-r,) from its value at the
corresponding point in the central cell. The tight-
binding wave function as actually used has been
orthogonalized to the core wave functions.

The approximation we use replaces the exchange and
correlation holes by the Coulomb hole resulting from
the condition that each lattice cell be neutral. Thus we
need find only the kinetic and potential energy in
calculating the band structure. These energy integrals
can be evaluated in a single lattice cell using our
modified tight-binding wave function, and do not
require multicenter integrals. Note that, as in the
standard tight-binding treatment, we do not solve the
Schrédinger equation, but simply find the energy of a
predetermined Bloch wave function based on atomic
orbitals.

We must exercise some caution in evaluating the
kinetic energy in a single cell, since the Laplacian
operator is no longer Hermitian when a finite boundary
is present unless we restrict ourselves to exact Bloch

18 F. Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), pp. 334-339. See also p. 111
of reference 14.

17 The tight-binding method originated with F. Bloch, Z.
Physik 52, 555 (1928). See also N. F. Mott and H. Jones, The

T'heories of the Properties of Metals and Alloys (Oxford University
Press, London, 1936), pp. 65-76.
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wave functions. For a less restrictive class of wave
functions we must use the kinetic energy operator:

T=— (#/2m)A+(#*/2m)8(n)(8/ on), )

where A is the Laplacian operator, and the delta func-
tion indicates that the normal derivative 9/dn is
evaluated on the surface of the cell. The second term,
the boundary correction, plays a rather important role
in energy calculations in solids. It has been used,
directly or indirectly, by many authors, and will be
discussed more fully in Sec. 4.1.

The total energy of the solid is not simply the sum
of one-electron energies, since this would count inter-
actions between pairs of valence electrons too often.
Upon subtracting the extra interactions both in the
solid and in the free atom, we find the cohesive energy
of the solid to be the small difference of two large
numbers. This makes calculations of cohesive energy
for many-electron atoms quite difficult.

We have summarized the main steps and some of the
principles of our calculation in the foregoing. The details
will be presented in the following sections. First we
describe the modified tight-binding wave function. In
Sec. 3 the potential field is constructed. The following
section presents the boundary correction to the Hamil-
tonian, and finds the one-electron energies in metallic
iron. The cohesive energy of the solid is found in Sec.
5, which completes the main calculation. An alternative
method of calculation, which replaces the neutrality
condition in each cell by the exchange and correlation
holes, is given in Sec. 6.

Unless otherwise specified, the unit of distance is the
Bohr radius, 0.529X 1078 cm, and the unit of energy is
the Rydberg, i.e., the ionization energy of hydrogen
with a nucleus of infinite mass. One ry equals 13.60 ev.
In these units all electrostatic energies contain a factor
2; for example the repulsive energy between two
electrons separated by a distance R is 2/R. All wave
functions and charge densities in our work are nor-
malized to 4w in the atomic cell unless otherwise stated.

2. THE MODIFIED TIGHT-BINDING
WAVE FUNCTION

2.1 Description of the Method!®

For solids in which the overlap between wave func-
tions on neighboring atoms is small, the tight-binding,'
or LCAO (linear combination of atomic orbitals)
method? is well suited for finding the properties of the
crystal if the atomic wave functions are known. The
unnormalized Bloch wave function constructed from
the atomic orbital ¢,(r) is

o (k,r)=2 exp(ik-r,)Ya(r—r,), 3)

where k is the wave vector and the r, are lattice points.
For each atomic state @ there is a band in the solid with

18 A brief account of this method has been presented previously ;
see F. Stern, Bull. Am. Phys. Soc. 4, 276 (1959).
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as many discrete values of k as there are lattice points.
In general, these bands will overlap, and matrix ele-
ments of the Hamiltonian between tight-binding wave
functions belonging to different bands must be
evaluated.

One-electron energies in the tight-binding method
are integrals of the form S ®*H®dr/ S ®*®dr, where
H is the one-electron Hamiltonian. The integrals are
to be evaluated throughout the crystal but have the
same value in each lattice cell because the integrands
have the periodicity of the lattice. In the conventional
tight-binding method'’? the expansion of Eq. (3) is
substituted for ®, and gives rise to multicenter integrals.
We modify the tight-binding method by evaluating ®
directly in each lattice cell, and we use a Coulomb
hole in the cell in place of the exchange and correlation
holes. Under these conditions all contributions to the
one-electron energy can be calculated in a single lattice
cell.

If we place the origin at the center of the cell in which
we work, then the tight-binding wave function can be
written:

q)a (k,t) = ¢a (t) +q)a, (k,l’), (4)
<I)a,(k)r)= Z' €Xp (ik “Tal¥a (l‘—l‘n), 3

where the primed summation over r, in Eq. (5) excludes
the origin. Thus the computation of the tight-binding
wave function requires only the evaluation of the
overlap contribution from atoms outside the central
cell.

The wave function of Eq. (4) must be orthogonalized
to the core states in the atomic sphere before it can be
used to find one-electron energies. This is necessary if
determinant wave functions are used,”® and is also
required in our case to prevent mixing core wave
functions and energies with those of the valence bands.
We need only orthogonalize ®,’ to the core wave func-
tions, since we use self-consistent atomic orbitals which
have already been orthogonalized to each other.? The
wave function we use in energy calculations is:

\I,a (k,l') = \ba (l')-l—\I’a’ (k,l‘), (6)

where the overlap term ¥, is orthogonalized to the
normalized core states y3:

¥ (1) =&, (k;r)— o Y (r) f &, (kW ()dr. (7)

We evaluate @, (k,r) first, and orthogonalize it using
Eq. (7).

A complete expansion of ®,’(k,t) contains an infinite
series of functions of k and 7, each multiplied by a
spherical harmonic of appropriate symmetry, and obeys
the proper symmetry relations at the surface of the
atomic polyhedron.®® Our simplified expansion of the

19 D. R. Hartree, The Calculation of Atomic Structures (John
Wiley and Sons, Inc., New York, 1957), p. 42.

» |, Stern, Phys. Rev. 104, 684 (1956).
2 J, C. Slater, Phys. Rev. 45, 794 (1934).
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TaBLE I. Harmonic polynomials of order 0, 1, and 2 belonging to representations of the group of the wave vector k for symmetry
points of the Brillouin zone in face-centered cubic reciprocal lattices. Functions in brackets are degenerate. The lattice constant of the
body-centered space lattice is @, and other notation is from Bouckaert et al.®

Symmetry point Representation

Harmonic polynomial

T: (0,0,0) I
T2
Tap
(0,0, %) Ay
AL k<2r/a As
Agr
As
H:k=2’ll"/a Hl, le,Hgsl
(k/V3, k/V3, k/V3) Ay
A: k<m3/a As
P:k=nV3/a Py
Py
Py
(k/V2, k/¥2,0) %
2 k<1r\/§/a Zs
. =,
Zy4
N:k=nV2/a Ny o34

1
[20—a1— 8, 02— 7]

Lxy, vz, 22 ]
1, 2, 222—a%—9?
at— g2

xy
[x+y, x—y] [az+yz, 23— y2]
Same as I'y, T'yq, a5

1, x+y+sz, xy+yztzx .
[x—y, x+y—2z], [xz—yz, xz2-+yz—2xy]
gZzZ—xz—yz, a2—42]

[252—at—9?, a2—y7]
L=, 9, 2] [=y, y2, 2]

1, x4y, xy, 252—x2—92

XZ—y3

2, x2-+yz

x—Y, a—y?

Same as 2y 3,4, but without linear terms

a See reference 22.

overlap contribution to the wave function is a power
series, in which terms are calculated only through
second order in most cases. Thus some accuracy is
sacrificed to gain considerable simplicity.

The formal expression for the power series expansion
of the overlap contribution to the wave function is, to
second order:

8./ (O)+5 (98,0,
+35 2 2 (0%, /92:0%5) =0, (8)
¥

where 1, %, 3 are used in place of x, y, z, and the
derivatives are to be evaluated at the origin of the
central cell. The extension to higher powers is obvious.
A simple example of one term in Eq. (8) is the coefficient
of z in the expansion of ®,':

(6(1)0’/02)7=0= > ("zn/rn)Rh’("n) eXP(ik‘l‘n), )

n#Z0

where R4,/ (r) is the derivative of the atomic 4s radial
wave function. The 4s band is identified by setting the
subscript ¢ in ®,’ equal to zero; higher values of a
denote the 3d bands. The second-order coefficients, and
the coefficients in the expansion of the 3d overlap
contributions, are more complicated than (9), but
equally straightforward.!®

2.2 The 3d Wave Functions

The particular linear combinations of the five 3d
atomic orbitals used to calculate the tight-binding wave
functions in the 3d band are found by considering the
symmetry operations which leave the wave vector

invariant.”? In the three directions of high symmetry,
{001), (111), and (110), it is possible to choose the 3d
orbitals ¥, so as to eliminate most of the off-diagonal
matrix elements of the Hamiltonian.

In Table I we give the harmonic polynomials which
belong to particular representations of the group of the
wave vector in the three symmetry directions. We follow
the notation of reference 22. The results in Table I
provide a valuable check on the expansion given in
Eq. (8). For example, we see that the wave function
contains no first-order terms when the wave vector k
corresponds to the center of the zone, I, or to the
endpoints of the (001) or (110) axes, H or N. Linear
terms may, however, be present at the endpoint of the
(111) directions for the representation Ps. Thus the
symmetry properties of the wave functions not only
allow us to pick the right linear combinations of
spherical harmonics from the start, but also allow
consistency checks of the numerical work.

The summations over lattice points in Eq. (8) were
carried out only for nearest and next-nearest neighbors
in finding the wave functions of the 3d band. The
calculation is rather tedious; some of the details are
given elsewhere.’®* The general expression for the un-
orthogonalized modified tight-binding 3d wave function
in the solid has the form:

®o(k,x) =R3a(r)V2at2 da,1i(K)7' V3, (10)
¥,

where ¢>1, and the V; are the spherical harmonics of
appropriate symmetry defined in Table II. The total
number of nonzero coefficients d,,;; is rather small,

2 Bouckaert, Smoluchowski, and Wigner, Phys. Rev. 50, 58
(1936).
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since we restrict the angular momentum / to values <2.
The wave functions with the largest number of co-
efficients are ®; and ®, with k in the (110) directions.
In this case da,00, @a,02, da,11, da,21, and dg 22 may all be
nonzero, except that d,,1;=0 at the points N, where
the (110) axes intersect the surface of the Brillouin zone.
There are off-diagonal matrix elements connecting &,
and ®,, both of which belong to the representation =,
(and Ny). The only other representation in Table I to
which two nondegenerate 3d wave functions belong is
As. There are matrix elements linking the 3d and 4s
bands in all three symmetry directions, except at the
points I'; H, and P.

To complete the computation of the wave function,
we must orthogonalize it to the core, and normalize it.
The orthogonalization is accomplished very easily,
since the core contains only wave functions of s and p
symmetry. We define

3
n=rl—3 Rm(r)fRns(r)r“’dr, 1=0,2,4---,
n=1
(11)
3
=13 Ru(r) f Rup()ridr, 1=1,3,5-,

n=2

where the R, (r) are the core radial wave functions
normalized to 4. In terms of the v;, our orthogonalized
modified tight-binding wave functions for 3d electrons
are:

Vo (k,r)=Rsa(r)Yout2 da,1j(K)viY 5
1
+2 daooi(K)r* Yy, (12)

where the first sum includes only /=0, 1 and the
coefficients are the same as those in Eq. (10). To
illustrate these expressions we give the expansions for
¥3(N,r) and ¥;(V,r), the wave functions of highest
and of lowest energy, respectively, in the 3d band at
N, the endpoint of the [110] direction in the Brillouin
zone.” They are given for 7,=2.66, and are normalized
to 4 in the atomic sphere.

U3 (N 1) =1.187[ Rsa(r)— 0.02433¢2]V 3, (13)
Wy (V,r)=0.857{ [ Rsa(r)+0.012737]¥ 5,
—0.218209—0.000967,—0.0186272Y 5} (14)

The s-like portion of ¥; contributes 189, of the charge
density of this wave function. A number of qualitative
conclusions can be drawn from the coefficients in Egs.
(13) and (14). This is done in Sec. 2.4.

2 Use of a particular direction, like [110], instead of all equiva-
lent (110) directions, does not imply lack of full cubic symmetry.
It is required by the particular choices made in Tables I and II.
Translation to other choices is easily made. For example, when k
is in the [011] direction, the 3d function belonging to the repre-
s?ntation 2, has an angular dependence given by yx—zx instead
of xz—yz.

ENERGY OF METALLIC Fe

1403

TasLe II. List of the spherical harmonics ¥;; of order 0, 1,
and 2 used in this work. They are normalized to 47 on the unit
sphere.

Yoo=1

V1= (3/2)(x+y)
TY12= (3/2)‘)(.%—)7)
rYV13=(3)¥

r¥ 4= (x+y+2)
rYis=(1/2)¥(x+y—22)

72V = (15)txy

V2= (5/4)} (25— a2 —4?)
72V as= (15/2)}(xz+-y2)
Vo= (15/2)}(xz—1yz)

7Y 95= (15/4)}(x2—»?)

72 26= (5)} (xy+yz+2%)
72V = (5/2) (wz+yz—2xy)

2.3 The 4s Wave Function

The procedures required to find the 4s wave function
in the solid are somewhat different from those described
above. The conditions for validity of the tight-binding
method no longer hold for the large overlaps char-
acteristic of the 4s band in the transition metals. The
method, as modified in our work, can nevertheless be
used, and gives satisfactory results near the bottom of
the 4s band. There are two reasons for this. First, by
working with the wave function in a single cell of the
lattice, we avoid the necessity of summing a slowly
convergent series of multicenter integrals. Instead the
overlap contribution to the wave function must be
evaluated, including the contribution of distant neigh-
bors. This calculation turns out to be practicable. The
second reason why our modified tight-binding method
can be used even for wave functions with large overlaps
is that the wave function is orthogonalized to the core
wave functions. This automatically introduces the
correct behavior near the nucleus. The tight-binding
method under these circumstances is quite similar to
the orthogonalized plane wave method,* as has been
pointed out by Parmenter.?s The need to orthogonalize
valence band wave functions to those of the core has
also been stressed by Raimes.?®

To learn how many terms are required in the ex-
pansion of the modified tight-binding wave function
for £#0, we have made our own empty lattice test.
Free-electron wave functions are expanded in spherical
harmonics, and the series is truncated in various ways.
This work is presented in Appendix A.

Our study of approximations to plane wave ex-
pansions shows that good energy values can be obtained
with a rather simple approximation, provided we re-
strict our attention to the lower portion of the band.
The form of the wave function we adopt corresponds
to that given in Eq. (AS), namely:

Wo(k,r) =Ry (r)+2 do,ij(k)v.Y ;
1251
+2 doof (K)*Y2y. (15)

2 C. Herring, Phys. Rev. 57, 1169 (1940).

25 R. H. Parmenter, Phys. Rev. 86, 552 (1952).

26 S, Raimes, Proc. Phys. Soc. (London) A67, 52 (1954); P.-O.
Lowdin, J. Chem. Phys. 19, 1579 (1951); see also Appendix B of
reference 15 and pp. 70-71 of reference 7.
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TasLE III. Matching of truncated atomic contributions to the tight-binding wave function at the centers of the faces of the atomic
polyhedron. The spherical harmonics ¥s;, which represent the angular dependence of the five 3d orbitals, are evaluated at the midpoints
of the lines which join the central atom to its 14 closest neighbors at the points r,. Values associated with next-nearest neighbors are
bracketed. The phase factor exp(ik-r,) is calculated for the point &V in the Brillouin zone, where k= (r/a,r/a,0). Just inside the cell
surface the contribution of the truncated atomic orbital to the tight-binding wave function is Rsq(r) ¥z;, while the contribution at the
adjacent point in the next cell is Rsq(r) ¥s; exp(ik-r,), where Ryq(r) is the atomic radial wave function. Less weight is given to the
entries in square brackets, because they correspond to smaller values of Rzq. See the text and Wigner and Seitz® for further discussion.

Yoi(3ra)®
(15)4xy 5}(252 —a2 —y?) (15)4 (xz +y2) (15)} (xz —y2) (15)} (22 —?)
In exp (ik-rn) 72 2r2 2%2 242 272
=+ (3¢,30,30) -1 (5/3)% 0 (10/3)% 0 0
=+ (30, 30, —3a) -1 (5/3)% 0 —(10/3)} 0 0
=+ (30, —30, 30) 1 —(5/3)} 0 0 (10/3)% 0
=+ (—3g, 34, 30) 1 —(5/3) 0 0 —(10/3)% 0
+(0,0,0) 1 0 [54] 0 0 0
=+(0,a,0) -1 0 [—(5/4)%] 0 0 [—(15/4)%]
=+(a,0,0) -1 0 [— (/4] 0 0 C(s5/4)%]
2| Vsi|exp(ik-r,) 0 0 — (160/3)% (160/3)% [— (60)%]
2V, exp(ik ) —(320/3)# [(80)4] 0 0 0
Representation® N, N, N; N N,

a See reference 27.
b See Table II.
© See Table I.

Here I takes on the values 0, 1, 2, 3, 4, with L=0 for
1=0, 2,4 and L=1 for /=1, 3. Use of the v; defined in
(11) assures orthogonality to the core wave functions.

Because of the large overlap between neighboring
wave functions, the sums over neighbors required to
find the do,;; were carried out through sixth nearest
neighbors, and a qualitative correction was made for
the contribution from neighbors still further out. This
contribution, which may be of some interest in other
problems, is developed in Appendix B.

2.4 Interpretation of the Tight-Binding
Wave Function

By working with a truncated expansion of the overlap
contribution to the tight-binding wave function &, (k,r),
we achieve a simple form which lends itself to visuali-
zation and interpretation. This is particularly true when
k is in a direction of high symmetry, because most
coefficients in the expansion of ¥ then vanish. Thus we
can obtain information about the energy and the charge
density of the state by looking at a small number of
coefficients.

The two coefficients which give most information
about the 3d wave function in the solid are d,,g0, the
coefficient of vg, and dg, 24, the coefficient of 72V 2, where
Y, is the same spherical harmonic as in the local 3d
wave function. If d,, o0 is large in magnitude, the state
has a large s-like component. If dg 9, is positive, the
overlap portion of the wave function will add to the
local wave function, giving a larger amplitude at the
surface of the cell and reduced curvature in the wave
function. On the other hand a negative value of dg 2.
means that the overlap contribution subtracts from
the local wave function, increasing the curvature and

decreasing the value of the wave function at the surface
of the cell.

Our interpretation is based on the tendency of the
states with smooth wave functions to have low energies.
Thus states with considerable s-like behavior tend to
lie near the bottom of the 3d-4s bands. Of the states
with no zero angular momentum terms in the wave
function, those with large amplitude at the surface of
the atomic cell tend to lie near the bottom of the 3d
band.

This interpretation is illustrated by Egs. (13) and
(14). Equation (13), representing the wave function
of a state at the top of the 3d band, has no component
with angular momentum lower than two. Also, the
amplitude of the wave function goes to zero near the
surface of the atomic cell, implying a large curvature
in the interior. In contrast, Eq. (14) has components
of angular momentum 0 and 1, and also has a relatively
large amplitude (but small derivative) at the surface
of the cell. It represents a state near the bottom of the
3d band.

For the 4s band the chief source of information is the
coefficient dy,o0. For states near the bottom of the band,
all other coefficients are small and the wave function
is almost equal to . As k increases, the overlap con-
tribution to the wave function begins to cancel the
local 4s wave function, and higher spherical harmonics
play an increasingly important role. Under these cir-
cumstances a relatively large number of terms in the
expansion of the wave function is required. Our ap-
proximations are then no longer adequate, and the
qualitative features of the wave function cannot be
easily characterized.

It is of some interest to compare our interpretation
based on the overlap contribution to the wave function
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with the model advanced by Wigner and Seitz?” for
predicting the relative positions of energy levels in
solids. We apply their model to the states in the 3d
band whose wave vector is at the endpoint NV of the
[110] direction in the Brillouin zone. Details are given
in Table ITI. One requirement for a state of low energy
is that the contributions of truncated atomic wave
functions to the tight-binding wave function join
smoothly across the cell boundary.?” A quantitative
measure of the matching at the centers of the faces of
the polyhedron is the value of 3 | Vs;| exp(¢k-r,), given
in Table ITI. The larger the algebraic value of this sum,
the better the matching of wave functions at the cell
boundary, and the lower the predicted energy of the
corresponding wave function.

We find that an even more important characteristic
of the states of low energy is that they have a component
with angular momentum zero. A measure of the s-like
component in the tight-binding wave function is
> Vjiexp(ik-r,); if the absolute value of this sum is
large, the energy of the corresponding state will be low.

If we use these two criteria, and give greater weight
to those sums in Table IIT which arise from nearest
neighbors, we see that the energies at the point IV in
the Brillouin zone should increase as the 3d orbitals go
through the sequence xy, xz—yz, 222—a%—9? x2—9?
xz+yz. This order agrees with the calculated results
of Sec. 4.2, and is consistent with our interpretation of
the overlap contribution to the tight-binding wave
function. Similar arguments at other symmetry points
of the Brillouin zone also give good agreement with the
calculated order of the energy levels.

We have seen that the states of low energy tend to
have smooth wave functions, both angularly and
radially. The radial dependence is illustrated by Fig. 1,
which shows the spherically symmetric part of the
charge density of the states at the top and bottom of
the 3d band at the point IV in the Brillouin zone, as
given in Egs. (13) and (14). We see that the state of
low energy has a small derivative near r=r,, while the
state of high energy has a node near there. For com-
parison the spherically symmetric part of the overlap
charge density of 3d electrons on the lattice points is
also shown; it lies between the other two curves.

The charge density found by superposing atomic 3d
electrons corresponds approximately to an average
charge density for the entire 3d band. If the band is not
full, the correlation between smoothness and energy,
which we have described above, implies that the charge
density will be less sharply peaked than for a full band.
Thus x-ray scattering factors for a partially filled 3d
band will be smaller than one might otherwise expect.
This may be relevant to the interpretation of recent

27 E, P. Wigner and F. Seitz, in Solid-State Physics, edited by
F. Seitz and D. Turnbull (Academic Press, Inc., New York, 1955),
Vol. I, p. 97.
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F1G. 1. The spherically symmetric part of the charge density
p(#) for 3d electrons in iron is shown for an atomic sphere radius
7s=2.66 Bohr radii. The dashed and solid curves refer, respec-

“tively, to the states at the top and at the bottom of the 34 band

when the wave vector is at the endpoint of a (110) direction in
the Brillouin zone. [See Egs. (13) and (14).] The dot-dash curve
gives the spherically symmetric part of the charge density due to
overlapping atomic charges, calculated from the adjusted co-
efficients in Table IV. All charge densities are normalized to 4w
over the atomic sphere. Note that the vertical scale has been
expanded by a factor of 10 for »>1.5.

measurements of x-ray scattering factors in iron,?
which find a smaller scattering factor than had been
expected, although the effect mentioned here is probably
too small to account for the observations.

3. CONSTRUCTING THE POTENTIAL
FOR THE SOLID

3.1 Introduction

The atomic polyhedron of the body-centered cubic
iron lattice is a truncated octahedron bounded by the
planes joining an iron atom to its eight nearest and six
next-nearest neighbors. The volume of the polyhedron
is a3, corresponding to a sphere of radius 7,= (3/8m)%a
=0.984745(a/2), where a is the lattice constant. At
absolute zero, ¢=2.860X10~% cm,* and »,=2.66 Bohr
radii.

In much of the work which follows we shall replace
the atomic polyhedron by a sphere of radius 7.. This is
not a bad approximation, since the inscribed sphere
and circumscribed sphere of the atomic polyhedron
have radii 0.887; and 1.14r,, respectively. Another
measure of the small deviation of the polyhedron from
spherical shape is the fact that only about 8%, of its
volume lies outside the sphere of radius 7,. We therefore
have good reason to expect that for most purposes
replacing the polyhedron by the sphere will be a valid
approximation.

We find a first approximation to the charge density
in the solid by superposing the charge densities of free

28R, J. Weiss and J. J. DeMarco, Revs. Modern Phys. 30, 59
(1958) ; Phys. Rev. Letters 2, 148 (1959). See also B. W. Batter-
man, Phys. Rev. Letters 2, 47 (1959); Hume-Rothery, Brown,
Forsyth, and Taylor, Phil. Mag. 3, 1466 (1958); R. D. Deslattes,
Phys. Rev. 110, 1471 (1958); B. W. Batterman, Phys. Rev. 115,
81 (1959).

2 W, B. Pearson, A Handbook of Lattice Spacings and Structures
of Metals and Alloys (Pergamon Press, Inc., New York, 1958),
pp. 625-627.
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atoms located at the lattice points. In doing this, care
must be taken to make the charge density self-con-
sistent, i.e., to make it correspond as closely as possible
to the charge density of the states actually occupied in
the solid.

Simple superposition of the charge densities of free
iron atoms in their lowest configuration will not lead
to a self-consistent potential. This was shown in a trial
calculation preliminary to the present one,'s and also
in Callaway’s work.*® Both of these calculations were
based on the charge density calculated for the 3d%4s?
configuration of atomic iron by Manning and Goldberg®
using the self-consistent field method without exchange.
In both cases the 3d band was found to be completely
below the 4s band in energy, which would imply that
the configuration in the solid was 343, inconsistent with
the starting configuration 3d%4s2. Both calculations also
found the 3d band to be about 0.1 ry wide, which is
narrower than the widths suggested by x-ray emission
measurements.*

These considerations led to self-consistent field
calculations for the 3d74s and 3d® configurations of
atomic iron'®® which showed that there are substantial
changes in the charge distribution and in the energy
of 3d electrons as the configuration changes. As elec-
trons are transferred from the 4s to the 3d band the
screening of the nuclear charge increases. This weakens
the Coulomb attraction of the nucleus, and results in
an increase in the energy of the 3d states and in a more
diffuse 3d charge distribution. The 4s electrons are less
strongly affected.

Availability of self-consistent field calculations for
three configurations of atomic iron makes possible
construction of a more reasonable charge density and
potential for the solid. In the present calculation the
charge density at each lattice point is considered to be
contributed by 74, 4s electrons and #ns; 3d electrons,
where #74+n3;=8 is the total number of valence
electrons in iron. We leave n4, as a parameter in the
calculation, and choose its value so as to maximize the
cohesive energy of the solid. We fall short of a com-
pletely consistent procedure, however, in that we use
the atomic 3d and 4s wave functions calculated for the
3d"4s configuration. That choice is made in the interest
of simplicity, but turns out to agree with the configu-
ration our calculation predicts for the solid.

# J. Callaway, Phys. Rev. 99, 500 (1955).

31 M. F. Manning and L. Goldberg, Phys. Rev. 53, 662 (1938).

2 E. M. Gyorgy and G. G. Harvey, Phys. Rev. 93, 365 (1954),
estimate that the 3d band of iron is 2.2 ev (0.16 ry) wide. Their
interpretation is questioned by Skinner, Bullen, and Johnston,
Phil. Mag. 45, 1070 (1954), who find the band width in iron to be
about § or 6 ev. Dr. Ronald Newburgh (private communication)
points out that earlier measurements were generally made on
films evaporated under relatively poor vacuum conditions.
Experiments done by him and G. G. Harvey on carefully cleaned
solid specimens of copper and nickel give emission bands about
twice as wide as those found by earlier workers, with two clearly
resolved peaks in each band. The author is grateful to Dr. New-
burgh for making this information available prior to publication.

STERN

Because of the different approximations required, we
discuss the 3d and 4s contributions to the total charge
density in the solid separately.

3.2 3d Electrons

In an atomic sphere we divide the charge density
per 3d electron into the part contributed by the electron
in the sphere and the additional charge density, or
overlap charge, of 3d electrons at the remaining lattice
points r,. The overlap charge density, o/, is given by:

psd (1)=20n"[Rsa(r—12) P, (16)

where r is a point in the central cell, Rs, is the radial
wave function (normalized to give S R¥%*dr=1) of a
3d electron in the 3d74s configuration,® and the primed
sum over r, excludes the origin.

We have evaluated Eq. (16), for a body-centered
cubic lattice, at the origin of the central cell and at 5
points in each of the three symmetry directions (001),
(111), and (110). The contribution of the closest 26
neighboring atoms was found exactly, and the effect of
more distant neighbors was estimated. These calcu-
lations were made using 7,=2.30, 2.66, and 3.10.

The charge density contributed by neighboring
atoms can be expanded in cubic harmonics:

p3d’ (1)=po(r)+pa(r)G+ps(r)1,

where G and I are cubic harmonics® of order 4 and 6:
G=5(wt+yit 28— —3, (18)
T=231[a%y%% 5+ (G/110)— (1/105)].  (19)

an

Their normalizations on the unit sphere are: S G*dQ
=64r/21, and S I?dQ2=1287/13.

From the values of p’ found in the three symmetry
directions, we find the coefficients of the spherical
harmonics in (17) using:

po= (10poo1+9p111+16p110)/35,
ps= (35poo1— 27p111—8p110)/110,
Pe= (3p001+ 9p111— 12p110)/77;

where, for example, p110 is the value of p’(r) at a point
in a (110) direction, and all expressions refer to the same
radial distance 7 from the origin of the cell. The ani-
sotropy of the charge density is greatest near the
surface of the atomic sphere. For example pgo1=0.022,
p111=0.058, and p110=0.023, all at the surface of the
atomic sphere for »,=2.66. To these overlap charge
densities must be added the local charge density,
[R34(2.66) 2=0.015. These values can be compared
with the charge density of a uniform charge distribution,
which has the value 0.159 for 7,=2.66.

We have expanded the coefficients of the cubic

(20)

#F. C. Von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947).
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TaBLe IV. Coefficients of the power series expansion of the
charge density produced in an atomic sphere of body-centered
cubic iron by overlap of spherically symmetric 3d electron charge
distributions on all other lattice points. Charge is given in units
of the electron charge and distance in units of the Bohr radius.
Z(r) is the charge within a sphere of radius 7; see Egs. (17)-(21)
for the definition of the ¢, ,. The second set of zero-order coeffi-
cients has been adjusted to give unit charge in the sphere of
radius 7.

rs: 2.30 2.66 3.10
Co,0 1.46X1072 5.14X1073 1.52X1073
Co,2 4.58X1073 1.55X1073 4.34X10™
o4 5.54X10 1.60X10~* 4.28X107%
Co6 4.2X1078 1.39X10-5 3.2X10-¢
Co, 10 1X10-¢ 1.5X1077 2X10-8
Zoverlap(7s) 0.158 0.109 0.070
Ca4 —2.9X10™ —8.1X1075 —2.0X107%
€46 —1.2X10"% —5.9X107¢8 —0.8X10~¢
C48 —7.2X107¢ —1.1X107¢ —2.6X1077
Co,6 2.3X1075 5.4X107¢ 1.1X10-¢
Co,s 4.3X10°¢ 8.5X10~7 1.3X1077
adjusted
Co,0 1.46X1072 5.14X 1073 1.52X1073
o2 4.58X107® 1.55X1073 4.34X10
Co,4 5.05X10 1.60X 10 4.28X1075
o6 0 44X1077 4.4X1077
Zoverlap(7s) 0.143 0.095 0.058

harmonics in Eq. (17) in powers of 7:
Pn=Zp Cn, Py p=n, 042, - --. (21)

These coefficients are listed in Table IV for each of the
three values of 7;.

The total charge in the atomic sphere surrounding a
lattice point can be found from the values of Table IV
by integrating the spherically symmetric part of the
charge density. The fraction of the charge of a 3d
electron from the 3d74s configuration within a sphere of
radius 2.66 is 0.905.2° If we use values for 7,=2.66 from
Table IV, we find an overlap contribution of 0.109.
Thus the charge in the unit sphere around a lattice
point is found to be 1.014, even though the charge
density was constructed by putting one 3d electron at
each lattice point. This discrepancy arises because both
the charge density and the atomic polyhedron lack
spherical symmetry. The atomic sphere lies outside
the polyhedron on the line joining nearest neighbors,
where the charge density is large, and lies inside the
polyhedron in regions of lower charge density. Thus
the uncorrected values from Table IV lead to electronic
charge in the unit sphere in excess of the charge on the
positive ion located there.

We have corrected for the apparent deviation from
charge neutrality in the atomic sphere by using a
spherically symmetric 3¢ charge density which is
adjusted to give unit charge in the sphere. Strictly
speaking, any change in the originally calculated charge
density should be confined to the region outside the
inscribed sphere of the atomic polyhedron. We have
instead reduced the coefficient of the highest power of
7 in the expansion of po. This also confines the correction
principally to the outer portion of the sphere. The
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adjusted coefficients, and the corresponding values of
the overlap charge inside the atomic sphere, are given
in the last five lines of Table IV.

The potential energy of an electron interacting with
the adjusted spherically symmetric charge distribution
in the atomic sphere is 2V 34(7)/7, where

2 Y3d (7) =2 Y3d, atom (7>

FAr—23% ,(p+2)"(p+3)Tco, p#7H3,  (22)
and
A=[22,(p+2)7co 77+ ]
- 73*1[2 Y3d, atom (rs) - 22311, atom (rs)]- (23)

Z(r) is the charge within a sphere of radius 7, and
2V (r)/r is the potential at point 7, in both cases for a
single electron per atom.

This completes the determination of the charge
density and potential produced in the solid by one 34
electron per atom. The total potential is constructed in
Sec. 3.4.

Equation (16), with which the foregoing consider-
ations began, assumes that each 3d electron has a
spherically symmetric charge distribution about its
own nucleus. This leads to correct results if the 3d
band is completely filled; otherwise, the angular
dependence of the individual 3d space orbitals will not
be completely canceled. This effect, like other de-
partures from spherical symmetry, is neglected here.
The 3d potential we have constructed is not completely
self-consistent, i.e., it does not correspond exactly to
the potential of the states actually occupied in the
solid. We correct for the departure from self-consistency
in Sec. 5 where we calculate the cohesive energy.

3.3 4s Electrons

The procedure required to find the charge density
and potential per 4s electron in the solid is considerably
different from the one we have described for 3d elec-
trons. Only 0.245 of the charge of a 4s electron in the
3d’4s configuration of atomic iron is contained in a
sphere of radius 2.66, while 0.905 of the charge of a 3d
electron is inside this sphere. Thus the charge density
in the solid would be almost constant if individual 4s
electron charge densities were superposed. We use the
4s wave functions of the solid and include the effects of
orthogonalization to the core before finding the po-
tential, since this orthogonalization is much more
important for 4s electrons than for 3d electrons.

We have calculated the spherically symmetric part
of the charge density for several states in the 4s band,
using the wave functions described in Sec. 2.3. These
charge distributions do not depend strongly on the
energy of the state, and we make only a small error in
neglecting the dependence of the shape of the charge

3 The atomic values of Z and 2V are those for the 3d74s con-
figuration. See reference 20 for further details, particularly foot-
note 11 therein.
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distribution on the number of 4s electrons per atom.
We use the charge density for 0.6 4s electrons per atom,
normalized to give unit charge in the atomic sphere, as
the charge density per 4s electron. The potential per
4s electron, 2V 4 (r)/r, is easily found from this charge
density. Here, as for 3d electrons, the calculation was
carried out for 7,=2.30, 2.66, and 3.10.

3.4 The Total Potential in the Atomic Sphere

The potential field felt by a valence electron of iron
is, in our approximation, the potential of the ion core
plus the potential of the remaining 7 valence electrons.
We assume that on the average there are 74, 4s electrons
and 73q= (8—n4,) 3d electrons in the atomic sphere.
There remains some arbitrariness about the configu-
ration in any particular atomic cell.?® We assume that
a fraction 4, of the atomic cells is in the 3d"4s con-
figuration, and a fraction 1—#4, is in the 3d® configu-
ration. This has the advantage that the calculation can
be readily carried out in parallel for the solid and for
the same mixture of configurations in the free atom. It
limits the range of validity to values of 74 between
0and 1.

With the foregoing approximation the potential field
V4s(r) in which a 4s electron moves is independent of
#n4s. The potential V34(r) seen by a 3d electron is an
average over the two configurations. We find:

V4s(7)=7—1(_52+2Yc0re+14y3d); (24)
Vad(”) = f_l{ —524-2Y core 13471
X[(112—281’L48) Y3d+14114sY4s]}. (25)

Here 2Y3; and 2Y4, are the functions of # found in
Secs. 3.2 and 3.3, and 2V is the corresponding
function for the 18 core electrons as used in the self-
consistent field for the 3d74s configuration of atomic
iron® The potentials in Egs. (24) and (25) were
calculated for 7,=2.30, 2.66, and 3.10. In all cases
V(rs)=—2/r,, and 7V (r) —> —52 as r — 0. We have
made some very small adjustments in the potentials
of the 3s and 3p electrons of the core, since not quite all
of their charge is contained within a sphere of radius
2.30 Bohr radii. This has a negligible effect on the
cohesive energy, but may have a slight effect on the
compressibility.

Use of 74, as a parameter, whose value is to be chosen
to maximize the cohesive energy, has only qualitative
validity, since the full symmetry of the rotation group
is lost in the solid and quantum numbers appropriate
for free atoms can no longer be used. Thus the 3d and
4s bands are mixed in the solid. It is nevertheless useful
to assume that the charge density in the unit cell is
contributed by a certain number of 3d and 4s electrons
per atom.

35 J. H. Van Vleck, Revs. Modern Phys, 25, 220 (1953).

FRANK STERN

4. ONE-ELECTRON ENERGIES
4.1 The Boundary Correction

When the one-electron energy is evaluated in a single
cell of the lattice, as in our work, some care must be
taken with the kinetic energy operator 7. Normally

T=—(h*/2m)A=— (h2/2m)
X[(9%/0a%)+(9%/9y*)+-(6%/02%) ].

Application of Green’s theorem in a volume having a
finite boundary S gives:

f [rag= gk [ [rve—(vfyglas, (20

which will not vanish in general. Thus the Laplacian,
and with it the kinetic energy, will not be Hermitian
when applied to an arbitrary function in a finite volume.
From (26) it is clear that the modified kinetic energy
operator:

T=— (12/2m) A+ (#2/2m)6(n) (8/0n) 27)

is Hermitian. The derivative in the second term of (27)
is along the outward normal, and the delta function
indicates that it is to be evaluated on the surface S.
This additional term in the kinetic energy is called the
boundary correction,?”'® and has been used for many
years. It appeared in early work on sodium,?* and has
been applied in several forms of the cellular method.?
Kohn’s®® variational principle for solids includes the
boundary correction and also incorporates the Bloch
periodicity requirements.

An interesting qualitative result deduced from the
surface correction is that the lowest energy of an s-band
in a solid will first decrease as the lattice constant si
reduced from infinity, but will then rise again before
the atomic wave function reaches its outermost maxi-
mum, where the boundary correction vanishes. An
exception is a band based on 1s wave functions, as in
metallic hydrogen® or the analogous system of a regular
array of impurities in a semiconductor.® In these cases
the derivative of the wave function does not change
sign, and the energy of the bottom of the band continues
to decrease as the lattice constant is decreased.

4.2 One-Electron Energy Results

The energies of states in the 3d and 4s bands are given
by:
E, (k) = (\I’a| Hl‘I’a)/ (‘I'a[‘I’a)> (28)

36 . Wigner and F. Seitz, Phys. Rev. 46, 509 (1934), Appendix
I. See also p. 363 of reference 16.

37D. J. Howarth and H. Jones, Proc. Phys. Soc. (London)
A65, 355 (1952); M. M. Saffren and J. C. Slater, Phys. Rev. 92,
1126 (1953); D. P. Jenkins and L. Pincherle, Phil. Mag. 45, 93
(1954).

38 W. Kohn, Phys. Rev. 87, 472 (1952).

% E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764
(1935) ; Kronig, De Boer, and Korringa, Physica 12, 245 (1946);
N. H. March, Physica 22, 311 (1956).

“ F, Stern and R. M, Talley, Phys. Rev. 100, 1638 (1955).
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F16. 2. Calculated band structure of body-centered cubic iron in the configuration 3d74s, for 7,=2.66. The 3d bands are shown in the
three directions of high symmetry, and the dominant angular dependence of the wave function is indicated for each band. Brackets
indicate degenerate states. The dashed portions of the 4s band are of doubtful accuracy. The symmetry character of the states at the
center and on the surface of the Brillouin zone is indicated, in the notation of reference 22. Note that the off-diagonal matrix elements
of the Hamiltonian connecting states of the same symmetry have not been removed. Energies were calculated for the following wave
vectors: 0, 0.3, 0.5, 0.6, 0.707, 0.866, and 1.0, in units of 2x/a, where @ is the lattice constant. If these values were corrected for the de-
parture of the potential from self-consistency, the 3d bands would be lowered by about 0.15 ry, but the 4s band would be changed very

little.

where the modified tight-binding wave function ¥, has
the form given in Eq. (12) or (15). The Hamiltonian
H contains the kinetic energy operator of Eq. (27) and
the potential energy of Eq. (24) or (25). Many terms
enter in the evaluation of (28), but the work is straight-
forward and details are not given here.

Twelve complete band structures were found for
body-centered cubic iron, taking 7,=2.30, 2.66, and
3.10, and 74,=0.3, 0.6, 0.9, and 1.0. In each case the
energy was found for 16 nonequivalent points of high
symmetry in the Brillouin zone. In Fig. 2 we show the
band structure for #,=2.66 and 74,=1.0, the parameters
closest to those of the equilibrium configuration of the
solid. Off-diagonal elements of the Hamiltonian have
not been removed, and the crossings of the 3¢ and 4s
bands indicated in Fig. 2 are spurious. We have shown
by dashed lines a portion of the 4s band near the
surface of the Brillouin zone, where our approximations
are no longer valid and the energy values are uncertain.

The qualitative features of the band structure are
comparable with those found by Callaway® using the
orthogonalized plane wave method, by Wood* using
the augmented plane wave method, and by Manning®
using the cellular method. No detailed comparison of
the four calculations is possible, since different po-
tentials were used. Our work, like that of Wood and of
Manning, shows that the top of the 3d band belongs to
the representation N3, whereas Callaway indicates V4.
We give the following comparison of results for the

4J., H. Wood, Solid-State and Molecular Theory Group,
Massachusetts Institute of Technology, Quarterly Progress
Reports No. 31, January 15, 1959, and No. 28, April 15, 1958
(unpublished).

42 M. F. Manning, Phys. Rev. 63, 190 (1943).

over-all width of the 3d band:

Callaway® 0.12 ry, Wood* 0.46 ry, 0.88 ry,

(29)

Manning® 0.62 ry, Present work 0.68 ry.

The two band widths found by Wood are for different
potentials, the first corresponding to the one used by
Manning, and the second corresponding to the rather
diffuse charge density suggested by x-ray scattering
results.?8 Callaway used a potential based on the 3d%4s?
configuration of the free atom, with an effective
exchange potential.

Another interesting quantity is the width of the
occupied portion of the 3d band. To find the position
of the Fermi level for 7,=2.66, we have plotted in Fig.
3 the apparent Fermi level in the 3d and 4s bands for
various configurations. To do this we assign weights to
each of the sixteen points in the Brillouin zone for

NUMBER OF 3d ELECTRONS PER ATOM
74 7. 6.8
T

Dy
93

(RYDBERGS)
o o o
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Fi16. 3. Apparent position of the Fermi level in the 34 and 4s
bands for several configurations. The stable configuration has the
Fermi level at the same energy in both bands, and corresponds to
1.0 4s electrons and 7.0 3d electrons per atom. The energy values
used here have not been corrected for the departure of the po-
tential from self-consistency.



1410 FRANK
which energy values were found, such that the sum of
these weights corresponds to two electrons per atom.
The sum of the weights of all states whose energy is less
than or equal to the apparent Fermi level gives the
band occupation. The stable configuration of the crystal
for a given lattice constant is the one for which the
apparent Fermi levels in the 3d and 4s bands are equal.
When 7,=2.66 we find the stable configuration to be
3d7-%4s'0) and the energy of the Fermi level to be 0.11
ry. A similar procedure for 7,=2.30 and 3.10 gives the
same configuration. The width of the occupied portion
of the band is 0.33 ry for 7,=2.66. X-ray emission spectra
of iron® do not give a reliable band width for com-
parison with the calculated result.

We have not corrected the individual one-electron
energies for the difference between the potential which
corresponds to the states occupied in the solid and the
potential which was used in the Hamiltonian [Eq. (24)
or (25)7]. The actual charge density turns out to be
somewhat more diffuse than the one which was used in
Sec. 3, and as a result the corrected one-electron energies
in the 3d band will be about 0.15 ry lower than the
values shown in Fig. 2. The 4s band is not greatly
affected. This correction for the departure of the
potential from self-consistency is made in Sec. 5 where
we find the total energy of the solid. If it were made in
the determination of the Fermi level, the calculated
equilibrium configuration of the solid would be about
3d7.l4S0.9.

The density of states has been calculated from the
one-electron energies of Fig. 2. At the Fermi level we
find about 25 34 electrons per atom per Rydberg, and
about 3 4s electrons per atom-ry. The density of states
deduced from the experimental electronic specific heat
of body-centered cubic iron® is 29 electrons per atom-ry.
We cannot compare the experimental result with our
calculation because the experiment is carried out on
ferromagnetic iron, while the calculation assumes a
singlet spin state. Our density of states is not very
accurate, partly because of the small number of points
in our band structure, and partly because of the ap-
proximations used to calculate the density of states.
It does, however, have the two-humped shape generally
assumed for transition elements.#* We find one peak
near the bottom of the 3d band, with a second peak
just above the Fermi level. Our calculation also gives
a region at the top of the 3d band with a very small
density of states, containing about one of the 10 34
electrons per atom. This region might well be modified
by interaction with higher bands.

We find the effective mass at the bottom of the 4s
band to be 0.85# for 7,=2.66.

4 G. Duyckaerts, Physica 6, 401 (1939); W. H. Keesom and
B. Kurrelmeyer, Physica 6, 364, 633 (1939).

4 J. E. Goldman, Revs. Modern Phys. 25, 108 (1953), Sec. II;
Wei, Cheng, and Beck, Phys. Rev. Letters 2, 95 (1959).

STERN

5. COHESIVE ENERGY OF THE SOLID

Having found the one-electron energies in the valence
bands of metallic iron, we are now in a position to find
the total energy of the solid and compare it with the
energy of the ground state of the free atom to obtain
the cohesive energy. We consider the 18 electrons of the
core in iron to be unchanged during the transition from
atom to metal, and need not take the internal energy
of the core into account.

The total energy of the solid is not given simply by
the sum of one-electron energies, since that sum counts
interactions between valence electrons too often. The
total energy per atomic cell for the configuration having
n4s 4s electrons and (8—#n4,) 3d electrons is calculated
on the assumption that a fraction 4, of the cells is in
the 3d%s configuration, and that the remaining fraction,
1—1n45, is in the 3d® configuration. We neglect all Slater
integrals other than F°% and find for the total energy
per cell in the solid:

E(solid,total) = Z Ea(k) - 28Fdd—' 7%43 (Fsd_Fdd)- (30)

Here the one-electron energies E,(k) are to be summed
over all occupied states in the valence band, each
weighted in such a way that the sum of the weights
equals the number of valence electrons per atom, which
is 8 for iron. Subscript d stands for 3d, and s stands for
4s. The F,; are average Coulomb interaction energies
between electrons @ and b in the solid, i.e.:

Fab=Fb,,=f 2V o(r)po(r)rdr, (31)
0

where py(r) is the spherically symmetric part of the
charge density per electron averaged over all occupied
states in the -band and normalized to 4w in the sphere
of radius 7;, and 2Y,(r)/7 is the potential associated
with the charge density po(7). Thus Fg is a function of
s, and may also depend on the configuration in the
solid. v

A first approximation to Fsq and F 44 can be calculated
from the charge densities and potentials described in
Secs. 3.2 and 3.3. These values are called Fgq,0 and
Fsa,0, and are given in Table V, which lists all the
quantities used in finding the total energy. As one might
suspect from the discussion of Sec. 3.4, and from Fig. 1,
Faq 1s rather sensitive to the occupation of the 3d band.
It tends to increase as the band occupation rises,
because the states at the top of the 3d band have a more
sharply peaked charge distribution than do those at
the bottom. For this reason we determined the value
of F44 for each configuration for which the total energy
was evaluated. These results are also given in Table V.
The dependence of Fyq on band occupation is not as
great as for Fgq, and Fq enters in the total energy with

45 The Slater integrals are defined by E. U. Condon and G. H.
Shortley, The Theory of Atomic Spectra (Cambridge University

Press, London, 1935), Sec. 8¢, or in reference 20. By “higher
Slater integrals’” we mean all Slater integrals other than Fo.
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TaBLE V. Quantities used to find the total energy of the solid and of the free iron atom. F, is the average energy of interaction
between an electron of type ¢ and one of type b defined in Eq. (31); subscript d stands for a 3d electron, s for a 4s electron. ZE, and
E(total) are defined in Eq. (30). The number of 4s electrons per atom is #4,. All values have been rounded to three decimals and are in
Rydbergs, except that 7, is given in units of the Bohr radius. F,q,0 and Faq,0 are calculated from the charge densities and potentials of
Sec. 3, while the remaining values of F4s are found for the charge density corresponding to the occupied states in the indicated

configuration.
745 =0.3 7145 =0.6 74e =0,9 n4s =1.0
e Fsao  Faapo Faa ZE. E(tot) Faa 2Ea E(tot) Faa 2Ea E(tot) Faa ZEa E(tot)
2.30 1.092 1.484 1.465 3.099 —37.138 1.455 1.861 —37.352 1.443 0.686 —37.499 1.438 0.313 —37.533
2.66 0956 1.434 1.402 1.082 —37.249 1.396 —0.239 —37.470 1.385 —1.537 —37.616 1.381 —1.953 —37.652
3.10 0.839 1.402 1.372  0.230 —37.058 1.365 —1.269 —37.274 1.357 —2.742 —37.464 1.354 —3.213 -37.511
0 0.609s 1.370= —36.633 —36.755 ~—36.878 —36.919

a These values are taken from the 3d74s configuration (reference 20).

a relatively small multiplier. Therefore, we have not
determined the dependence of F,4 on band occupation,
and use the value F4,0 found from the charge densities
of Sec. 3. The values of X E, given in Table V, like
the values of F 44, have been corrected to correspond to
the actual charge density in the indicated configuration.

The cohesive energy of the solid is the difference
between the energy of the solid, taken to be in singlet
state in our work, and the energy of the atom in its
ground state, 5D,. We find this difference in two steps.
The first step, shown in Table V, compares the energy
of the solid with the energy of the atom in an average
singlet state of the same configuration. We neglect all
higher Slater integrals,* both between pairs of valence
electrons and between valence electrons and the core.
These integrals will contribute approximately equal
amounts to the energy of the solid and of the atom in
the reference state. Thus some sources of error are
reduced when we compare the energy of the atom and
of the solid in the same state.

When higher Slater integrals are dropped, the energy
of the atom in a configuration with 74, 4s electrons is:

E(total,atom) = n4,E (atom,3d"4s)
+ (1—n4) E(atom,3d%), (32)

where, for example,*6
E(atom,3d®)=8E;,(3d®) —28F ;,(3d%),

and the energy for the 3d74s configuration has a similar
form. The numerical values E(atom,3d4s)=—36.919
and E(atom,3d®)= —36.510 are found using the results
of atomic self-consistent field calculations without
exchange?® Values of Eq. (32) for the various con-
figurations are listed in Table V, where 7,= o refers
to the free atom.

The second step in finding the cohesive energy is to
calculate the difference between the energy of the
average singlet state of the reference configuration and
the energy of the atomic ground state. This difference,

46 We use the 3d wave function of the 3d® configuration to find
E(atom,3d8). Had we used the 3d wave function of the 3d74s
configuration, on the ground that wave functions from this
configuration were used throughout the calculation for the solid,
we would have E(atom,3d®)=—36.233. This would increase the
calculated binding energy of the solid by about 0.1 ry, and would
reduce to about 0.7 the value of 74, which maximizes the cohesive
energy.

taken largely from experiment,? is 0.303 ry for 3d"4s
and 0.429 ry for 348 and is interpolated linearly for
intermediate configurations. Combining the two steps,
we find:

— E(cohesive) = E(solid,total) — E (atom,total)

+0.429—0.12614,.  (33)

We evaluate (33) for each value of 74, and 7,, using the
entries of Table V, and list the results in Table VI.

For each value of 7,, a least-squares-fitted parabola
can be passed through the four values of Eq. (33) given
in Table VI. The minimum of this parabola gives the
energy of the solid relative to the energy of the free
atom, and the number of electrons per atom, at the
given value of 7,. The energy and the value of #y,
found in this way are shown in the last two columns of
Table VI. Note that the scatter of points leads to a
small inconsistency for r,=2.66, where the minimum
found by least squares is higher than one of the calcu-
lated points. More serious is the situation for 7,=3.10,
where the minimum energy of the solid falls well
outside the range of validity of our approximation,
which is good only for 0<7,,<1.

TasLE VI. Energy per atom of metallic iron, relative to the
energy of the ground state, D;, of the free iron atom. All energies
are in Rydbergs. The last two columns give the minimum energy
and the corresponding number of 4s electrons per atom, as found
from a parabolic least-squares fit at each value of the unit sphere
radius 7,.

7s 4s: 0.3 0.6 0.9 1.0 Emin M4s
2.30 —0.114 —-0.242 —-0.304 -—0.310 —0.310 1.03
2.66 —0.225 —-0.361 —0421 —0.429 —0.428 1.02
3.10 —0.035 —0.164 —-0.270 —0.289 —0.359 1.59

47 The term value for the average singlet state of 3d74s is found
from the experimental values listed in Table IV of reference 20,
except that the higher 1D term value, which has not been meas-
ured, is taken from the least-squares fit in that table. The average
singlet term value for 3d8 is based on the calculated values for
Racah’s parameters B and C, also listed in Table IV of reference
20, together with the observed 3F term value of 3d8. The calculated
singlet term values of reference 20 are higher than the observed
values, especially for 3d%. Use of the calculated values would lower
the calculated cohesive energy of metallic iron by about 0.2 ry,
and would increase the value of 74, which maximizes the cohesive
energy by about 0.3.
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Fic. 4. Two ways of fitting a smooth curve to the calculated
values of the energy of the solid. The dashed curve is the parabola
of Eq. (34), and the solid curve is the Morse function of Eq. (35).
The zero level is the energy of a free iron atom in its ground state,

The minimum energy values of Table VI permit us
to find the cohesive energy, equilibrium lattice constant,
and compressibility of the solid. The parabola through
the minimum energy values is: '

= —0.433-4-0.606(r,—2.75)?, (34)

where the energy is in Rydbergs and 7, is in Bohr radii.
The energy of the solid relative to that of the free atom
goes to zero as 7, increases. A parabola is thus a poor
curve for fitting the calculated energy points. We have
chosen, in preference to (34), an expression which goes
to zero as 7, becomes infinite. This is a Morse function
which, for the values in Table VI, has the form:

E=0.428{exp[ —2.34(r,—2.66)]
—2exp[—1.17(r.—2.66)]}. (35)

The energy curves of Eqgs. (34) and (35) are shown in
Fig. 4.

z(Ig’rom both Eq. (35) and Eq. (34) we find the cohesive
energy of the solid to be 0.43 ry per atom, as compared
to the experimental value 0.32 ry.*8 To estimate the
errors in the theoretical value we must consider both
the arbitrary choices made in our work and the effects
which were not included at all. The uncertainty of the
calculated cohesive energy is estimated to be 0.2 ry,
and the value of #4, for which the cohesive energy is a
maximum is in doubt by about 0.3. The agreement of
our calculated energy with experiment gives encour-
aging evidence that cohesive energy calculations for
many-electrons metals like the transition metals are
practicable.

Some additional basis for confidence in our result
comes from the equilibrium value of 7, predicted by our
calculation. The value r,=2.66 given by (35) is in
exact agreement with experiment, and the value 2.75
given by (34) is quite close. Because of the arbitrariness
of fitting a curve to only three points, we can say only
that the predicted lattice constant is within about 0.1
Bohr radius of the correct value.

If we use either Eq. (34) or Eq. (35), we find the
calculated bulk modulus (the reciprocal of the com-
pressibility) of iron to be 1.7)X 102 dyne/cm?, in exact

48 Edwards, Johnston, and Ditmars, J. Am. Chem. Soc. 73, 4729

(1951), give the heat of sublimation of iron at 0°K as 99.2-40.1
kcal/mole, which is equivalent to 0.32 ry/atom.

STERN

TaBLE VII. Summary of the energy calculation results.

Calculated Observed
Cohesive energy (ry/atom) 0.43+0.2 0.322
Atomic sphere radius, 7, (Bohr radii)  2.66+0.1 2.66P
Bulk modulus (dyne/cm?) 1.7-3X1012 1.73X1012¢
Number of 4s electrons per atom, 74, 1.0£0.3

a See reference 48.
b See reference 29.
© See reference 49.

agreement with experiment.® The closeness of the
agreement has no real significance, because the bulk
modulus is quite sensitive to small changes in the
calculated energy points. In particular, the uncertainty
attached to the energy for 7,=3.10 will have a major
effect on the bulk modulus. If we do not accept the
least-squares fit in Table VI when 7,=3.10, but use the
energy for n4,=1.0, we approximately double the
calculated bulk modulus. On the other hand the co-
hesive energy and the equilibrium value of 7, are less
radically affected. In spite of this uncertainty, the
calculated bulk modulus adds some support to our
feeling that the work presented here is a valid first
approximation to the cohesive energy of metallic iron.
For convenience, we list some of our results in Table
VII.

Note that the calculated energy differences between
configurations of the free iron atom are in error by as
much as 0.3 ry.? This suggests that a definitive calcu-
lation of the cohesive energy of metallic iron must be
preceded or accompanied by a successful calculation
for the low configurations of the free atom.

6. EXCHANGE ENERGY FOR A DETERMINANT
WAVE FUNCTION

In this section we make a crude estimate of the
exchange energy as calculated from a determinant wave
function. The treatment of Secs. 1-5 replaced the
exchange and correlation holes about each electron by
a Coulomb hole centered at the middle of the cell in
which the electron moves. This approximation, although
it is not a correct description of the actual situation,
has the advantage of being correct at the limit of large
lattice constants, and of being practicable at all lattice
constants. We do not evaluate the expectation value of
the total energy for a specific wave function for the
solid. Thus we cannot say that the energy we find for
the solid is an upper limit of the true energy.

In the treatment which follows, we find the exchange
energy for the solid using a single determinant wave
function and rather severe approximations. The prin-
cipal restriction is that we ignore all Slater integralst®
other than F°(a,b), the direct Coulomb interaction of

4 The American Institute of Physics Handbook (McGraw-Hill
Book Company, Inc., New York, 1957), pp. 2-56, gives the elastic
stiffness constants of iron as ¢11=2.37, ¢ci2=1.41, c44=1.16, all in
units of 10”2 dyne/cm? Thus the bulk modulus, which equals
§(c11+-2c12), is 1.73X 102 dyne/cm2,
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the spherically symmetric parts of the charge distri-
butions of electrons @ and 5. We also assume a number
of orthogonality conditions which are valid only at very
large lattice constants.

The determinant wave function of the solid is:

W= (N )~ det] fux(r)], (36)
where

fax(®) =M, (k). (37)

Here the ¥, (k,r) are one-electron Bloch wave functions
normalized to 1 in the unit cell, and M is the number
of atoms in the crystal. The total number of wave
functions which appears in (36) is N=MZ, where Z is
the number of valence electrons per atom. Each space
orbital, described by a band quantum number ¢ and a
wave vector k, appears twice, once with each of two
spin directions. Wave functions belonging to different
wave vectors are orthogonal, and we further assume
that the wave functions of different bands for the same
wave vector k are also orthogonal. This is not strictly
true for the wave functions used in our work, although
linear combinations of these wave functions which
are orthogonal can be chosen. We have, with our
approximations:

f Fu() fortr (A7 = saBii, (38)
L

and

f AW dr,- - odry=1, (39)

L

where the subscript L indicates that the integration is
over the entire lattice.

The energy of the crystal (excluding the internal
energy of the ion cores) is:

E(crystal)=f W*HEd 7y - -dTy. (40)

L

Here the Hamiltonian H is:

He¥ Ta)+E T oltimr)+3 5 2]rimx;|

=1 =1 1 %7 -

+13 222 tn—1am| L (41)

In Eq. (41) the r; and r; give the positions of the NV
valence electrons, and the r, and 1, give the positions
of the M ion cores, which have charge Z and are as-
sumed to be nonoverlapping. The first term in (41) is
the total kinetic energy operator for the valence elec-
trons. The second term gives the interaction of the
valence electrons with the ion cores, while the third and
fourth terms give the interaction of the electrons, and
of the ion cores, among themselves. The primed sums
exclude terms with vanishing denominators.
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The total energy of the crystal, based on approxi-
mations equivalent to those made in earlier parts of
the paper, can be written:

E(crystal)=2 Zakf Vo (O[T (1) +0(r) o (r)dr

c

+2M 3. paparFaw+E(exchange). (42)

Here the integration is over the cell at the origin. Fuar
is the average interaction energy of an electron in band
a with an electron in band a’, where both electrons have
unit charge in the atomic cell in the solid, as in Eq. (31).
We have introduced the quantity p, in (42) to represent
the fractional occupation of band e; for a full band,
pa=1. There are six bands occupied in our calculation:
five 3d bands and the 4s band.

The third term in (42) gives the exchange effects
which replace the Coulomb hole that was used in our
main calculation. It is the exchange term which is most
difficult to evaluate. The formal expression is easily
written. We have:

E(exchange)=—M"23 4 o' «

« f 2V ()W ot (O e ()W a1 * (1)

X |e—v'|drdr’.  (43)
The sums over a and k, and over ¢’ and kK, each extend
over all occupied states in the crystal.

To reduce (43) to a tractable form, we separate it
into a part representing the integral within an atomic
polyhedron and part giving the interaction between
polyhedra. If we also assume that the charge density
in each cell is sharply peaked near the nucleus (this
means that the exchange energy of 4s electrons must
be estimated separately), that the orthogonality con-
dition (38) holds, and that all terms corresponding to
higher Slater integrals are to be ignored, then we get
contributions to the exchange energy only for a=a’.%
In this case the interaction within lattice cells gives:

—M1 Y Fau=—M3 pFaa. (44)

a,k,k’

The interaction between different lattice cells gives,
approximately:

—MH T S 20t 1] explitk—K)- (£ 1]

a,k,k’ rm,Tn

=—M1Y ZR',' 2[% exp(tk-R)J?/R. (45)

The transition from the first line of (45) to the second
line follows if we substitute the lattice vector R for

% Qur treatment of the exchange energy to this point is closely
similar to the treatment given by J. C. Slater, Phys. Rev. 49, 537
(1936). We arrive at rather different results, however.
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r.—In, and note that a state with wave vector —k is
occupied when the state with wave vector k is occupied.
The sum over k in the second line of (45) is extended
over all occupied states in band @, and ¢ is summed over
the five 3d bands. If we introduce the notation:

W(pa)=M> ZR’ 2[% exp(ik-R) /R, (46)

then the exchange energy of the crystal can be written:
E(exchange,3d)=—M X p2FaatW (pa)]. (47)

We have implied that W is a function of a single
parameter p,, the fractional filling of band @. This is
only an approximation, since the value of the sum in
(46) depends on the way the band is filled. Some general
statements about the form of W can be made by
inspection of (46). In particular, W will vanish for a
full band, because X exp(ik-R) over a full band equals
zero; note that R=0 is excluded.

We have evaluated W (p) for a band in a simple cubic
crystal, assuming that the filled states occupy a cubic
region centered at the origin of the Brillouin zone.
Under these circumstances the sum in (46) is quite
simple. The result is shown in Fig. 5.

This completes the formal evaluation of the exchange
energy, which we have carried out under rather severe
approximations. It is of some interest to see how the
energy of the exchange hole, Eq. (47), compares with
the energy of the Coulomb hole used in Sec. 5. There
each electron in a lattice cell is assumed to interact with
the remaining seven electrons in the cell, rather than
with the total valence charge density. The energy of
the resulting Coulomb hole is the difference in energy
between the 32 valence-electron interactions given in
the second term of (42), and the 28 interactions included
in Eq. (30). In particular, for the 3d"4s configuration
of the solid we have, for the energy of the Coulomb hole,

[(49/2)Fdd+7Fsd+%Fss]_[Zled+7Fsd]
= (7/2)Fdd+%Fss‘ (48)

We use values for 7,=2.66, and take F;;=1.381 from
Table V. For F,, we use the approximate value 2.4/r,
=0.902 which applies to a uniform charge distribution.
The Coulomb hole thus contributes 5.285 ry to the
cohesive energy found in Sec. 5.

To find the energy of the exchange hole, we need the
values of the fractional occupations of the five 3d bands.
For the configuration 3d74s these can be found from the
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one-electron energies of Sec. 4. Two of the 3d bands are
completely filled, and the fractional occupations of the
three remaining bands are 0.84, 0.34, and 0.32. For
these values we have X p.2=2.924, and > W(p.)
=0.405/r,. The total 3d contribution to the exchange
hole is 4.190 ry.

The approximations which led to (47) fail completely
for 4s electrons. We use the free-electron approximation
to find the 4s exchange energy, which gives 0.916/7,
=0.344 ry. The total exchange hole for the valence
electrons is 4.534 ry, which is about 0.75 ry less than
the Coulomb hole. Thus the energy of the solid as
evaluated from a single determinant wave function is
higher by 0.75 ry, for 7,=2.66 and #4,=1.0, than the
energy found from the approximations used in Sec. 5.
This means that the determinant wave function will
probably not give a positive cohesive energy for the solid.
A complete analysis would require evaluation of Eq. (42)
for various values of 7; and 74, to find the minimum
energy of the solid relative to that of the free atom.

A source of error in our evaluation of the exchange
energy, Eq. (47), should be pointed out. The value of
Faq we use is averaged over all occupied states in the
3d band. Had we taken into account the fact that Fyq
is smaller for the states near the bottom of the 3d band,
for which p, is large, we would have found a smaller
exchange hole.

We have estimated the contribution of correlations
to the cohesive energy by using an effective correlation
potential.®® The correlation energy calculated in this
way has almost as big a value in the iron atom as in the
atomic cell of the solid. Thus the net effect on the
cohesive energy is quite small. We estimate that these
correlation effects contribute less than 0.1 ry per atom
to the cohesive energy of iron.

Our result for the exchange hole does not contribute
a large enough amount to the cohesive energy. This is
an old problem for solids with partially filled bands.1¢
A single determinant wave function does not adequately
describe solids in which wave functions on neighboring
atoms overlap very little; it gives too great an ionic
component in the wave function.

We have assumed throughout this work that each
orbital state is filled with two electrons or with none.
If we relax this restriction, an increase in the population
of electrons with one spin direction and a corresponding
decrease in the population of electrons with the other
spin direction will generally lead to an increase in the
magnitude of the exchange energy. This decrease in
the energy of the crystal must be weighed against the
other changes in energy which accompany changes in
the occupation of the bands. It would be relatively easy
to explore this somewhat further, but the validity of
such a calculation is open to question in view of the
rather poor energy value which the single determinant
method gives for the solid in the singlet state.

51 P. Gombds, Acta Phys. Hung. 4, 187 (1954); H. Mitler,
Phys. Rev. 99, 1835 (1955).
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7. CONCLUSION

Our result for the cohesive energy of body-centered
cubic iron, given in Sec. 5, is in satisfactory agreement
with experiment. It demonstrates the practicability of
cohesive energy calculations for many-electron systems
like the transition metals, which have been practically
unexplored heretofore. The modified tight-binding
method developed in Secs. 2 and 4 promises to be a
useful tool for studying narrow energy bands in solids.
But a rigorous treatment of exchange and correlation
effects for solids whose valence electrons deviate sub-
stantially from free-electron behavior is still needed.

Extensions and improvements which might be made
to our present work are easily found. A more sophisti-
cated treatment of the overlap contribution to the wave
function, perhaps along lines indicated by Léwdin,?
might be considered. Considerable accuracy would be
gained by increasing the number of terms retained in
the expansion of the overlap contribution. If a calcu-
lation using more accurate wave functions were made,
it would become desirable to remove the off-diagonal
elements of the Hamiltonian, and to include the possi-
bility of admixture of 4p states into the valence bands.
A considerably more ambitious undertaking would be
a calculation for the solid based on atomic Hartree-Fock
functions and including all Slater integrals. The higher
Slater integrals within a single lattice cell can be
calculated by tedious, but straightforward, extensions
of the methods developed in this work. On the other
hand the correct treatment of exchange integrals in-
volving different lattice cells is more difficult. If higher
Slater integrals are to be included, the nonspherical
shape of the atomic polyhedron must also be taken into
account.

The simple form of the modified tight-binding wave
functions found for iron suggests that they might
profitably be used in a study of the x-ray scattering
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APPENDIX A. TESTING THE ACCURACY OF
TRUNCATED PLANE WAVE EXPANSIONS

In order to estimate the accuracy to be expected from
our modified tight-binding approximation for 4s
electrons in iron, we calculate the energy for various
approximate expansions of free electron wave functions.
Thus we carry out a simple variant of the empty lattice
test, which was first used by Shockley.5?

The Bloch wave function for a free electron with
wave vector k is exp(¢k-r), and its energy is &% in our
units. The plane wave can be expanded in spherical
harmonics, giving:

exp(ik-1) =3, 7' (21+1) 71 (kr) Pi(n),

where 7 is the cosine of the angle between k and r, P;()
is a Legendre polynomial of order /, and j;(k7) is a
spherical Bessel function of order /.%

The approximation we want to test replaces the
accurate free electron wave function, Eq. (Al), by
another in which the summation includes only terms
with /<#, and in which the wave function is defined
only within a sphere of radius 7,, rather than in all
space. Since the wave function is now confined to a
finite region, we use the boundary correction of Eq. (27)
in calculating the energy of the approximate wave
function, and find

(A1)

(2/k78) (”Jf" 1)jn(krs)jw+l<krs)

amplitude in the solid.?®
E=F ( 1

Since we confine the wave function in a sphere, rather
than in the atomic polyhedron, we cannot expect to
find the proper behavior at the surface of the Brillouin
zone. In Fig. 5 we show the energies calculated from
Eq. (A2) for values of % out to the edge of an imaginary
spherical Brillouin zone holding two electrons per atom.
The occupation of the band is related to % by the
expression

N (k) =4(krs)?/9, (A3)

where N (%) is the number of electrons per atom with
wave vector <k. Thus £=2.4187,! corresponds to a
filled band, and k=1.9197,! corresponds to a half-filled
band, i.e. one electron per atom.

For our purpose, a reasonable measure of the ac-

— . A2
220+ 1){[jz(kfs)]2—fz—l(kfs)jl+1(kfs)}) (42

curacy of the truncated plane wave expansions is their
accuracy for a half-filled band, since this is close to the
actual situation in iron. We see from Fig. 6 that keeping
terms through second order gives an error of 59, in the
energy at the point where the band is half-filled, while
keeping third-order terms reduces this error to less than
0.5%.

We have also tested a still cruder approximation to
the accurate plane wave expansion. This replaces the
spherical Bessel functions by the first few terms of their
power series expansion®

Ji(@)=2%" 30, (I4¢) (=27 7/ g (2+2g+1) L

% W. Shockley, Phys. Rev. 52, 866 (1937).
8 J. A. Stratton, Eleciromagnetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), pp. 404-406.

(A4)
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0.6 1

ELECTRONS PER ATOM

FiG. 6. The energy of truncated expansions of plane waves with
wave vector % is shown in units of the exact free electron energy.
The abscissa gives the number of electrons per atom contained in
a spherical Brillouin zone of radius k. The curves marked 1, 2, and
3 refer, respectively, to truncated expansions whose highest spher-
ical harmonic has angular momentum /=1, 2, or 3. The curve
marked 2’ refers to an expansion containing spherical harmonics
through /=2, in which the radial functions have been truncated;
see Eq. (AS).

We find reasonably good energy values with a rather
small number of terms. For small values of & it is
necessary to keep more terms in the expansion of j7;(%r)
for low values of / than for higher values of this parame-
ter. In particular, if the fractional error in energy for
small % is to be of the order of (k7;)?", we must keep all
Legendre polynomials of order /<#, and the coefficient
of P;(n) need contain powers of k7 only through (k7)2"—.
Thus only one term is necessary for the coefficient of
the highest Legendre polynomial retained, while »-+1
terms should be kept in the expansion of jo(k7). The
simplest wave function whose fractional energy error for
small values of % is of the order of (kr;)*1is

B kit k33
fkr)= (1—-——{———) —I—i(kr—*— 7
6 120 10
B2 3n2—1
_— . (A5)
3 2

The energy of this wave function is shown as the top
curve in Fig. 6. It is in error by about the same amount,
though in the opposite direction, as the wave function
containing the complete expressions for jo, 71, and 7s.

The energies of our trial wave functions have been
evaluated in a spherical lattice cell and consequently
give a spherically symmetric band in an assumed
spherical Brillouin zone. Nevertheless, Fig. 6 gives
considerable information about the number of terms
needed when free-electron wave functions are expanded
in a single cell of the lattice. We make use of these
results in Sec. 2.3, where we use the same number of
terms for the modified tight-binding wave function of
4s electrons in iron as is kept in (AS).

APPENDIX B. CONTRIBUTION OF DISTANT
NEIGHBORS TO THE 4s WAVE FUNCTION

Because of the large overlap of the wave functions
of 4s electrons in iron, it is necessary to sum contri-
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butions from distant neighbors in finding the tight-
binding wave function for the 4s band. We have carried
out the explicit sums through sixth-nearest neighbors,
but require an approximate method for finding the
contribution of more distant neighbors. The method
we use is rather crude; at the end of this appendix a
more refined method is mentioned.
We wish to evaluate the sum

Oy’ (k,r)=>_" exp(ik-1,) Ry, (r—1s,), (B1)

which is restricted to lattice points r, beyond some
fixed distance. Our basic approximation is to replace
the summation by an integration, thus assuming the
lattice points to be smeared out in space. If # is the
radius of a sphere enclosing all the atoms for which
the summation has been carried out exactly, then the
approximate contribution of the remaining atoms to
the tight-binding wave function is

®o" (k1) = (3/4mr?)
Xf exp (tktn') Rys (x—t)2dtdn'dp, (B2)
to

where 7’ is the cosine of the angle between k and t.

The accuracy with which we evaluate Eq. (B2)
depends in part on the approximations we wish to make
for Rys(r—1t). We used

Ry (r—t)~B exp(—b|r—t|)~ B exp(—bt+br’), (B3)

where 7" is the cosine of the angle between r and t.
The second step in (B3) represents a further approxi-
mation, but not a serious one, since r<r,, >4, and
10> 5.

The exponentials in Egs. (B2) and (B3) can now be
expanded in spherical harmonics, giving®®

CXP(iki‘n')=é(2l+1)il]'z(k'f)1)z(n'); (B4)
exp(br) =3 2mA-1)in(6r)Pu(n”).  (BS)

m=0

Here ji(kt) is the spherical Bessel function already
encountered in Appendix A,% and i,,(b7)—which should
not be confused with ¢=+/—1—is another spherical
Bessel function defined by®®

Im(2) =17 m(12) = (7/22)H 11 (2)
— (2)m é [ (p+m) |/ p12m4-2p+1)1]. (B6)

5 If the exact summation has included the nearest G neighbors
plus the atom at the origin, then f,= (G+1)¥r,.
5 G. N. Watson, A Treatise on the Theory of Bessel Functions
éCanill)ridge University Press, London, 1945), second edition,
ec. 11.
% The Bessel function of imaginary argument, 7, (), is discussed
in Sec. 3.7 of reference 55.
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With the foregoing approximations and expansions,
and with use of the addition theorem for Legendre
polynomials, Eq. (B2) reduces to

®) (k;x)=3Br S iH(2141)is(br) Pi(n)
1=0

L

X 27.(kt) exp(—bt)dt,

141}

(B7)

where 7 is the cosine of the angle between k and r.

We have used Eq. (B7) to find the approximate
contribution of atoms beyond sixth-nearest neighbors
to the tight-binding wave function in iron. The parame-
ters we used are: fo=(65)%,, B=1.471(Bohr radii)—*,
5=0.575(Bohr radii)™'; R4, was normalized to 4r. No
attempt was made to calculate the integral in Eq. (B7)
with great accuracy. In keeping with the approxi-
mations made in Sec. 2.3 and discussed in Appendix A,
we keep only the following terms of 7;(br) : '

30(br) =14 (542/6)+ (b'%/120),

3i1(br) =br+ (0%3/10),  Sia(br)=b%2/3. (B8)

The angular part of the wave function for the three
symmetry directions is

direction Py(m) Py(n)
(001) Vi3/V3 Vaa/N/5
(111) Yu/V3 Yas/\/5
(110) Y1:/V3 (V3Y 21— Y22)/24/5. (B9)

These spherical harmonics are defined in Table II. The
tight-binding wave functions formed from spherically
symmetric atomic orbitals must belong to the repre-

sentations with subscript 1 in Table I. A comparison .

of (B9) with Tables I and II shows that this is the case.
It is interesting that for the (110) direction we find a
linear combination of the two second order spherical
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harmonics, ¥, and Y,e, which belong to the repre-
sentation Z;. These two harmonics also appear in the
exact summations over the near neighbors, and their
coefficients are approximately in the ratio V3: —1 given
by (B9).

Because we smear the distant lattice points uni-
formly, the requirement of Table I that the coefficients
of the first- and second-order spherical harmonics in
®¢(k,r) vanish when k is at the endpoints of the three
symmetry directions®” cannot be exactly fulfilled in
Eq. (B2). These coefficients do, however, go through
zero for a value of & near the surface of the Brillouin
zone. We have set the distant-neighbor portion of the
4s wave function in the solid equal to zero where that
is required by symmetry.

The preceding discussion gives the procedures used
in our work to find the contribution of distant neighbors
to the tight-binding 4s wave function in iron. The
remainder of the description of that wave function is
given in Sec. 2.3. We conclude by referring to a some-
what more accurate treatment which might be used to
eliminate the approximation made in Eq. (B3). If, for
large distances, we used

R“(r—t):B[f—tIm“l exp(~b]r—t|),

we could make use of the expansion®®:

(B10)

r—t| " exp(—b|r—t])
— b ()t 3 (A1) () Pi(n’™). (B11)

Some of the properties of the {,; have been given by
Barnett and Coulson,?® and might form the basis of a
more rigorous treatment than the one given here.

57 The coefficients of the second-order spherical harmonics in
Py (k,r) need not vanish when k is at the endpoint of (110).

88 M. P. Barnett and C. A. Coulson, Phil. Trans. Roy. Soc.
London A243, 221 (1951). See also Sec. 6.1.2 of reference 7.



