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This relation is also a consequence of the unitarity of
the S-matrix.

—(v ~(0) (Z I ~)(~ I) ~~(0))=0.
dt

and the operator ln)(nl commutes with the Hamil- Thus we obtain
tonian. The last expression is then
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The correlation energy of the electrons in a semiconductor is expected to be less than in a metal with the
same electron density. The reduction occurs because the existence of an energy gap between filled and
empty states tends to increase the magnitude of the energy denominators of perturbation theory. This
eGect is studied in a simple model, based on the calculations of Gell-Mann and Srueckner, in which the
semiconductor is represented as a free electron gas with an energy gap above the Fermi surface. The cor-
relation energy then depends on the ratio of the energy gap to the valence bandwidth as well as on the
density. It is shown that for an energy gap large compared to the bandwidth, second order perturbation
theory is correct; while for a small energy gap, an explicit correction to the Gell-Mann-Brueckner series
can be obtained.

INTRODUCTION

HE correlation energy of electrons in semi-
conductors was first studied by UR'ord' who

applied second order perturbation theory to a simple
model of a semiconductor. He showed that the second
order theory gave a finite correlation energy (in opposi-
tion to the case of a metal in which a logarithmic di-
vergence is found), but obtained a logarithmic depend-
ence of the correlation energy on the energy gap. This
conclusion requires revision in the light of the results of
Cell-Mann and Brueckner' who showed, for a free
electron gas, how the contributions from all orders of
perturbation theory can be summed to give a 6nite
correlation energy. The correlation energy in a semi-
conductor must approach this limit as the energy gap
goes to zero.

It is impossible, in the present state of knowledge of
wave functions in solids, to make a detailed calculation
of the correlation energy of electrons in any real crystal.
A simple model must be chosen. The essential feature
in which a semiconductor or an insulator differs from a
metal is in the presence of an energy gap in the one
electron excitation spectrum. A simple model of a semi-
conductor would thus consist of a free electron gas
(with an effective mass ratio m*), which has an energy
gap above the Fermi surface. All other eGects of the
crystal structure are to be ignored.

* On leave of absence from: Department of Physics, University
of Miami, Coral Gables 46, Florida.

' C. W. Ufford, Phys. Rev. 59, 598 (1941).The "exchange cor-
relation energy" was neglected in this calculation.

2 M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).

In the language of perturbation theory, we consider
an infinite system with X electrons per unit volume
which interact through Coulomb forces. The unper-
turbed wave functions of the system are Slater deter-
minants of plane waves, but the energy of a one par-
ticle state of momentum p is

e (p) =p'/2mm* 0 &p &p r,
e(p) =p'/2mm*+Eg p) p p,

where pp'=3sr2O'X. If the total energy of the lowest
state of this system is calculated according to perturba-
tion theory, with the Coulomb interaction as a per-
turbatiog, the Fermi energy and the exchange energy
are the same as for the ordinary "free electron gas, "
but higher terms in the perturbation series are diGerent
because the energy gap, E&, appears in the energy
denominators.

The second order term in the perturbation series for
the energy per particle can be written (following the
work of Macke')

—3e4

dp,
t'

16k pr sr ~ ~pq&pr ~p, &pr
l f1+a I &Pl l u2+a I &PI

XLq' (pi'+ p2'+ tl')/mm*+Eg j-'
1

. q" 2ci"(pr'+p2'+q')'

It is convenient to introduce dimensionless vectors
' W. Macke, Z. Naturforsch. Sa, 192 (1950).
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q, pi, P2sucll tllatq qPF pi plPF p2 p2Pi
introduce atomic units (with energy measured
rydbergs).

to
in

volume element quite complicated. For q) 2, we obtain
a contribution 31/452r22g while for q&2 a Monte Carlo
integratiOn gaVe [0.45+0.03$/2r22g. The reSult iS then

—3m* p
dg

82r' " "p, (i
I V1+q l &

dpi'
~Jp

]y2+ql &i

dp2
E2= —0.263m*/2g.

Since ~g is itself proportional to m*, the dependence on
the effective mass in (5) is illusory, and we have

X[q (pi+P2+q)+2gj '
E,= —0.263/2g', (5a)

1 1
X —— (3)

20 (pi+p2+q)-

In this equation 2g —mm*Eg/p—i2=Eg/2Er where E2
is the Fermi energy. It will be convenient in the follow-
ing discussion to consider eg (rather than Eg) to be a
given parameter, which characterizes a particular semi-
conductor. Higher terms in the perturbation series may
be constructed in the manner of Gell-Mann and
Srueckner. It is important to note that each energy
denominator contains eg.

LIMIT OF LARGE ENERGY GAP

The character of the perturbation series is quite dif-
ferent according as the energy gap parameter eg is
large or small compared to unity. The case of large
energy gap is the simplest, and will be considered first.
In that case, we may expand each term in the per-
turbation series in inverse powers of eg. The leading
contribution from the second order is of order eg ',
third order eg ', eth order eg "+'. Actually higher terms
of the perturbation expansion are divergent, but we
can easily sum the divergent parts of the series prior
to integrating; in a manner exactly analogous to the
Gell-Mann-Brueckner theory, and so obtain a finite
correlation energy. The result contains terms of the
order eg lneg coming from the elimination of di-
vergences; but the second order determines the eg '
term correctly.

To evaluate the coeScient of eg ', we can neglect the
term q (q+ pi+ P2) in the denominator compared to 2g.
We then have

3m
t ltd' f f

E2= —dpg dp2
Sm'2@ ..~ q' &

1
dyi dP2(q+Pi+P2) ', (4)

2J q2a

(subject to the usual restriction on Pi and P2). The first
integral can be done easily in a coordinate system
suggested by Macke. ' We obtain a contribution

—56m*/152r22g.

The second term is more complicated. For q&2, all
values of Pi and P2 such that Pi, P2&1 are allowed; for
q(2 the limitations on the initial states render the

where eg'=mEg/p22, the ratio of the energy gap to
twice the free electron bandwidth.

The complete second order perturbation integral (3)
could, of course, be evaluated exactly, although the
calculation would be quite lengthy. However all terms
in the result of higher order than the first in eg ' would
be modiled by higher order perturbations. Equations
(5) and (Sa) are, however, exact for this model in the
limit of very large energy gap.

The result presented in Eq. (5) cannot be considered,
however, to approximate the actual correlation energy
of electrons in any real insulator. The limit of energy
gap large compared to bandwidth occurs in materials
for which the electrons are strongly localized on atoms;
the case of extreme tight binding. Under these circum-
stances, the correlation energy, which is essentially the
error in the energy computed in the Hartree-Fock
approximation, is principally due to the failure of that
approximation to yield the correct localization of elec-
trons on individual atoms, and does not vanish in the
limit of very large eg.

LIMIT OF SMALL ENERGY GAP

If the second order perturbation (3) is evaluated in
the limit of small eg, a term proportional to lneg is ob-
tained, as was first shown by Ufford. ' However, if the
perturbation series is summed prior to carrying out the
integration over g, the result is not only 6nite at t.g=0,
but possesses a finite first derivative (with respect to
eg) as well. If the correlation energy in this model is
expressed as a series in eg for small ~g the zero order
term must be the correlation energy of the ordinary
free electron gas, which is given correctly by the Gell-
Mann-Brueckner theory for small r~. Then there is a
term, proportional to eg, whose coefFicient is a compli-
cated function of r8. If this coeKcient is expanded in
powers of r8, we may expect the Gell-Mann-Srueckner
treatment to give correctly the lowest two terms in
this expansion, corresponding to the fact that two terms
are also obtained for the free electron gas. The per-
turbation series does not possess a finite second deriva-
tive with respect to eg at kg=0, so we must expect
terms of the order eg' lneg to be present as well. Co-
ef5cients of such terms would also be given correctly
by this treatment for high density, but to evaluate the
correlation energy for arbitrary eg, though possible in
principle, would require very extensive numerical in-
tegration. We will obtain here only the coeKcient of eg.



J. CALLA WAY

12m~ " '
dq

~ du t —Rp(u)
(BEgq

& Beg) p

—12m* t" p'dq
dQ

~p q
(BRq 1 t'Bb ) (Best'&q

x
I I,+I I +I(B«) p 1+XRp//q (Beg) p ( B«) p

q'E(q&u) Jq'q'
t

XR~-
x —

I

—
I »I 1+—

I +B+.s"', (6)
&)) E q )

We will consider Bb/Beg and Bss&'&/Beg separately. We
must, now determine E(q,u). From (9)where X=4m*/sps=4m*nrs/s-; B is a term added to

ensure that all second order contributions are included,
and ~~"& is the exchange correlation energy. The de-
pendence on the energy gap is incorporated in the
function E(q,u). This equation is obtained by carrying
out the summation involved in Eq. (22) of reference (2).

The presence of an energy gap modifies the pro-
pagator employed by Gell-Mann and Brueckner to
reproduce the energy denominators of perturbation
theory. With reference to Eq. (12) of reference (2) we
use as propagator

(qx+ eg/2)
R(q, u) =q sdg.

& p (qx+eg/2)'+q'u'
(12)

Thus

t' BR) 1 t' (u' —x')
Ldll

(Beg) p 2q& p (us+xs)s

= ——Pln(1+1/u') —2/(u'+1)7. (13)
4q

Following Gell-Mann and Brueckner, the correlation Eq. (6) with respect to sg and finds

energy per particle at high density is given by

F,(t) =
P(1
la+el »

dp expL —
I tI (rsq'+41. p+ —',eg) j. (7) We find also, in agreement with reference (2)

LE(q,u) j4g =o—=Ep(u) = 1—u tan '(1/u). (14)

The integration over q in Eq. (11) can now be per-
formed. Put S(u) = —q(BE/Beg). We then have after
making a high-density expansion

The function E(q,u) is then

E(q,u) =—
lu+a I

d y glftt Q

duR p(u) S(u) Lqs (1+XRp (u)/q') $
—'dq

xexpL —
I
t

I
(-'.q'+q. p+ «)ddt. (8)

The integration required to obtain an exact evalua-
tion of (8) would be very complicated, and the result
would not be very useful since only a fraction of the
entire perturbation series is included. However, to
obtain results valid at high density, it suffices to make
sure the apparent divergence in second order (for the
ordinary free electron gas) is properly removed, and
this can be accomplished by using a small q approxima-
tion in (8). Then

q
R(q,u) =— xdx e""&expI —

I t
I (qx+eg/2) jdt. (9)

Although this integral is relatively simple to evaluate,
the result is still complicated, and the remaining in-
tegrations involved in Eq. (6) become quite dificult.
We proceed to expand Ez as given by (6) for small eg

(BEg '4

Ec(«)=Eg(0)+egI I+O(sg', eg' lneg). (10)
EBsg) p

1 t tEpq&
S(u) prI I))

It is now necessary to evaluate the last two terms in
(15). In a manner analogous to reference (2), we have

3m

8s'& q'"p, «
le~+el »

f
gp~

0 p, gg
i@2+el &&

6m* t' p'
XI tl (yi+ps+q)+sg)-'+ ~' dq xdx ydy

The remaining integrals have been evaluated nu-
merically. The result is

(BEc)
I

=0.144(m*Pp)' —0.0587m*
(B«) p

BB ) Besis~

+o(..)+I I+I I. (15)
LB«J p ( Bsg ) p

The leading term Eg(0) is the Gell-Mann-Brueckner
formula' (with an effective mass m*). We differentiate

4 Ec(0)=4N*L0.062 1n4a4r, —0.096j.

XI:q(x+y)+«3-'. (16)

5 The limits of integration in (11) are slightly modi6ed from
those of reference (2). A corresponding change has been made in S.
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(86 ) 3m* tdq t=+ — dpi dp.
Lcjpg) o 87r'" q'~ pi&i "p,«

I Pi+&I » I u2+a I »

Bpg ) p 167I „q „p&&1 „p2&1
I y1+el && I 92+el &&

X ( (q+ pi+ pp)'[q (q+ pi+ p,)3}-'. (18)

XLq (pi+pp+q)1 '—6m t'dq
xdx

This integral is quite complicated. It has been
approximated in the following manner. For q &2, we
set (q+pi+pp)'=q'+1, following a suggestion of Hub-
bard. o For q) 2, we set (q+pi+p2)'=q'. Under these

X (x+y) '. (17) approximations

The first integral can be done in a fashion suggested

by Macke. o The quantity (83jcjpg)p is actually finite
since the apparently divergent terms cancel if the inte-
grands are combined, prior to integrating over q. The
result is

( 85 ) = —0.042')m*.
(cjpg) p

There remains the second order exchange correlation
term. From Eq. (3) we find

( Bob&'& ) = —0.056m*.
( apg),

Then the Anal result is

Eg (pg) —Eg (0)=$0.144 (m*p p) l—0.158m*)pg
= EO.200 (m%8) ~—0.158m*1pg.

(19)
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