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Pseudodipolar Anisotropy in Cubic Ferromagnets at Low Temperatures*
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The first order anisotropy constant, E&, of a cubic ferromagnet with spin 1/2 per atom is calculated as a
function of temperature at low temperatures. The source of this anisotropy is taken to be the nearest
neighbor pseudodipolar spin-spin interaction and the spin-wave approach of Dyson is used. It is shown that
E~ varies as the tenth power of the magnetization, itself a function of the temperature. In order to explain
the experimental value of E~ for nickel at T =0 the strength of the dipolar interaction must be ~300 times
the classical value. Previous calculations by Van Vleck, Van Peipe, and Tessman are compared with the
present work on the ground state. Only the work of Van Peipe accounts properly for the exchange and is in
complete agreement with the present investigation. The perturbation scheme of Van Peipe is shown to be
rigorously correct, the wave function converging to an exponential form.

I. INTRODUCTION

HK free energy per unit volume of a ferromagnet
contains terms which depend upon the orienta-

tion of the magnetization vector with respect to the
crystalline axes. These terms are commonly distin-
guished by the angular dependence associated with each
of them. In the case of cubic symmetry the leading
term is E&(nPns'+nt'ns'+ns'ns'), where Kt is known as
the first order anisotropy constant and n&, u2, and n3 are
the direction cosines of the magnetization with respect
to the crystalline axes. The next term is E~~'o, ~'o.~',

where E2 is the second order anisotropy constant.
There have been several calculations of the first order

anisotropy at T=O of cubic ferromagnetics with spin
value 2 per atom using the short-range pseudodipolar
coupling. The approach used by Van Vleck' is ad-
mittedly approximate in that the exchange energy is
replaced by the Weiss molecular fie1d. Tessman' treated
the exchange by the usual spin-wave approximation
and was able to show that the anisotropy is due to the
fluctuations of the zero-point energy. In the explicit
calculation of the anisotropy, he replaces the exchange
energy by JZ, the maximum spin-wave energy, with
results which agree with those of Van Vleck. It has been
pointed out' that although the methods are diGerent,
the results are in agreement because the approximations
made are equivalent to each other. The most extensive

treatment of the problem was given by Van Peipe' who

attempted a rigorous treatment of exchange. He ob-

tained anisotropy energies somewhat larger than the
others. Moreover doubt has been cast on this work' in
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that he apparently used a perturbation expansion in
powers of S, the number of atoms in the crystal, so
that the convergence of the expansion is dubious.

In Sec. II we transform the Hamiltonian, including
the pseudodipolar couphng, into the language of second
quantization. In Sec. III the low-lying energy levels of
the ferromagnet, to second order in the dipolar term,
are found. These calculations are based on the spin-
wave method due to Dyson. ' The first order anisotropy
constant at T=O, E&0, is immediately extracted from
the ground-state energy. The anisotropic part of the
free energy is calculated in Sec. IV to give E& as a
function of the temperature. Although we do not repeat
the argument here, ' ' we point out that a dipolar inter-
action is not capable of giving anisotropy in a cubic
crystal below the second order of perturbation. This is
in contrast to the quadrupolar interaction, possible
only for 5&1, which yields anisotropy in the first order
perturbation. Our results agree at T=O with those of
Van Peipe and we point out, in Sec. III, that the other
calculations differ because of their approximate treat-
ment of the exchange. We find that Er/EM varies as
the tenth power of the magnetization in the T& law

region for all the cubic lattices.
In Sec. V we review the work of Van Peipe in atomic

spin space. The treatment is extended to give an
approximate ground-state wave function, appropriate
for the calculation of energy to second order only. This
wave function is shown to be exponential in form and
the power series expansion of this wave function agrees
in first order with the wave function which Van Peipe
used to get the second order energy. We conclude that
the Van Peipe calculation is correct since the wave
function does converge. Also included in this section is
a calculation of the fractional deviation of the ground-
state magnetization from saturation due to the dipolar
coupling for a simple cubic lattice. For this purpose the
entire exponential wave function must be used and the
resulting deviation is small. If the Van Peipe wave func-
tion, i.e., only the first term in the expansion is used,
the result is much larger.

s F. J. Dyson, Phys. Rev. 102, 1217 (1956).
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The application of the results of this investigation to
real ferromagnets is discussed in Sec. VI.

The first term is the Zeeman energy, with the s direc-
tion being that of the applied field H. The second term
is the exchange energy and the last represents the
pseudodipolar coupling which gives rise to the anisot-
ropy. The atom located at R; has spin angular momen-
tum fiSR, and the magnetic moment go~SR;. The sums
over i range over the entire crystal of E atoms. The
sums on I range over the Z nearest neighbor vectors of
the lattice, where I is measured in units of the nearest
neighbor distance. The parameters J and e measure the
strengths of the exchange and pseudodipolar inter-
actions, respectively. In particular, they have been
chosen to correspond to the notation used by Van
Peipe. ' For nickel, it will be seen that e/J=0. 09.

We separate the Hamiltonian into

where
K=xp+e+v, (2)

Bcp = gpgH Q, sR,*——J p; ( Sa,"SR~+1

+2e Q;,)[(l*)'Sa *SR;+1*+-,'(l+l )SR, SR;+1+(

"lt= 2e g, , ~[(l'l+)SR,'Sa, +&
—+ (l*l )Sa;*Sa,+i+],

U= pe Q )[(1+)SR' SR;+1 +(l ) SR'+SR;+1+j.

Following the usual definitions,

SR,+=SR; ~iSRp and 3+=1 '~il".

The dc part of the dipolar interaction has been included
in Ko, that part which gives rise to the first order
anisotropy at T=O is 'U, and 9, contributes to E» in
the excited states only. At T=O, however, the 'll, term
must be included in a calculation of E2, the second
order anisotropy constant.

We introduce the spin-wave operators,

Sg ——X—l Q; Sa;e—'~ R'.

They obey the commutation rules

II. THE HAMILTONIAN

If we neglect the magnetic dipolar coupling, the spin
Hamiltonian is, for S=—,',

X= gljgH Q~ Sa~ J Q~ ] SR, ' SR~+1

+2eg;, i(l Sa,)(1 SR;+i). (1)

A spin-wave state in which n(= +~ n~) spin waves are
excited is denoted by

~n)=gg(nk!) &(Sk )"~)0), (7)

where ~0) represents the ground state of Xp, the state
with n=O. Except for terms of order n/1V, these states
are normalized and orthogonal.

An approximate Hamiltonian will be written in terms
of the ordinary creation and destruction operators, AI,*
and A k, which operate on spin waves. To construct this
Hamiltonian we let K operate on the wave function (7).
The operators S»,' and SI,+ are commuted through the
Sz operators in ~n) until they operate on ~0). Then
use is made of Sj+~0)=0 and S~'~0)=51VI~O)8g, p. At
this stage, S& is replaced by A& . The original Hamil-
tonian is replaced by one expressed in terms of A&*

and Aq which, when operating on (7) with Aq* sub-
stituted for SI, , yieMs the same linear combination of
spin-wave functions. This procedure has already been
carried out by Dyson' for the Zeeman and exchange
terms. As an example we treat %, here. By application
of the commutation rules,

Sg*S g Sxg Sap Sv„~O)
=S ~ S~~ SI p S~. 5~*~0)

-E '(Sp S~~ S~p S~

+S ~ Sx~+v&p Sx„—+
+5 ~ Sx~ Swp Sj „yx}~0).

The term containing SI,' makes no contribution to
'tt

~
n) since only the k= 0 part survives, and P&(l*l+)=0

for cubic symmetry. The next term also vanishes since
we may remove as a factor Q& exp(ik I) =0. The re-
maining terms have the following interpretation; one
of the spin waves, say k;, is destroyed and two others,
—k and k;+k are created in its place. The S~ are
clearly equivalent to creation operators, so that the
S'S portion of 4, may be replaced by

—elV & Q (Np+eg)Ay*Ay*Ap~g,

where

"lt=2e P~, ~ exp( —ik I)

X[(l*/+)5 *5 +(l*l )Sp'5 g+] (6b)

u=-', e Qg, g exp( —ik I)

X[(l")'Sg S v +(l )'Sg+5 g+]. (6c)

[Sg',Sg+j= &&V ~Sg~g. + and

[Sj,+,Sk j=2E 'Sg+k".

In terms of these operators

Xp ———gyRH1VlSp* —J Pp ) exP( —ik-I)

ug ——P)(/*i+) exp(ik I).

(~) By following a similar procedure, the Hermitian adjoint
is obtained for the S'S+ portion.

The Hamiltonian in terms of the creation and de-
struction operators is,

X(Sk 5 a*+St 5 k+)+2e Q, , , exp( —ik I)

X[(l*)'Sp'5 g'+-'(l+l )Sg S g+$, (6a)
where

X=BC'+BC'+ tt+ 0

Kp=C+Qg nyet,
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'lt= —«N ' Q [(ug*+Ng *)Ag+g *Aj,Ag

+ (+a+na )A a A w

g=-', «Q(ngAg*A g*+vg*AgA g)

(«/N) Q Vk Ak+k~+k" AkA k'A k".
R, R/, R'/

Here C is a constant dependent upon the lattice and
given by

C= ,'gpgN—H -', cVJZ—+2N«Q((l')~. (9)

The energy of each spin wave is, to first order,

e~ gpgH+——J Pq(1 —cosk 1)
—e pi[2(l')' —(i+l ) cosk lj. (10)

The portion 3C, like 3C, is derived from X,o. It gives rise
to binary collisions between spin waves with

I'xg 2
——Qg exp(ik 1)[1—exp(ikg 1)j

)&[1—exp( —ik2 1)]. (11)
We have also

~k Ql(l+)' exp(ik I).

There are terms of higher order in 1/N belonging to
and 'U which are not shown. These give rise to con-

tributions to the energy which, for the low-lying states,
are negligible. ' The specific advantage of the procedure
outlined above is in the interaction terms K' and 'U,

which are different from the corresponding terms in the
usual spin-wave theory. ' As derived here these terms
are the complete effective spin-wave interaction which
is contained in Eqs. (6a) and (6c).

It may be observed that K'+'U (except for the term
proportional to eV ') is the Hamiltonian derived by
Holstein and Primako6 with the long-range magnetic
dipole forces replaced by the pseudodipolar coupling.
This Hamiltonian was diagonalized by them by means
of a canonical transformation. We have obtained their
result for the ground-state energy by regarding 'U as a
perturbation on K' and summing the infinite series as
was done by Brueckner and Sawada' in connection
with the problem of liquid helium. The series corre-
sponds to the binomial expansion of the square root
in the Holstein and PrimakoG result. The second order
term in 'U is just the one used by Tessman' to obtain
the first order anisotropy of the ground state. This
procedure of evaluating and summing the infinite series
is not included here. "

7 The last term in U was originally included in this class by us.
Neglect of this term led to an eighth power law and to an in-
stability of the spin-wave spectrum. The importance of this term
was pointed out by F. KeA'er (private communication).

T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).' K. A. Bruckner and K. Sawada, Phys. Rev. 106, 1117 (1957)."S. H. Charap, thesis, Rutgers University, 1958 (unpublished).

S,"=(n [Vu-'V
~
n)+ (n [

~a-'W
) n),

and the third order energy is

(12)

R"= (n (
Wa 'X'a 'V-~ n)+-(n

(
Wa 'aC'a 'W-~ n) -(13).

In these expressions, "a=ED"—IP, where

(80"—~0)
i n) =0

A straightforward calculation yields

Qg Qg~ Sg+i, ~

(14)
N & & «k+«g'

"This notation foi perturbation theory is standard in the
theory of scattering. See, for example, J. Goldstone, Proc. Roy.
Soc. (London) A239, 267 (1957), or K. A. Brueckner, Phys. Rev.
100, 36 (1955), Sec. III.

III. EIGENVALUES OF THE ENERGY

If K'+'tt+'U is treated as a perturbation on GC',

there are contributions to the energy from BC' alone.
For the low-lying states these are negligible. The small-
ness of this dynamical interaction is one of the major
results of Dyson's' work. In fact all contributions to
the energy in the perturba, tion series in which matrix
elements of 3C' appear connecting the unperturbed state
to an intermediate state are negligible (of order n/N)
compared to the terms which we shall keep. This is
due to the suppression of the sums over wave vectors
imposed in these cases. On the other hand, those con-
tributions to the energy in which matrix elements
which connect only intermediate states via 3C' appear
are significant. If 3C' were the sole perturbation then, it
would contribute a negligible amount to the energy.
But this term has a significant influence on contribu-
tions made by %, and 'U. For this reason we calculate
contributions to second powers in %l and 'U, but to all
powers 3C' t Consequently the energy to second order in
the pseudodipolar interaction, tt+'U, is an in6nite
series, each succeeding term of which involves one more
collision of a pair of spin waves in the intermediate
states by way of exchange (K') than the previous one.
The entire series may be summed. With one unim-
portant exception pointed out below Eq. (15), each
succeeding term is just the previous one multiplied by
a small numerical factor v, , dependent upon the type
of lattice involved. This is just the geometric series. In
the case of the exceptional term, the sum of the series
is the derivative of the geometric series with respect
to v, .

There are contributions to the energy of higher order
in the dipolar interaction. Even if there are such terms
having the angular dependence associated with Ej these
are smaller than those which are calculated here by
factors of («/J)' or smaller, and may be neglected.

The second order energy of the unperturbed state
~n) is
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where v, =0.211, 0.1339, 0.08161, for the simple, body-
centered and face-centered cubics, respectively. Notice
that there is a term in which each spin wave is counted
twice as compared to the corresponding term in E2. In
the next order each spin wave is counted three times in
this term, and so on. If we sum the entire series, the
energy, to second order in the pseudodipolar coupling
and to all orders in K' is

E"=C+Qk sskek

q2 lg 2

—(1—v;)
—' —p 1+2(1—v )

—'ssk—pk Nk
4 k 6k Ã

2e ~sek+Nk ( ssk+k

k, k' ek+ ski —ek+ki
(16)

At low temperatures only the long-wavelength spin
waves are excited. In that case one finds, for Eq. (16)

(17)

In these terms products of the ek have been neglected.
It is now evident why only 'U contributes to the ground-
state anisotropy; the last term, arising from the 'll por-
tion, vanishes when no spin waves have been excited.
Now E2' is the term evaluated by Tessman. ' In doing
so he set ek ——JZ. This term, as well as all of Eq. (14),
is evaluated in Appendix A without approximating the
exchange energy and the values of E» calculated in
this way for the three cubic lattices are shown in
Table I. The third order energy is more involved. In
Appendix B it is shown that, if only the long wave-
lengths are excited,

e' (skies t' 4
Es ——vs —Z -~ 1+4nk—Zk Nk

4k ek 4 X J

2e )sek+Nk ] Skyk
(15)» k' ek+ek —ek+k

The spin-wave energy may be written, (see the
Appendixes),

ek (SC)= ek —5.35 (e'/J ) (I'—-',),
ek(bcc) =ek+2.748 (e'/J) (I' —-,'),
ek (fcc)= ek+1.0863 (e'/ J) (I'—1/4.45).

(19)

In these expressions terms proportional to (e'/J) ks have
been neglected in comparison with the exchange energy
contained in ek which is proportional to Jk'. The angular
dependence is given by the function I'=npcrss+ntsrrss
+ns'ns' where ni, ns, crs are the direction cosines of the
fieM relative to the crystal axes.

The first order anisotropy energy is given by E&Vl',
where V is the volume of the sample. The values of Ei
for the ground state, Ejo, are given in Table I. The
magnitude of the pseudodipolar coupling constant, e,

may be estimated by comparison with experiment. For
nickel, a face-centered cubic, the experimental value of
Kyp is 750 000 ergs/cc. "We will use J 230K& and
X/V 5X10ss. Here Eis is Boltzmann's constant. The
numerical value of e/J then turns out to be 0.09. The
strength of the classical dipolar interaction between
nearest neighbors is about 300 times smaller.

The energy of a spin wave is, by Eq. (19), essentially
positive. The function I' ranges from 0 to —, in a way
that the coeKcient of e'/J is positive if the magnetiza-
tion lies along an easy direction (L100j for the simple

cubic, $111jfor the others). If the magnetization is to
be in some other direction it must be the result of the
application of a magnetic field. The Zeeman energy re-
quired to excite a spin wave in such a 6eld will always
be sufficient to keep the excitation energy of a spin
wave positive.

IV. TEMPERATURE DEPENDENCE OF KI

The spin waves may, at low temperatures, be re-
garded as a system of noninteracting Bose particles of
energy ek. The free energy of the system is

The ground-state energy to this order is

E,(sc)=C+0 2681V (e'/J) (I.
' —1),

E,(bcc) =C—0.1374'(e'/J) (I'+1),
E,(fcc)=C—0.054301V (e'/J) (I'+2 39)

(18) +~ek (22)

F (T)=Eo+ErsT Pk lnLI —exp( —ek/EirT) $. (21)

We separate the spin-wave energy into the two parts

TaBLE I. The first order anisotropy constant at T=O, EI0, in
units of e'E/JV, for 8=, for the cubic lattices. Here Es' is a
refinement of Tessman's result, and (1—v;) 'Eg' takes into ac-
count the interaction between spin waves due to exchange.

where Aek contains the dependence upon the direction
of the field with respect to the lattice and is small com-

pared to t,'k. The anisotropic part of the free energy is
easily shown to be

TessInail
Van Peipe
from E20
from (1—v, ) II'20

0.167
0.26(4).
0,211
0.268

—0.111—0.14—0.1190—0.1374

—0.0419—0.05&0.03—0.04987—0.05430

Simple cubic Body centered Face centered
(sc) . cubic (bcc) cubic (fcc)

(1—v,) 'Es'+Qk(ssk)&ek (23)

Here (ssk) is given by the Bose-Einstein distribution.
The second term of (23) contains the temperature de-
pendence in a series of powers of EriT/J, the lowest

a Third figure calculated by authors.

"R.M. Bozorth, Ferromagnetism (D. Van Nostrand Company,
Inc. , Princeton, 1951),p. 569.
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power being ~. The leading term is of the form
aI' P&,(n&,) T. he other terms are negligible in the tem-
perature region under consideration. The anisotropy to
to 6rst order is given by

If:i=Icio+ (n/V) Pg(n«) (24)

In terms of the magnetization, M(T), it may be shown
that, in the T& law region for M(T),

-~(2') - —0:xs/Kiov

Egp Mp
(25)

where Mp is the saturation value of the magnetization.
The value of the exponent —(nlVS/EMV) is 10 for all
cubic lattices, independent of the evaluation of the
integrals for n and E~p, themselves ~

where fo represents the unperturbed wave function of
the ground state and g is an operator bilinear in SR; .
The expansion in powers of g is assumed to correspond

' See reference 5. The authors are grateful to Professor E&lihu

Abrahams, who brought this letter to their attention.

V. THE GROUND STATE

In this section we treat the ferromagnetic ground
state in order to answer the question raised by Argyres
and KitteP' concerning the convergence of the per-
turbation series used by Van Peipe, in calculating E&p.
It is asserted that, because the expansion is apparently
in powers of E, the results are not rigorous. We show
that, although the first order wave function is a poor
approximation to the ground state, it is part of a con-
vergent series. The use of this wave function to evaluate
the second order energy is thereby justified.

As is pointed out in Appendix A, in obtaining Eq.
(A2), the anisotropy of the energy of the state of com-
plete alignment of the spins, the ground state, is in-
sensitive to the strength of the applied Geld. For the
purposes of this section then, a limited Hamiltonian
may be used, consisting of the exchange energy plus
the '0 portion of the pseudodipolar coupling. The dc
part of the dipolar term is neglected along with the
Zeeman energy. Since we are mainly concerned with
convergence, we consider in each order in Ã only the
terms to lowest power in e/J. Thus we drop the %,

portion of the dipolar term and calculate the wave
function using only the first term of (6c) as the
perturbation.

We recall that in the spin-wave treatment, except
for the collision part of the exchange, the corrections
to the wave function due to '0 correspond to the excita-
tion of independent pairs of spin waves of wave vectors
k and —k. This leads us to try, as an approximate
wave function

(26)

where
& =(A'U0 i'),

(Eo—x,0+0=0,

(Eo—xo)pi' ——vpo,

(27)

(28a)

(28b)

(Eo—Ko)$2' = 'Ugi' —E2$0, and so on. (28c)

The unperturbed Hamiltonian, 3Cp, is simply the ex-
change operator in the present approximation. Setting
'6 =A=gA(pi=0)»d

g= g P&, r IlrSR& SRq+r (29)

where r is summed over all the vectors of the lattice,
we find by manipulation of Eq. (28b),

This equation corresponds exa, ctly to Eqs. (19) of Van
Peipe's' paper. Note that Eq. (28b) may be written

[g,XO]$0——'U $0, where 'U is that part of 'U proportional
to (l+)'. The 8, which solve Eq. (30) yield

[g,

xone

=v-+x, (31)

where xylo ——0. However xf„is of order ii compared to
P„.Equation (28c) may be written

k[g ~~ojA+ (Eo—~o) «'2= UgA E2A= U gA

to the ordinary perturbation series. Thus

+=4a+4 i+A+
with Pi ——gPo, f2= (2!)-'g'Pp, and so on. The operator g
will be determined so as to make Pi the correct first
order wave function. In the higher orders if P„'is the
proper eth order wave function, we write f„'=P+q,
where q„is a correction which must be small if the
exponential form is to be a good approximation to the
ground-state wave function. In the limit E —+ ~ we
show this to be true, for q „

is found to be of order I/iV
compared to P, and can therefore be neglected. How-
ever, if X is hnite, when m is comparable to X, q „may
not be neglected in comparison with f„.The exponen-
tial wave function is nevertheless a good approximation
to the. ground state in this case also, for the following
reason; in the case of spin ~~ per atom, there cannot be
more than one spin reversed on any one atomic site,
and the series does not increase in powers of E through-
out. At first succeeding terms are E times as large as
their predecessors, but when the number of terms be-
comes comparable to 37, succeeding terms become
smaller by factors of e/J. Thus, for those values of
n (n X) for which p„P„,one may neglect P itself
in comparison with the preceding terms in the wave
function, because this term is e/J smaller than the
previous one, not E(e/J')!

By standard perturbation theory, the corrections to
the energy are given by
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Making use of Eq. (31) and the fact that Lg, 'U ]=0, collision term denoted by K in Sec. II. Neglecting this
we 6nd we have

(Ar&e! o) o& 2 i(i ',) Bi (32)

This is just the quantity evaluated by Uan Peipe, 4 who
made use of the fact that the first order anisotropy is
described by the second order energy arid therefore
calculated the wave function to erst order only in the
dipolar interaction. It has been shown here that the
series does indeed converge so that Eq. (32) does yield
the rigorous result.

It is interesting to calculate the fractional deviation
of the ground-state magnetization from saturation.
This is

AM 1 (%,[P,SR;r,erjPo)

Mp iVS

2 (%,g%)
(33)

XS (4,+)

since the commutator LQ;SR r,gj= —2g. If we define
%(X)=e"'fo, and note that 8% (X)/B =g%(A), th'e'n it
may be shown that

(&o—~o) O .= —o(gX+Xg)A.

Therefore ohio is of order X smaller than fo. Compared
to fi, oro is of order o/J smaller. The same procedure
may be carried out for the higher order terms with the
result that or„(N/E)f„.Thus, as discussed above, the
exponential wave. function is a good approximation to
the ground state.

The second order energy is just

'Vg

~ik r

2E j ~i,
(36)

Vg

%=gk 1—— Ak*A k*
2 26g

(o) ( haik )+ I

—
I I I (A k*A-k*)'+ A.

E2) (2ok)

If the product is expanded, one finds

Sg
1——Qk Ak*A k*

2 2|.'g

1 ( o) Ski'k'

+—
~

—
~ Q Ak*A k*Ak*A k*+ po.

2 (2) k, k' 2ok2ok

This is just the exponential %=e'fo, with

The same result may be obtained by consideration
of the ground-state wave function in spin-wave lan-
guage in the presence of the perturbation 'U only, and
neglecting X'. That part containing v&* may be neg-
lected since, for any number of reversed spins its
contribution is of higher order in e. Compared with
terms to the same order in e it is of order S ' or smaller.
Then by ordinary perturbation methods, the ground
state wave function is the following product;

Mp

'Ug

g= ——Qk Ak*A k*
2 26g

We expand +(X) in a power series and find on collecting
terms that

(+0)P(&))= pL&'(A, IgIVo) j
Then, finally, making use of Eq. (29)

hM/Mo ———(1/S) Q, (B,)'. (34)

In evaluating the sum in this last equation one must be
sure to include the entire lattice. If the magnetization
is calculated by use of the Van Peipe wave function
alone, the sum is over nearest neighbor vectors only
and the result is much larger )see Eq. (36)).

In order to evaluate the 8, we make the Fourier
transformation

B,=Qk Bke'k'. (35)

With bi, ,=E 'pk expLik (I—r)j, Eq. (30) becomes

pk(2okBk+1V 'oak —X ' pk BkI'k k'k k'&}e'k'=0.

The last term in the braces evidently represents the

+SR; SR. Qk8
2T ~, ~'

where the b, satisfy

Br—Pl Pibr+lq (37)

Qi(br —b,+i) =4m-br, o. (38)

Again, the sums on I range over the Z nearestneighbor
vectors of the lattice. Now make the Fourier trans-
formation

br=Qk bke'k'

Equation (38) may be solved for the bk and one has

bk=4rr/$1V Pi(1—cosk 1)j,

This corresponds exactly to g as given by Eq. (29) with
B, given by Eq. (36).

If we use this value of B, in Eo as given by Eq. (32),
the energy E2P of Sec. II results. In order to calculate
the exact solution of Eq. (30) we follow the method
used by Van Peipe. '

Set
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4m

P~(1—cosk 1)
(39)

s»= ——(~+)'
2J 4s.(1—v, )

(41)

where the v; are defined in Appendix A. We substitute
(39) and (41) in (37) to get the result

Vk

(1 v)—1 Q eikr
2$ ek

(42)

Comparison with the results of Sec. III shows that the
8, do contain the exchange collision interaction.

Now Eq. (34) becomes

2 pk 2

(1—') 'Z~
2W $k2

(43)

For the simple cubic lattice, with the magnetization
along the 1 001$ direction, and in the quadratic approxi-
mation for t.k, it turns out that

2 f p
es (e)=—(0.79)-'—

I I
= —0.21II —

I
.

15 &J) (Ji (44)

In comparing with the result given by Argyres and
Kittel' note that our exchange integral is theirs and
that their dipolar coupling strength, C, is 4t.. Further-
more, in their semiclassical calculation they do not take
the exchange collision term, K', into account. In Kq.
(44) this term gives rise to the factor (0.79) '. For a
spin of 2, in the same circumstances, they have
—1/60(C/J)'= —4/15(e/J)', which is too large by a
factor of 2.

The result of this section is simply this; the Van Peipe
calculation has been shown to be a rigorously correct
one on the model used. Calculation of E& may be made
with the wave function known to first order only.
A knowledge of the entire wave function is necessary
in order to calculate the magnetization and other
properties.

VI. CONCLUSION

The pseudodipolar interaction has been separated into
a number of parts expressed in terms of Dyson's' spin-

We substitute the expression (37) into Eq. (30), and,
making use of (38) we get

4 ~--2 ~ & =-(/2J)(~')' (4o)

By symmetry p &

——pi. The b, are given for all cases of
interest in Appendix A. If Eq. (40) is summed over 1

we Gnd, since Q& b~~~ is independent of 1' that Q ~ p~ ——0.
Using this fact and the technique described in Appendix
A just below the listing of the by, ~, we manipulate Eq.
(40) to give

wave operators. One of these is diagonal in the spin-
wave states and is therefore isotropic. Another, 'U,

which connects states diGering in spin-wave occupation
numbers by two, gives rise to the first order anisotropy
of the zero point energy and also contributes one-fifth
of the temperature dependence of E~ at low tempera-
tures. The remainder of the temperature dependence is
produced by the last of these parts, 'll, which connects
states diGering in spin-wave occupation numbers by
one. This portion does not, however, contribute to
E& at T=O because the cubic symmetry causes the
matrix elements connecting the ground state to states
having just one spin wave excited to vanish.

KeGer has argued' that the pseudodipolar inter-
action gives rise to a negligible temperature dependence
of E~. This error was due to neglect of the terms in the
Holstein-PrimakoGS Hamiltonian of order eÃ:, which
do contribute significantly to the spin-wave spectrum.
We, on the other hand, are indebted to Professor KeGer
for pointing out the importance of the term propor-
tional to eS—' in our Hamiltonian, which is essential to
the previously mentioned —,

' of the temperature
dependence.

A calculation based on the Holstein-PrimakoG for-
malism of the temperature dependence of E~ due to
this interaction was made by Kasuya. "In this calcula-
tion it was not possible to take into account the ex-
change interaction between spin waves, nor was it
possible to get that part of the pseudodipolar inter-
action proportional to eE '. In the present work the
exchange interaction is shown to give rise to correc-
tions of as much as 25% in the energy. But the tem-
perature dependence, expressed in terms of the mag-
netization, involves a ratio of energies and therefore
this correction is unimportant for this purpose. How-
ever, the addition of this pseudodipolar term does aGect
the dependence of E~ on the magnetization, increasing
the power law from the eighth to the tenth power.

There has been no attempt made to determine the
temperature at which the analysis of this paper fails
because of the approximations which have been made,
nor has any attempt been made to determine the tem-
perature dependence of the pseudodipolar coupling
parameter, which has here been implicitly assumed
constant. Carr' has proposed the following empirical
expression for the temperature dependence of E~ in
nickel,

E', (T)=ErpL1 —1.74 (T/Tc) $ (M/M p)".

In anticipation of the result of this paper, that the
pseudodipolar coupling gives rise to the tenth power
law, he has suggested that the linear dependence on T
which appears in this formula is due to the variation of

"F.Eever, Phys. Rev. 100, 1692 (1955).
'P T. Kasuya, J. Phys. Soc. Japan ll, 944 (1956). Because of a

numerical error, the value of E&0 in this paper is too small by a
factor of 2. As a result his power law is too large by the factor 2.

"W. J. Carr, Jr., Phys. Rev. 109, 1971 (1958).
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the coupling parameter with the temperature. It should
be noted, however, that at very low temperatures data
is scarce and that the empirical formula its best at the
higher temperatures, especially where E1 becomes posi-
tive. It appears then that no clear-cut comparison of
this theory with experiment may be made at this time.
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APPENDIX A

We evaluate the second order contribution to the
energy. The part of Eq. (14) which is independent of
the spin-wave occupation numbers, E2o, may be written

Q2

&oo= ——2 (4+)'(io )'Zk ok '
4», 12

Xexp[ik (ii+12)]. (A1)

The sum on k is determined by the value of the sum-
mand for large k because of the density of states. In
that region the spin-wave energy, e&, may be set equal
to just the exchange part, and

may write

bio(4 )'»i+io= (»i+4+»i-ii —~) (4 )'+& Qio(4 )'.
In the case of the face-centered cubic one must add the
term

(2&ooo—~)[(fi*) ]',
where by li* we mean either of the two nearest neighbor
vectors of the face centered cubic which are normal to
li. For the simple cubic lattice, body centered and face
centered cubics, respectively, F=2biio, 4M+4oo, and
5oii+5oii. Because of the cubic symmetry Pig(lo )'=0.
The coeflicient of (li )' shall be called 47rv;, and we
have for the simple cubic, 4mv~=booo+fiooo —2hio=2. 65,
for the body centered, 4~v;= booo+booo booo—boos-
=1.682, for the face centered, 4~v&=booo+4oo —hoi—boii ——1.025. The coefficient of [(l~*) ]', the extra
term for the face-centered cubic, is 8= —0.076.

Equation (A2) may be simplified to

c'cY 8
Eo' — v——Pi(/+f-)'+ —Pi(l+l*—)', (A3)

4J 4'
where 8 is dered only for the face-centered cubic. In
the usual order, it may be shown that

32
(i+i-)'= 4(1—r), —(1yr), 2(3+r), (A4)

9
~2K

E,'= — P (li+)'(lo-)'bii+ io.
16mJ»12

and for the face-centered cubic

Qi(l+l*-)'= 2(1—3r). (AS)

The b, were defined in Sec. U. A number of them were
evaluated by Van Peipe. 4 We have calculated the others
in which we are interested by use of Eq. (38) as well as

by numerical integration. In our notation, by, q is that
b, associated with the lattice vector whose components
along the cube edges are, in units of the length of a
component of a nearest neighbor vector, the integers

f, g, h. The values of interest are:

Simple cubic: bppo= 3.23, b1oo= 1.14, b2op= 0.82,
b11o= 0.70, b111=0 56.

Body centered: bppp= 2.187, b111=0.616 b2po=0. 456,

b22o
——0.366, b222 =0.317.

Face centered: booo= 1 395, b110 0 348 b200 0.231,
b22o= 0.168, b211=0.190.

Because of the symmetry, the value of any bfgQ remains
unchanged if its indices are permutted in any way or
reversed in sign. At this point we are ready to sum over
1& in Eq. (A2). The technique used here will also be
used in Appendix B to get the third order energy and in
Sec. V of the paper in the determination of the pi.
Those terms for which 12 ——~l, are separated from the
rest. For the remaining terms, except in the case of the
face-centered cubic, a common coeKcient exists. One

The last term in Eo" [Eq. (14)] has a Quite value at
k=0, where k= k,+ko. For small k this term is

Q li+li'l2 lo'Qk ek
JQ», 12

Q k '+k (4o'/&) [v, Q i(l*)'I+i

+(&/4 ) g, i+i i*-i*]

except for terms in k'. In the usual order again one Qnds

16
p, (t )'i+1-=4r, —(1—2r), 2(1—r), (Ay)

9

and for the face-centered cubic

i+i./*—pz 2 (3r 1) (AS)

Then, for the simple cubic, body-centered and face-

X[1+exp(—.ik li)][1+exp(—ik 1,)]
exp[ik, . (1,+1,)]

Xexp[i(k/2). (1 +1 )]P
Pi(1—cosk 1)

The sum on ki is related to the b, and one can show this
second. order term in 4, to be
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centered cubic lattices we have, respectively, neglecting
terms dependent on k,

8,"= v X(e'/J) (I' —1)—20v (I'——') (e'/J) Q k nk

E2" —(8——/9) v,A'(e'/J) (&+1)
+(1«/9);(I' —!)("/J) Ek n. ,

gp= —~ (g'/J) Pv, (3+1')+(8/Sm) (1—3I')]
+ (p/J)L10v, (I'——,')+ (58/2') (1—31')j Qk nk.

Notice that the coeKcient of I' in the energy per spin
wave is exactly 20/N' times the coe%cient of I' in
the 'zero-point energy, independent of the evaluation
of the parameters v; and B.

APPENDIX 8

Ke calculate the third order contribution to the
energy. If products of the ek are neglected,

(n~Va
—'X'a—'V(n)

Appendix A. By the methods of Appendix A then it
may be shown that

'Vk

6k&

X
exp(ik' 1)(cosk I—1)= v,—vk*,J

Sk 2V

gk gq —exp(ik'. 1)(cosk 1—1)=v,—vk,

Again neglecting products of the nk and for k+ k' small,

(n
~

Wa-'SC'a-'~
) n)

when substituted into Eq. (31).It follows that

(ni ~a-'X'a-'V in&

4
= —v; —Qk

~
1+4nk—Qk nk

~
. (B2)

4 ek 4 E )

&k&k'

Pg exp(ik' 1)4» k' ~k~k

26

g k, k'

(Qk+Qk )(Qk +Nk —nk+k )

6k+6k' Ek+k'

Xnk+k' (&3)
X(cosk 1—1)

~
1—pk" nk" +2nk+2nk ~. (81)

E
It may be shown that the effect of the 8 parameter is
negligible beyond the second order as considered in

Except for the term containing uk+k this is just
v;(n~'tta "L~n). This other term vanishes for k+k'=0,
and may be neglected otherwise since the coeScient is
small compared to that of the term we keep.


