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Ground-State Energy of Bose-Einstein Gas with Repulsive Interaction
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The explicit evaluation of the ground-state energy of a Bose gas interacting through a two-body re-
pulsive potential as an expansion essentially in powers of the density of the particles and the scattering
length is given. It is shown that the problem can be treated by using diagrammatical analysis up to any
orders. The energy was investigated up to the fourth order in the ordinary sense of a perturbation expansion
in terms of the scattering length, but including terms up to infinite order for special classes of diagrams.
The energy obtained contains in general a Z„C„p"lnp (a~2, half-integer and integer) dependence, and
the coefficient C2 is evaluated. A self-consistent treatment is given following this analysis and is shown to
lead to the formulation of Beliaev.

'HE purpose of this paper is to carry through the
evaluation of the ground-state energy of a Bose

gas, interacting with a repulsive two-body potential,
in an expansion in terms of the two-body scattering
length at zero energy and of the density of particles, by
using an analysis in terms of diagrams. The method we
use for this purpose is to expand the "strength" of
the potential energy J'v(r)d'r consistently as a power
series in the two-body scattering length n at zero energy,
and to represent the potential as a power series in o.

multiplied by the "shape" v(r)/ J' (vr') dr' of the poten-
tial (Sec. 1). Then this is used for the perturbation
evaluation of the energy regarding the scattering length
as an expansion parameter. The idea is similar to that
of the pseudopotential method' and the procedure we

employ is that of the E-matrix method. ' The main
difference is that we keep the shape'of the potential
in its original form to maintain the space locality of the
interaction, and makes correction term-wise because in
this paper we want to evaluate everything in powers
of n. In Sec. 2, in the expression of ground-state energy,
we replace the operator which represents the creation
and annihilation of zero momentum Bose-particles with
the operator consisting of the total number of particles
(c-number) and the total number of excited particles
(operator). Then, analyzing the expression of energy
by diagrams, we show that there appear apparently
disconnected diagrams which we should take as "con-
nected" diagrams (a kind of nonlocal interaction). The
effects of these "connected" diagrams are shown to be
amalgamated as the change of the one-particle energy
and the change of the total occupation number which
appeared in the above replacement of zero-momentum
operators. The ground-state energy is evaluated in
Sec. 3 up to fourth order in the ordinary sense of a per-
turbation in the scattering length, partially including
special diagrams up to in6nite order; the role of the ap-
parently disconnected "connected" diagrams is revealed

in fourth order. The energy takes the following form, a
being the length which appears in the "shape" of the
potential

2s pu -32V2
Es= 1V 1+ (S~pus) '*+Gr (Sspu') '(Ssrpua') &

m 15m

+Gs(Ss pu')+Gs(gs pu') ln(S~pua')

+higher order power series in (Strpu')'*,

(Ss.pu') l, ln(Ss.puas) and (u/a) .

We have evaluated GI and G3, and found GI to be
dependent on the shape of the potential, but Ge is
independent and is es —(3)&/s. . These are the leading
corrections to the now familiar result if Ssrpu'«1 (u ~a).
In Sec. 4, the self-consistent formulation, which pro-
duces amalgamation of the effect of apparently discon-
nected "connected" diagrams into the one-particle
energy change and effective total number change, is

given and found to lead to the same formulation as
Beliaev's. '

l. EXPANSION OF POTENTIAL ENERGY INTO
SERIES OF SCATTERING LENGTH

Let us consider a two-particle interaction having the
form of a "soft-core" potential given by:

v(r) =0 for r) a
= Vo for r(a,

r being the relative coordinate. The potential v(r) can
be written in the following way:

v(r) =
~

v(r')d'r' v(r) v(r')d'r',

s ' S.T. Beliaev, J.ExptL Theoret. Phys. U.S.S.R. 34, 289 (1958)
Ltranslation: Soviet Phys. JETP 7, 289 (1958)g.
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On leave of ahsence from Tokyo University of Education~ where we call J'v(r)der the strength of the potential for
Tokyo, Japan.

1z,ee, Huang, and yang, Phys. Rev. 106, 1135 (1957). the reason that it rePresents the strength of the Poten-
' K. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957).

The energies we evaluated in this paper are the class of correction
we stated earlier in Sec. 5 of this reference.
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tial in momentum space at zero momentum:

s(q) = v(r) exp(iq r)dsr;

and call s(r)/J's(r')dsr' the "shape" of the potential
because it is normalized to unity in momentum space
at zero momentum, and its high momentum tail
depends strictly on the shape of the potential we use.
LIn this paper, we assume, besides the form (1. 1),
potentials which have a general shape, mainly repulsive,
in such a way that when the scattering length n -+ 0+
the potential vanishes. g For the potential (1. 1) we can
write down explicitly the scattering length at zero
energy:

tanht (Vog'jm) &j.
(Vogs jr')'

Hence, by solving (1.2) for Vog'jN as a power series in
n, we can get an expansion of the "strength"
1's(r)(Esr= (4s.g'/3) Vo. For a more general interaction
it is diflicult to obtain the equation corresponding to
(1.2), and we adopt the following procedure, which in
fact is more suitable for practical application than is
(1.2). The scattering length at zero energy, (r, is related
to the scattering matrix t by the following equations4:

Eliminating zoo;00 from the lower equation and solving
it for fq 0. 00 as a function represented by foo 00 and f,
then putting it back into the first equation, we get
'voo;00 as a series in too;00' then from (1.4) we get an
expansion of the potential energy into a series in t00., 00

(writing tpo;00 as jo):

p1q- -)11' t
1q'

s(,j), is= «—«'
I f f-I —fo'

I f f f-I —-2l f fI-Eg) (gg) Eg)
(111) (iq(11)—«'

I f f f-f-I -—5I f fII f-f f-I-
. Eggg) (g) Egg)

ir 1 )'- (1111)
+3l f fI —-«'

I f f f f-f-I--(g) Egggg)
I 1) (111) (11)'—6I f fll f-f f fI-—3-l -f f f�--&lg�jEgg &gg j
(1q'f 11~

+21l f fI I
-f f fI--

&g) Egg)
p1 ~'—14l f f I

— —f';is&g)

=Z &('j);(""'
9g=1

(1 3) where [f(1/g) f(1/g) . (1/g) fj meatus

«0; 00 800;00+/ 500; 0—0 fq q;00)-
qN V q —q'/jts

(1.6)

00 0—q 00++ (0 q) q 0 fq 0"00&

0 —q'0/jw
where

s;jis= b.,~js+—i~ e,xpLi(j —k) rate(r)d'r,

fjj.is v((j), ik
f
s(r')dsr'

=~('ji, (0/~00, oo,

1
foo;00 &00;ool 1+2 foo;q qfq, -q;00-

0 —0 jN
(1.5)

1
&q-q;00 =&00;ool fq 0;00+2 fq;0;q';-0' &0 0;oo I.

0 —q'0/jjs

' B. Lippman and J. Schwinger, Phys. Rev. 79, 469 (1950).

t/' is the normalization volume of the system, and
e~;;~,.p, means

1ls((jhu = s(z(j;u+uj';u)

The expansion of the "strength" in powers of the scat-
tering length at zero energy can be performed in the
following manner; erst rewrite the Eq. (1.3) by intro-
ducing the "shape" of the potential.
"Shape" of the potential:

Q]. Ql —Q1. Q2 —
QQ

'
Qng" q~ —qrs/jets —

qq /m q~'/jts—
We use abbreviations zoo;q q=&qo;oq= &q, f—oo;q q= fq—q;oo- —

fq in the follo—wing paragraphs.
It can be seen quite easily that the coeKcients in

square brackets play a role in cancelling the energies of
two interacting particles at zero energy higher than the
Grst order in expansion of to, ' in fact, the coeKcients
can be determined to arbitrary order by using this
condition. For the case of model (1.1), we can evaluate
the coeKcients immediately by comparing the expan-
sion of Vog'jN in terms of (0/g obtained by using Eq.
(1.2) and the expansion of (1.5):

4rr(r ( 1
foo;00= =&00;oo+&00;00

I ffl-
jjsV E g )

1 1
+&00;00'I f f fl+' ' ' (1 &)—-(gg)

0 The energy of the two-particle system consist of O(1/R)
+0 (1/R')+ ~ ~ ~, where R is the radius of the normalization volume
V. What is meant by "cancel" is only for the energy of order 1/R.
This part of the energy only plays an essential role in the many-
body problem; see reference 1.
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and we get

] 1 q 3Vm t 11 y (3Vmq'
I f f-l= —0.4000,

I f f f-I-=0.1619I
& a ) 4»ru ( aa ) E4ru)

t' 1 1 1 p t 3Vmi P

I
y-f-J-f I= —0.0656I

4 aud J (4»ra)

and

and I' is the chronological ordering symbol,

v(t) virfppve iHpt—

v= pvoso(sp 1)+gq sq(vq+vo)pro

+s Qq P»*P,*v,P»Pp+c. c.
+Q» Qv P» Pv s (vq+vv)Pv+»Po+c c.
+s Zv Zv Zq P~»*Pv *v»Pv+»Pv,

(sums do not include momentum 0) (2. 4)

)3Vmtoq
v(th);&p=tof't;u 1+04000IL4aJ

where the P, 's are annihilation operators of bosons with
momentum q and the e's are number operators.

We here note that the evaluation of (2. 1) with the
(3Vmtpy ' (3Vmto) ' wave function of the state with N free particles in the

+0»00I I +0 06141 —
I
+" ground state is completely equivalent to the evaluation

0 4~a ) E 4~a ) of the same quantity with replacement of v L(2. 4)) by

We shall see in the following paragraphs that if we
evaluate the energy of the system by expansion in
powers of the scattering length n, the second, third, . . .
order corrections to the energy, which have the same
structure as the combinations of f appearing in (1.6),
are nearly cancelled and the energy of the system (this
kind of energy we call energy coming from scattering)
becomes a series with much smaller coeKcients than
the above figures. (Higher-order corrections cancel
out' for the two-particle system with momentum zero,
only the first order surviving; for the many-particle
system the free-particle energy is changed by the
presence of the other particles and a term of the form

(fl (1/a') —(1/a) jf) appears, the difference a' —a
being of order at least u.) The real restriction for ex-
pansion of energy of the system about scattering length
should be found in the eRect of many-body interaction
via two-body interaction, the contribution of which to
the energy has different structure in terms of f than
(1 6)

(A vU='( —~ 0)4o)
a&o= »m~ (y, , U.-'(—~; 0)yo)

(2. 1)

where gp is the free ground-state wave function of N
bosons, and

U„'(—~; 0)

( s)n ~o,o

P(v(tr)v(tp) .v(t„))

Xe~«t+tp+ +«&dt, dts ~ ~ .dt„. (2. 2)
P M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

2. TRANSFORMATION TO EQUIVALENT PROBLEM

The ground-state energy of the system can be ex-
pressed explicitly by the equation given by Gell-Mann
and Low, ' which is the time-dependent version of the
Brillouin-Wigner equation for the energy correction;
following their notation, we have

H; t=v= ', vp(N -Pql—q)(N Pqq—sq 1)—
+P„qs„(v,+vo) (N —P, I,)
+s Z. P.*P .*v,l:(N -—Z, ~.)
X (N —p, ps, —1)j~+c.c.

+Zq Z. P»*Pv*s (vq+v. )

xP, (N —Z, ,)'+"
+s Zq En &n P~»*Pv*v»Pv+»Pv

oQ

deal

v(N)+P N" v(1V)
m-I dg~ m.'

(2. 5a)

where

( P, qs, )"
x

I

—
I

+c.c. ,
N )

(2. 5)

by using a similar argument to that used by Goldstones
for the fermion case. The remarkable diRerence is that

' This statement holds exactly for 1V —+ ~, because for the equi-
valence of two quantities we need the condition 37—Z~ e~~0
in every intermediate state.

P J. Goldstone; Proc. Roy. Soc. (London) A239, 267 (1957).

v(N) =-,'vpN(N —1)+g„n,(v,+vo)N

+Zq P»*P q*v»LN(N -1)j'*—
+Z.Z.P.*Pv*(vq+v.)P.+q(N)

'*

+s Zq Zv Ev Pv+»*Pn*v»Pv+»Pv

with respect to the no-particle state, 7 where the P's now
refer to particles with finite momentum.

Noticing the above fact, we can represent (2. 1) and
(2. 5) by diagrams representing interactions, and we
can show that they can be reduced to the connected
contributions only, namely (denoting the no-particle
wave function by fp):

C 1
A&»=I po, Q & pI K t I lto I, (2 6)

connected, n t —IIp ) )
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when (2. 1) and (2. 5) are represented by diagrams we

have, as "connected" diagrams, diagrams of the
form shown in Fig. 1 by the presence of the term
which consists of a product of N (d /dN )t(N) or
N (d /dN )vt (N) and (—Pq nq/E) in the interaction
energy; for example, the first one represents FIG. 2. Second class of disconnected "connected" diagrams.

1 ( d
—'P[N(N —1))&v, i

N v(N) i

q /qqs & dN ~ qmq

diagrams which have all possible relative positions of
interaction with respect to each other; for example, in
the second graph, we first sum over all possible relative
positions of the last interaction as shown in Fig. 1(b);
then the energy denominator of the last connected
graph is disentangled from the rest and acts at X of
graph b. For each possible relative position of graph b,
by summing over all possible positions of the interaction
X as above, we have Fig. 1(c). Again in this sum the
energy denominator is disentangled and the complete
sum becomes a product of separate denominators
(1/ao') (1/M'f ")(1/cc').'

There appear in (2. 6) also graphs of the form Fig. 2,
namely diagrams in which one or more —Pq qsq/N are
acting in the diagram without introducing new isolated
loops, but as we shall see in the following we can discard
these graphs completely.

To estimate the contribution to the energy from
diagrams, first we can show by a simple counting that
the connected diagrams which consists only of v(N)
and vt(N) give an energy proportional to the total
number N, ~O(N)+O(1)+ . The effect of the
"interaction"

1
X vq[N(N —1))*sQ[N(N 1))'vq'—q'/m

Xqnq
N

-ql

H

v, [N(N 1))&, —1 p 11 1

—(q'+q")/m i. N) (—q'+q")/qN

where [N (d/dN) v (N)), , is the expression P v qsv

X(vv+vs)N obtained from differentiations of s[v(N)
+c.c.).[The interaction obtained by differentiating the
first term in v(N), namely (N —rs) vc(—Pq nq), produces
the change of free-particle energy. ) But because these
"connected" diagrams are apparently disconnected, we
can write them as products of independent sums over
particle momenta. This can be proved by adding

—V(N)
dN

2
V(N)2: dN2 Xqgq

N

d 1 ( Pqqs, )"
Q N" v(N) —(

—
~

+c.c. ,
dN~ m!( N )

gv
a b c a b

(b)

U UU U U~ Ug
a b a ba b a b a

V g

Q
a'
all (d)

FIG. 1. First class of disconnec ted "connected" diagrams.
(h) The energy denominator of Eq. (2. 6) for the last diagram &s

1 1 1 1 1 1 1

a a+c a+b+c a'+b'+c a'+5"+c' a'+c' a'

('c) Relative position of diagram b. (d) Energy denominators
b(=b') =c(=c') (X represents .—Zqqqq/N).

roduces two two kinds of diagrams [apart from thepro u
1one-particle energy change (N ——,)vc(—Pq qs )asqmen-

tioned above). The first one is of the form given in Fig.
1, the contribution of which to the energy can be repre-
sented as a product of contributions from each diagram
as was shown above. In these graphs, each —Pq qsq/N

acts on the completely separate self-connected loop. In
estimating the order of energy coming from these
diagrams, we note that (—Pq Nq/N) is of order 1/N,
while each N"(d /dN )v(N) or N"(d /dN~)vt(N) is
of order v(N) or vt(N). Hence in the first class of dia-
grams (—Pq I,/N) produces (1/N)", with qqs+1 loops
which consist of the interaction of order v(N) and
vt(N), and the latter loops give rise to energy O(N +')
(because a single loop with interaction v(N) and vt(N)
gives a factor proportional to N, the total number);
the total contribution is thus proportional to the total

~ If two or more of the same diagrams are containe in ap-
parently disconnected "connected" diagrams, the above process
counts diagrams 2 t, 3 I ~ times, hence we must divide by these
figures. For instance, Fig. 1(d) for diagrams b equal to c, gives as
the contribution

1 1 1 1

2 t aa'a"a"' lb' cc'
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number N. In the second kind of diagram —Po n, /N
acts one or more times without producing new loops as
in Fig. 2. These give, with given (—P, n,/N), a
number of loops less than m+1; hence the energy is
equal to or lower than order one. To get the total
energy of the ground state up to order E, we need
therefore only consider the first class of "connected"
diagrams.

3. GROUND-STATE ENERGY

In this section, we take into account the eGect of the
change of one-particle energy in zeroth order, which
comes from the first and the second terms of v (2. 5a);
they give

(b) Second order. —The contribution of iteration of
the 6rst order interaction, and the second term of (3.1)
with»&" fv&'& is the second term of (1.6)j, is

1 1
ZEo&'&=-'Nstos Q foI- If;

o & —(q'/m) 2N—tof, —q'/m~
(3. 3)

we actually have for the energy denominator 2N—tof,—2tofp instead of 2Nt p—f, and for the erst factor
N(N —1) instead of Ns, but the omission of —2tpfp and
—E is justi6ed because they contribute to the energy
of order one.

Here we note that f, is
—,
' pN(N —1)+Q „(„N+-,' o)

—p»(Z. &.)'—Zv &v&v Zo &o fo(:foo;p o) = -exp(ill r)v(r)d r " ()d",
and we have for the Hamiltonian,

a=P, ~„t (P /2m)+. .N+-;.o)+-;.oN(N —1)

—s»(Z. N.)'—Z.~.v. Z. ~.

+-', v'(N)+ Q N~ v'(N)—
m=~ dÃ" nz t

q= (2Ntpm)&x= (Srrpn)&x, (3.4)

and is only comparable to one for momentum q smaller
than 1/a, where a is the core radius for model (1. 1),
and for more general interaction it is the length ap-
pearing in f Changi. ng the variable of summation in
(3. 3) from q to x defined by the equation

with

&& I

—
I

+c.c. , (3. 1) one can write (3.3) symbolically I using the abbrevia-
tion 5= 1/(2Ntpm)~aj as

v'(N) =Zo Po'P o*&oLN(N-1)1'—
+Z. Z, c,*e.*(,+ .)~,»

—
o Zc Zv &v &~p*&v'&oPv+o&v.

In (3.1) we put for v the expansion of v in powers of to

(1.6), and represent the Hamiltonian as a power series
in to. We take as zeroth order energy of the excited
particles'

g„$(p'/2m)+tpf„N jrt„(3.1')

because, as was discussed in B.S., without inclusion of
the "gap" we cannot proceed with a perturbation
evaluation of energy in the expansion in powers of to

owing to the appearance of infrared divergences in the
higher-order energies.

We evaluate the ground-state energy following the
order of the ordinary perturbation calculation; namely,
we call the energy which has two factors of to the
second-order energy. . . etc., and taking into account
some higher order contributions simultaneously, we
make correspondence with the actual expansion param-
eter, namely, as we shall see, (Srrpn')&, (Sana')&, and
n/a.

(a) Lozvest order. The second ter—m of (3.1) with the
first term in (1.6) is

gEoni = r N(N —1)to= Ã2v pn/m. (3. 2)
&p 1vVe can drop —2ivolV arid Z„N„2rv p from (3.1), because they

give only an energy of order one.

p( 1 1
N'tp'mV(2Ntom)& ~'

I

— Id'x.
I —x' —1 —x')

The integral over x converges even for (2Ntpm)&a ~ 0,
and the integral gives a series of the form

A+&(Sspna')&+C(Sxpna')+

The actual value is

2T'pQ
BEofsi=N (Sprpnao)&

—(15/S) (S~pna')i+
XI 1+ ' I, (3.5)—(2/~)(S p ')'+

where the 6rst term is for the potential with Vukawa
shape

f.= 1/I:1+ (qa)'3,

and the second is for a sharp cutoG in momentum space
(an oscillatory potential with the main part repulsive

FIG. 3. Pair creation-annihilation
diagram (I).
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~ +

a Vo"' N(N-»

Fio. 4. Diagram which gives energy of the order puX (pn')i.

in coordinate space)

f,=1 for q(1/a
=0 for q) 1/a.

Ke can see that the eGect of the "shape" function
appears as a power series in (Sorpna')i, a number which
is usually larger than (Sirpns) i.

The considerations in B.S. show that there are also
terms which contribute to the same order of the energy
expansion in pn(pn')i in the apparently higher order
graphs (in the usual sense of expansion in powers of tp).
Namely, if we add two factors Ntp to some converging
graph, then we increase two energy denominators and
introduce no further momentum summations, producing

a pair-type interaction as shown in Fig. 3.The resultant
contribution to the energy can be represented by multi-

plying the original expression of energy inside the
momentum summation by the factor

(Ntp)o
Dq /m)+BiVt, 5

'

by changing to x(3.4) ~
X4 ~ ~ ~

where. . . contains the number of the order one which
is provided by the presence of the "gap" Ntp in the one-
particle energy in (3. 1) (in the x variable it is of order
one), and saves the infrared divergence of the integral.
Namely, these interactions must be included to get the
correct coeKcient of pn(pn')i in the expansion.

This class of diagrams is shown in Fig. 4, and the sum
of these diagrams is just given in B.S., with a slight
change in notation

1 1
~z, & &'=-;N't, 'P f, I

o (—(q'/2m) —Ntofo —{I (q'/2m)+Ntofp)s —(Ntof )'}'* q'/m)—

2irpn t'32v2 —(9/4) (Sirpnus)'+ ~

(Sirpn') iI +
m E .15ir —(2/or) (Sirpnu') i+ )

(3. 6)

where again the first line is for the Vukawa shape and
the second is for the sharp cutoR in momentum space.
The formula for the coeflicient of the (Sirpna')i term is

the leading term):

t&Epn&=N(2orpn/m)(Sirpn')
I 1+higher order

power series in (Sirpna')i]. (3.9)
2

Gi ——— —
I (f„)'—1g, where y=qu. (3. 7)

7i p

The pair-type diagrams for which argument (I) holds
and which contribute to this order in p, o. are given in
Fig, 5. But this S» is the first order expectation value of
energy which represents the scattering of opposite-
momentum particles;

It was assumed in obtaining (3. 7) that f„ is at least
1+O(y') for y~ 0.

(c) Third order. The third orde—r energy can be
written down as follows: The first term comes from

repeated scattering by e&'), the second and last terms
are sit&o&s&N(N —1) with t&pt'& the third term of (1. 6),
and the third term comes from scattering due to ~&2)

and. (»:

with the wave function including all pair excitations
with opposite momentum; namely, ground-state wave
function with Hamiltonian

Hz P Q~ ri„[(P'/2m)+——tpf„N]
+ ', (QpPo'P, *tpf,-N+c.c.).

If we transform variables to the p-representation which
was given in B.S. (20) sdefinedby+o ——Uf p, p,,= U 'PoU,
we can take the vacuum expectation value for p,-vari-
ables; then we get for the "shape"-independent part
Lwe take all f's equal to one because the final expression.
converges for f=1 and the effect of f appears as a

1 y p1q )1q'—2I f ,f II f f1+2—If fI, -(3 8)-Ea'i &ai Eu)J'
where a= q'/m as be—fore, a'= q'/m 2Ntpf„and- —
the quantity in square brackets is the two-body scat-
tering-matrix element 00~ 00. Transforming to the x
variable (3.4), one can see that the integral over x
converges in the limit of (Sorpna')i -+ 0, so the leading
term does not depend on a (we can take f=1 to get

+ +

Fzo. 5. Third order diagram with inclusion of eQect (I).

-)1 1l t 11)
&Wp&=lN(N —1)t'

I f ,f ,f I

—
I

—ff—fI--
E a' u' i & u a J
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V (2)

Fro. 6. Subtractive third order diagrams.

power series in (Sir&pna') l]

Ao
s,=—l~ !

2 & ~ 1—3')
j.

=-',N't, ol p( 4 —2(L(q'/2m)+Ntp]' —(1Vto)') '~
(3. 11)

where A, is defined in B.S. (23),' (the n in that equation
is now tp). But here, we must take into account of the
second order interaction in (1.6) which contains the

I'"ro. 7. Diagram
which contains scat-+ + + + tering. Second order
scattering. )

second order pair creation and annihilation operator
giving the diagrams of Fig. 6 where the small circle
represents the second term in (1.6), namely i&

"&

= —to'Lf(1/a)f]f. These terms are to be taken into
account together with the diagrams which represent
scattering of excited particles, as shown in Fig. 7,
because our second order term in the expansion (1. 6)
is designed to compensate the scattering. The small-
circle interaction S2 can occur at every vertex in S2
Lthe first two terms of So is the third term of (3. 8)].
The sum obtained by replacing the small circle with
the ordinary vertex tpf is just the same as the term
appearing in Fig. 4 multiplied by the number of vertices
in each diagram (in Fig. 4); hence

( 1 ) d
5'o= —to'l f f!—-l

-'N'to' 2( a J dto ( o —(q'/2m) —Nto —(L(q'/2m)+Nto]' —(Nt, ) ]l) (3. 12)

where because we must remember that Eto in combination with the kinetic energy is not the pair creation annihila-
tion vertex, we put a bar above the vertex. (3. 12) gives

So= ——,'N'tp' Q 2.—2 (L (q'/2m)+ Nto]' —(Nt o)') ' —(q'/m)

Finally, the diagonal element of LN(1V —1)/2]p "& is (we take all f's equal to one)

Noto' ( 1

2 ( 4 —(q'/m))
The sums of these three contributions give

(3. 13)

gg, (&)—
1Pt(&' ( 1 ) -o

+shape-dependent terms
2 4 (—2{L(q'-/2m)+Ntp]' —(Nto)') *' —(&'/m)

=1V(24rpn/m) (Sap&(') $(8/m')+. power series in 87rpna') &]. (3. 14)

From (3. 5), (3. 6), (3. 9), and (3. 14), we can see, as was remarked already in B.S. (51)—(54) o that the inclusion
of creation and annihilation of opposite-momentum virtual pairs (I) aGects the result rather slightly; namely
for DEp"&' it changes 1 to 32v2/15or=0. 9603, and for (1Ep"&', 1 to 8/4r'=0. 8106.

(d) Fourth order In this ord.—er, we encounter the simplest type of the apparently separated "connected"
diagrams. First, the scattering type of energy is always subtracting the term which comes from the interaction
appearing in the expansion (1.6) and is represented by the diagrams of Fig. 8,

AEo(4& scattering=1V(2irpn/m) (84rpn')1 [1+higher power series in (Sir&paa')']. (3. 15)

Because of the lack of divergence (ultraviolet) in the x integral in the limit of (Sitpaa')& —+ 0, the first term does
not depend on the shape of the potential a and is always unity even if we include higher-order scattering Lsee
(3. 23) in (e)]. The diagram Fig. 9(a) gives

2(-:N't') Z f;, XNto'Q f,o;, , ;—(q'/m) —2Ntofo 4' —(q"/2m) —L(q —q')'/2m] —(q'/2m) Ntp(f, +f, , +f, ,)—

&&2f',4 4'. oo fo, -fo- f„(3.16)—(q"/m) —(q'/m) —2Nt, f,
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—2/NN(N ——',)tp' N(N 1)tp—'
Zf. ,fq

— Z fq fq
2 0 L

—(qq/m) 2N—t 0f,]' 2 0' —(q"/m) 2N—t0f,
—2/N@2~ 2 g2I, 2 1

& f. . .f. & f. f;. (3. 17)
2 q (—(q'/m) 2Nt—pf,]' 2 0' —(q'2/m) 21V—t0f,

Equation (3. 16) can be interpreted as a change of energy of one particle in the energy denominator of the second
order diagram by an amount

where the first factor 2 arises because there are two kinds of diagrams (namely, each of two particles can have
"self-energy" diagrams), the second term in the curly bracket is due to the second order change of the one-particle
energy coming from P„m„v~")N in the second terms of the first square bracket of (3. 1), and the factor two in
front of the f is due to the possibility of exchange scattering. Also from (3. 1), we find the apparently discon-
nected "connected" diagrams shown in Fig. 9(b) which give

~q Ntp Q~ fqp;q —q', q'
q' E —(q 2/2m) —L(q —q')'/2m] —(q'/2m) Nt p(f—, +f, , +f,)

1
X2fq, . q', 0,.-fq —

fq I { 1 ')—{q"/m) )

because the expansion of

—',N'tpq Q f,
q —(q'/m) 2Nt pf—, 2D "&—

gives (3. 16); (3. 17) can also be interpreted in a similar

way with

fa&'&= —Nt 2 P f,. —(q"/m) —2Nto f;

These considerations suggest that the eGect of "con-
nected" diagrams which are apparently separated is a.

change in the one-particle energy and a change in the
total number appearing in v(1V) and vt(N). This dual
interpretation is possible only for the lowest-order
diagram t-Fig. 9{b)],because in this diagram we can
pack the effect of either loop on the other; in higher

(q-independent). (3. 17')

But for (3. 17), we must note that there is another way
of interpretation, namely as a change of total number
appearing in the second order energy; we note that
we can write (3. 17) as follows:

AN $F(N 1)]to'2 Q f;— fI
dS 0' —(q'2/m) —2Nt 0f,.

(3. 17")
where

y(I) y(l)

I) I)
) (

Yq"'(N (N-I)} 2

(2) (2

AN= —2iN(N —1)to' Q f
2

~
q t

—(q'/m) —2Ntp f,]'
(Q L '"O)2nd orderr

and ( )2nq«d„meanS th'e SeCOnd-Order ezpeCtatiOn
value of excited particle numbers with respect to the
ground state wave function of the system

8=Q „(p'/2m)rs„+ '[u(N2)+ c c]-..

Xq flq

N

Vq N —(N(N-I)}&

(N(N-l)}2

y (2) y(2) y(&)

+ + y ' + + + + +'y(4)

y(2) y(2) y{5)

FIG. 8. Fourth order scattering contribution to the energy.

qI ql

FIG. 9. (a) "Self-energy" type correction. (b) Fourth order
apparently disconnedted "connected" diagram. (c) "Vertex" type
correction.



1352 KATURO SA WADA

Before evaluating the integrals, suppose one connects
two-particle lines of some diagram, as shown in Fig. 11,
it introduces two tp with one S and two energy de-
nominators with one momentum summation, hence in
the x variables defined in (3. 4), the contribution to the
energy is to multiply the original expression with
(symbolically)

(II) tp'N Q
I:(q'/m)+ ]'

—+ fp'XV+A
1 1,1-~ (pu')

(2Nt()m)' x x

For the graphs of Fig. 9(a) and (b) or 9(c), the original

graph is given in Fig. 12(a)

tp'N' Q
q (qq/m)+

+Npn(pn-') & dx,

and hence for (a) or (b) I using the abbreviation b=1/
(2Ntom) ~a = 1/(Sv pna') ~]

1
Npn(pn') *]~dx (pn') '—=Npnpn')

'

where 1/(pna')'* b represents the cutoff provided by
the "shape" function, and the integral converges at the

orders, as is shown in Fig. 10, the interpretation which
we must take becomes to some extent Axed by the dia-
gram.

Addition of (a) and (b) gives

1
ggp(4)(~) = iNqtpq P f

q
I
—(q'/m) 2N—tpf,]'

y2(g (i)+g(q)) (3 18)

lower end (generally because of the "gap" of order
unity).

Thus, if we change the summation variable q into x
in (3. 18), then the integra, l over x diverges logarith-
mically in the limit of (Sqrpna')'* ~ 0:

2qrpn 1 I.-p 2L(3x'+6) i—1]
Pgp(4) (~) —g 8~~~3

7r 4p (x'+1)'

+power series in (Sqrpna')'*,

where the numerator of the integrand is the sum of
two "corrections" (3. 16') and. (3. 17') to the one-
particle energy, and the power series in (Sqrpna')& is
the shape-dependent part of this energy change (note
that 6q")+6(q) converges even if one puts f +1).—We
can determine the coe%cient of the logarithmic term
independent of the shape of the potential:

DEp(4)(') =N(2 pqnr/m)SqrpuoL —((3)&/qr) ln(Sqrpnao)

+constant+power series in (Sqrpna')&]. (3. 19)

One should note that besides the In dependence, the
pn3 dependence of the constant term is the same as the
third-order energy DE&(').

The inclusion of pair creation and annihilation
diagrams (I), which we expect to contribute to the
same order in pnpo, ', brings in more energy denominators
without increasing the number of momentum summa-
tions and hence there appears no divergence in the
x-integral in the limit of (Sqrpua')& going to zero. For
this reason, there appears no logarithmic term from
these diagrams; of course, the constant term is aGected
by these diagrams Lthe converging x-integral in the
limit of (Sqrpua')& —+ 0 is the series in (Sqrpna')& of the
form A+8(8qrpna') ~+C(Sqrpna')+ ]. The contri-
bution from Fig. 9(c) can be written in the following
way:

Ã' 1
AEp(4)(&) 2 top P Q 2Ntoqfq

2 q q' —(q'q/m) 2Ntpfq. —

Xfoq', q, q q—, , 2fq q, q; qo- —-fq. (3. 20)—
(q /2m) —L(q—q') /2m] —(q' /2m) Nto(fq+ fq q+ f—q') — —

(q /m) 2Nt()fq—
~hen transformed tp x-variables, this integral also and the coeScient of the logarithm can be determined
diverges logarithmically in the limit of (Sqrpna')~~ 0, without knowing the detailed shape of the potential:

PROPAGATOR CHANGE

n x:—X'"'
N

AEp( )( ) =N(2qrpu/m)Sqrpn'I p 1n(8qrpna')+const
+higher power series in (Sqrpua')&]. (3. 21)

U

NUMBER CHANGE

FIG. 10. Higher order corrections due to an apparently discon-
nected connected diagram.

Fra. 11. Connection of two-
particle lines (II).
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(a)

(a) (b) QRIGINAL

Fio. 13. Formation of three-particle correlation (III).

(b)

Fio. 12. (a). Original graph and induced graph for agument (II).
(b) Three-particle correlation diagram.

(see Fig. 13), to the integrand of (3. 20) which has
been diverging logarithmically in the limit of small

(Sorpnao)&. Whence the first diagram of Fig. 12(b) has

a linear divergence and the second a quadratic one in

this limit. The leading terms are (using the same

abbreviation for the upper limit of the integral as
before)

Summing the contributions from the scattering dia-
grams and (a), (b), and (c), we get pn p bdx

N pn' ——
I (puo) ~x (pn')x'

m ~ x
=X(pn/m) pno[n/a, (n/a)', ].

mo+ot 6Ir4(q12/q10)Go= 2
—(3)'/~

BEo"'=E(22rpn/m) (87rpuokG2 ln(Sorpna')

+constant+power series in (82rpna2)&j

+ (Sorpno)I [1+power series in (S1rpna2)&J), (3. 22) Take for example the second diagram:
with"

(e) Finally, let us discuss higher order effects briefly.
The scattering type of diagrams have always their
counter terms which subtract the divergence in the
x-integrals in the limit of (Sorpnao)& being zero, and the
resulting x-integrals converge in this limit at the upper
end; hence, the contribution starts from the term which

is independent of the shape of the potential, namely,
only a function of n. This term can be evaluated easily,
and is

~0 seat tering (n)

( ) -n—1

=-'2&'to" QI
0 E —(q'/m) —22Vto —q2/m)

+shape dependent term as a power series

=N(2 p /1m)(mm.Sp)u&o" '&'2

X $1+power series in (81rpna2) &) (3. 23).
The factor 1 in the first term, of course, changes when
the diagrams of pair creation and annihilation (I) are
taken into account.

There are also diagrams of the form of Fig. 12(b).
These introduce one to with one summation over
momentum and one energy denominator; namely, in
the x-variable (symbolically)

(III) to 2 ~ toVm(2/tom):x~ (pno)fx
~ E(q'/m)+ . j

' The same coe%cient was found by T. T. Wu by the pseudo-
potential method and also by D. Pines and N. Hugenholtz (private
communications).

=em, mom(V tom)'(atom)

pu t' A 8
=cV—(puo)2~ + yc in(pua2)

m & (pna') (pna')'

+constant+power series in (pna2)&
I

=X poj —
I

(A+—a(p a2)&

m &a&

+PCOnStant+C 1n (pna') )(pna2)

+higher power series in (pna')&), (3. 24)

where we have picked out the most seriously diverging

expression in the second line Lin the limit of (pna2)&

going to zero); q12 shows four summations, and q'0

shows Ave energy denominators. One concludes that
this type of diagram gives rise to a power series in n/a
without increasing the po.'-dependence and also they

may contain a logarithmic term multiplied by a higher

power of (pna2)&. Consequently, the logarithmic term

in (3. 19), (3. 21), and (3. 22) is not affected by these

higher orders (even in the case of the hard core n=a).
The e6'ect of opposite-momentum pair creation and

annihilation processes (I) brings down the degree of

divergence in the above considerations and so the
integral over x starts from higher power in (pa,a') & than

the original graph. )In (3. 24), A/pna'+8/(pna2) &

+C+ is changed into A+8(pna2)'+ because

the addition of process (I) makes the x-integral converge
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I'ro. $4. Effect of pair, creation-
annihilation diagram (Il on three-
particle correlation diagram.

red divergences even if we omit the energy "gap" of
one particle energy, we can use the completely free-
particle energy in the energy denominator, and so the
contribution coming from Fig. 12(b) is the free three-
particle correlation energy.

at the upper end. ) Take for another example, Fig. 14:

ql8
U'»I't»'N' —(Ntp)'—

F14 q4

f'~b 4$ p~= v'tB'to'N'(Nt )')! —=N—(pQ')'&&

fin(pna')+ constant+power series in (8»rpna') &$. Hence
the effect of (I) on the diagrams in Fig. 12(b)
goes into higher order LFig. 14 without process (I) is

N(pz/»N)pn'(n/u)'$, although they may contain loga-
rithmic dependence. The diagrams shown in Fig. 12(b)
are proper three-body interactions and make the
evaluation of the constant term in pope' very di%cult
in the case of a hard core (a= a), but for the soft-core
case one may obtain the corresponding corrections in
power series in a/a. There are also diagrams of the
form Fig. 15 with forward scattering between two loops;
and the contribution goes like

qB
V'm4g4t p'

(v'+" )'

= V'm4E4/p'
Etpm ~

=N(p /~)p (a+It(p~~)'+". j, (3. 2S)

and contributes to pnpo. '.
From these arguments, it becomes clear that our ln

term in (3. 22) is not affected by the higher-order cor-
rections but to get the constant term in the order of
pnpn', we must sum up AE» "&' (3. 14) and the constant
terms in (3. 22) and (3. 2S), and in the latter two we

must include the eGect of pair creation and anni-
hilation processes (I). For the hard-core case (n=a),
we must add to this the contribution from 'Fig. 12(b),
for which we need not take into account the process (I),
the effect of which occurs in higher order in pn as was
discussed above; moreover, because there are no infra-

Fzo. 15. Diagram showing for-
word scattering between excited
particles f- contained in diferent
loop.

4. SELF-CONSISTENT FORMULATION

As we have seen in the fourth order treatment in the
above section, the "connected" diagrams which are
apparently disconnected contribute to the one-particle
energy change Lwhich is momentum-independent,
because the change induced comes from apparently
disconnected graphs, 6(') (3. 17')] and the change of
E which appears upon replacing the zero-momentum
creation and annihilation operators by functions of the
total particle number and the total excited particle
number operators. Expecting this result from the be-
ginning, we would write our Hamiltonian (2. S) in the
following form:

K.~.i =&»+&r,

1 )N N P&n, ~— —
H =-,'Q N v(g)—i—

dN" »rt! ( g
+Z» &»p, (4 1)

which is obtained from (2. Sa) by expanding functions
of N —g» I, around the point N; in (4. 1)

~(N) =-,'ejV(g—1)+g„~,(~,+&,)g
+Q» P»*P»*n»)Ã(N 1))&—
+~.~.&»*t3.*(&»+&n)P~»(N)'*

+» ~» &n &n &~»*Pe *&»Pn+»P~, (4. 2)

p, is the one-particle energy correction which we expect
from consideration of (3. 17'), and g is the "corrected"
value of N corresponding to N+6N (3. 17"). We
assume from the result of these

N g=O(g) =0(N—),
(Q~ &k)N =0(g) =0(N), p =0(1), (4. 3)

where

with
(1 )N (+N) ~N) )

(&N —&O)+N= 0.

H»= E+V (N), K= P»»t, f(q'/2»»») —p$,
V(g) = —,'Lv(N)+c. c.j, (4. 4)

Regarding Hg as perturbation, we want to determine p,

and N to make the energy correction due to this per-
turbation one order less than the zero-order energy
about the numbers N or E.

The zero-order energy is the energy coming from the
Hamiltonian
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and can be evaluated using connected diagrams only
with V(N), and by a simple counting we can show that
the energy is proportional to ¹ we denote this as Eg.

To first order in the perturbation, we have the sums

of diagrams Fig. 16(a)," where for a large circle we

take an arbitrary connected diagram with V(N), I

represents some interns, l line (two lines in Fig. 16 do

not mean particle number 2), a small circle represents

N (d /dN )V(N)f(N —E)/N] " with any m, tz

(psalm), " and each cross is for —gs np/N. See also

Fig. 17. The sum becomes equivalent to a single action
of 6+ttt g, pzp as shown at the end of Fig. 16(a), where"

1 ((( tpi" — t (N xq" —'(—r„w,
)~EN- v(N) I I

+-
m=& dN" m! ( N ) (m —1)!1!& N ) N m

1 ('N —Nq ~—'(' —P, pzpq' 1
~ ~ ~

(m —2)!2!4 N ) & N ) s( m! E N )

1 (N —N (Pp tz, )s( —y" d"
V(N),

~=t m! 0 N ) dN

where we have written the contribution of the form Fig. 18 summed over diagrams obtained by taking all possible
connected diagrams for a large circle as (—g, e,/N)p, because the sum can be written as follows: g p. no particle
wave function)"

t 1 -m Qpp, 1
v(N)

' '
v(N) q. I

connected net =p , +p N &p )

( —g, pz,
=I &o, U='"(—,0) — U='( —"0)4o IX ~ connected

—P, pz,
=I &p, U;"(—,o) 'U;(—,0)li, I

N

—P, N,
(l( o, U" '(—,0)U '(—,0)Po) =

I @g,
N )

we haveby using the definition of the wave function in Gell-
Mann and Lowe" Eq. (10). Note that each graph in
Fig. 16 is of order X,"and is of the same order as the
zero-order energy.

The next higher order diagrams are obtained by
mapping" each lower large circle of Fig. 16 by the sum
represented in Fig. 19; the factors 2, 3, in the
second line of the figure come from the fact that there
are m possibilities to choose one —Pen, /N for the
shaded portion from the product of m operators,

black square
Z, n, q 2 —Z, n, /N —g —(Z, a,)~q

I+—"Ng1 2! g l, g )
and if we include this contribution to Eq. (4. 6), Eq. (4. 6) holds
if we omit the C-number [namely, omit from the first term in the
last equality g(d/dg) (-'vpNP) and N'(d'/dN') (-'vpNP) j The same
holds for (4. 9).

"The meaning of the formulas is the same as given in reference
8.

'4 The proof can be seen by constructing the expectation value
of the quantity Ii following reference 6:

(k ~ 't( —~ 0)~& '(—~ 0)kp)
(q p, Wp) =lim'

(Wp, U- 't( —",o) U- '(—",O)4p)

where V ' is the expression (2. 2) for the system II0, and putting
expressions (2. 2) or Eq. (A9) of reference 6 for U~ '(—~, 0),
we recognize that (4'p, Pg p) can be represented by connected
diagrams only.

"The argument is the same as given in paragraph 2; each
—Zp I,/g is of order 1/g; g~(d~/dg~) V(g) is oi order V(g);
one loop gives a contribution of order X to the energy; for each
term of Fig. 16 a) one has et+1 loops with (—Zplp/g)~;
hence (g)™+1(1/ ~ pN. -

"The word "mapping" used hereafter means to take the same
connected diagram for one of the lower large circle in one of the
diagrams of Fig. 16 and the shaded part of one of the diagrams
of Fig. 19, and form a new diagram having the shaded area as a
common part.

"The interaction energy FX( in (4. 1) contains one special kind
of interaction arising from the derivative of the 1st term of v(E)
and vt(N) in (4. 2) [namely, gvpg(g —1)=ptvp¹=Est diagonal/.
Because the differentiation of this term about g gives interaction
consisting of the C-number multiplied by (—Z, e,/S), the
diagrams corresponding to Fig. 16(a), 19(a), and 21(a) are dif-
ferent from these figures and are given in Fig. 16(b), 19(b), and
21(b). The weight in Fig. 19(b) and 21(b) (the factor 2) comes
from the same reason as the weight in Fig. 19(a) and 21(a).

Figure 16(b) gives

/N N (&,pp, )7() 1 —f'N—g (&,pt, )y) '——
vpNpI — ———I+—vpN'I

g ) 2! ( g )
[for ( Zp ttp)tp, see under Eq. (4. 5)g and so Eq. (4. 5) holds in-
cluding Fig. 16(b).

For Fig. 19(b) [or Fig. 21(b) which is the inverted Fig. 19(b)j,
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(—g, e,/N); the shaded portion is to be understood in Fig. 19 as a portion to map below each of Fig. 16. The
sum is equivalent to taking for the black triangle in Fig. 19(a)":

d 1 )N N—q 1 ~N N—~™1—Q, N,
Black triangle=p g, n,+ P N V(N) i ( +

na 1 dN~ m! ( N 3 (m 1—)!1!( N ) N g

(N-N)- i

V(N)
~ I +

dN~ p (m —1) t1l l N ) (m 2—)!2!E. N

1 (N N (Z—.~—a)~)
V(N)+~ p, I,—p, ~, V(N).=im! ( N ) dN" dN g

1 )N—N —(P, ~,)ivy
"' d"'+'

N"'+' V(N), (4 6)
m~-t m'! E d+m'+1

where (N (d /dN )V(N))N represents the sum of Fig.
20 over all possible connected diagrams for the large
circle (the proof is the same as that for (P, n, )g). If
we take for the equations of N and p

N —N —(P, ~,)-=O(1),

d 8 (1)
p — V(N) —=p, — E@=Oi —i, (4. 8)

dN g BN &N)

because N"(d /dN )V(N) is of order V(N),

(N" (d"/dN") V (N)) p = (V(N))N =0(N)

fL ZqAq P.Zqnq

then (4. 6) becomes an operator composed of

0(1) Q, e,
Black triangle= V(N)+O(1), (4. 6')

N N

)note that the quantity we denote by 0(1) is not an
infinite sum of quantities of 0(1) but a few terms of
0(1)j. Each diagram obtained by mapping (4. 6)
below each one member of Fig. 16 contributes to the
energy of order one, since, as we remarked before, each
one of the diagrams in Fig. 16 is composed of re+1
apparently disconnected loops with (—P, e,/N) ~

(where m is an integer greater than or equal to zero)
and each loop consists of interaction of order V(N),
hence mapping to lowest large circle with the last
diagram of Fig. 19 produces diagrams consisting of
either m+1 loops with (—P, e,/N) and 1/N Lcoming
from first factor of (4. 6')j or with (—P, m, /N) "+', so
the contribution to the energy is (N) +'(1/N) +',
namely, order one.

The higher-order diagrams are obtained by mapping
(4. 6) again to lower large circle of each of lower order dia-

grams. Each diagram before mapping with the last sum
of Fig. 19 consists of ms+1 loops each consisting of an
interaction of order V(N) with (—P, e,/N) (where m

is again an integer greater or equal to zero); hence the
above consideration persists and the contributions to

+

voN (- — -) Q N'(- ""'1voB (-
N

MEANS EITHER ONE OF THE FOLLOWING
-m dm

INTERACTION DUE TO N V'(N):d-m

V (8) IS GIVEN IN (4.4),

! VON, N-N)-~q q . p
N N

+ g + I

N-N p

pp
uu)

Q

Q A Q

Q Q U
FIG. i7. Actual diagram written explicitly for the interaction

represented by the small circle.

N

(b)

FIG. 16. First-order correction to ground-state energy
due to Hi (4. 1).

FIG. 18. Diagram which giveS
expectation value of excited par-
ticle operator (divided by N).
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-2 N-N

N N

Q Q
2 X

—VON ~{N-N) -Eq
2

N N

2 X

-43 Eqn q

N N {-—.VoN (- Eqnq

N

Eqnq
VoN {- )

N N {-—.VON {- — ) zqnq
Eqnq

FIG. 20. Diagram which gives expecta-
tion value of N (d /dN ) V(N).

Nm d V(N)
dN

the energy from higher order diagrams are of order one.
Actually, the quantities of order one in the second,

third, ~ order energies consist of sums of diagrams
we have mapped with sum (4. 6), and the condition

(b)

FIG. 19. Diagrams we should "map" to each of the lower large
circles of Fig. 16, to get second order diagrams (the shaded area
is the "mapping" area).

FIG. 21. Diagram showing possible position and weight of
Fig. 16 to get second order diagram by mapping with Fig. 19.

(4. 7) and (4. 8) can be reapplied and the sum of
order-one quantities goes into a much lower order
quantity, e.g. order 1/N, order (1/N)', etc. For instance
let us consider the second-order diagram Fig. 21(a),
where the shaded area represents the portion of dia-
grams in Fig. 16(a) which we are going to map with
the sum in Fig. 19(a) and 2, 3 . . appears for the same
reason as in Fig. 19(a); namely, there are n3 possi-
bilities to choose one (—P, n,/g) out of (—P, n,/N)
for the shaded area. The sum Fig. 21(a) is equivalent
to taking the square (of the last figure in Fig. 21(a)) as"

tN —g~~ ~ 2 yN —Nq" ' —p n
Square=p P n,+ Q N V(N)

I I +

3 t'N —N) ™3 —Qq nq

(n3—3)!3!( g )
- —P, n,

g

d ) ~ d '+' 1 (N N (Q, n, )zr)! —E3 n3— —
(N) IP „+P gm+i ~(g)

dN p) 3 ~'=i dgm'+' g n3'! ( N ] N

d~ 1 (N N (Q, n, )gq "——
+ PN- V(N) I

—
I (4 9)

m=x dN~ n3! ( N
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FIG. 22. Second order diagram.
(Middle large circle is the shaded
area of Fig. 21 or Fig. 19, which is
the same. )

FIG. 23. Diagrams which con-
tribute to ground state energy of
order one, and of the same nature
as the diagrams shown in Fig. 2.

and by (4. 7) and (4. 8)

Z. N. o(1)
Square=0(1) +U(N)

N N
(4. 9')

&s=&Z+p (Z~ tie)Z (4 11)

to the order ¹ In these discussions we have discarded
all the doubly or multiply connected graphs generated
by the interaction Hz of the type illustrated in Fig. 23,
because the contribution of these to Eo is at most of
order one, as was discussed in paragraph 2.

The above considerations concerning the evaluation
of the ground-state energy can be extended to the
evaluation of the low-lying excited state energies and
conditions (4. 7) and (4. 8) are sufficient to get the
excitation energy to order O(1) by the following formula:

excited g ground
excitation (4. 12)

because the excitation energy of zero order [regarding
Br (4. 1) as perturbation' is of order one and the per-
turbation caused by the interaction Bl becomes at
most of order 1/N by conditions (4.7) and (4. 8).

Hence the sum of the second-order terms, which can
be represented by Fig. 22, contributes to the energy as
a connected diagram composed of an interaction of
order U(N) with an extra factor (1/N)', and so is of
order 1/N.

In the first order diagram Fig. 16(a), even if we

apply (4. 7) and (4. 8), there remains one term, namely

~~m"'= p(Zs ~a)N+O(1), (4 1o)

and so the energy of the system is

The formulation we got above leads to the same
formulation as that of Beliaev. '

S. CONCLUSIONS

We have shown that for the low-density Bose gas
the energy of the ground state can be evaluated without
a full knowledge of the potential energy between two
particles up to the order NpnX pns 1n(pea'), if we know
the scattering length n at zero energy between two
particles and the soft-core radius a (or the characteristic
length of the potential) and, at the same time, the
eGect of the large population of zero-momentum
particles can be replaced by a C-number weight of the
interaction energy between excited particles and a
change of the energy of the excited particles, and these
are determined by Eqs. (4. 7) and (4. 8).

The Quctuation of the energy from the energy ob-
tained by the prescription of paragraph 4 seems to be
sufficiently small (for the ground-state energy whose
main part is of order E, the Auctuation appears as a
correction of order 1).

We have not yet investigated the eGect of a diferent
"shape" of the potential energy in detail; a particularly
interesting one will be the case where scattering length
n —+0 does not mean potential energy ~ 0, in which
case the expansion (1. 6) will probably lose its use-
fulness.
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