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Evaluation of Dispersion Relations~t'
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A new evaluation of the dispersion relations for mesonic phenomena is proposed. The method, which
utilizes the comparison function procedure, makes explicit use of crossing symmetry and allows for an exact
treatment of nuclear recoils. For the case of meson-nucleon scattering at low energies, an expansion of a erst
order solution is made in inverse powers of the nucleon mass and agreement with the results of a previous
evaluation is obtained. The extension of the method to other processes is briefly discussed.

I. INTRODUCTION behavior of the matrix elements and with regard to the
dominance of the (3,3) phase shift. Furthermore, in
lowest order, we make the stronger assumption that the
(3,3) state exhausts the dispersion integrals at low
energies. The latter approximation for the case of meson
photoproduction means that the results derived in this
way can be expected a priori to be valid only in the
immediate neighborhood of the resonance. The extent
to which the present formulas hold outside of this
energy region will require further detailed evaluations.
However, the agreement obtained between the results of
CGLN and the static limit of our formulas would seem
already to argue for their validity at threshold also.

In outline, the procedure which is proposed for
evaluating the dispersion relations is as follows. For any
given process, we take one of the components of the
amplitude which describes this reaction, and through
some means split this term into two parts. One of these
parts is a known comparison function which is selected
in such a way that the second term has in some ap-
proximation a known (experimentally or otherwise)
phase. Then by a slight extension of the methods of
Omnes, ' the modulus of this unknown function is ob-
tained by solving the complete dispersion equations,
thus yielding eventually the entire amplitude. The
method proposed contains sufhcient generality to enable
one to make convenient use of partial experimental in-
formation as well as enabling one to improve, in prin-
ciple, any given solution by repeated iteration. Even at
fairly relativistic energies the method is very simple
from the viewpoint of mathematical simplicity and,
further, all 6nal results are most easily and conveniently
written in covariant form. On the other hand, the reduc-
tion of the formulas to a form suitable for quantitative
comparison to experiment is still fairly complicated in
that numerical integrations are required.

In Sec. II we solve the dispersion equations in the
sense discussed above, and indicate the important role

played by the crossing symmetry in removing most
ambiguities from the solution. Also contained in this

A N evaluation of the dispersion relations for pion-
nucleon scattering and meson photoproduction at

moderately low energies has been given by Chew,
Goldberger, I.ow, and Nambu. '' These authors were
motivated and guided by the I'-wave Axed source
theory' and accordingly made use of an expansion in
inverse powers of the nucleon mass. More specifically,
a partial-wave decomposition of the dispersion relations
was made. The resulting infinite set of coupled equa-
tions was made tractable by keeping the erst two terms
of the inverse nuclear mass expansion and by use of the
fact that the (3,3) state alone yields the most important
contribution to the dispersion integrals. In the case of
meson photoproduction, for example, the resulting inte-
gral equations were then approximately solved, and the
results have been shown to be in good agreement (maxi-
mum deviations &~15% for energies below the reso-
nance) with experiment. s

The present study was undertaken to see if it would
be possible to further improve this agreement by at-
tempting a new evaluation which did not make the
nucleon velocity expansion. In other words, the results
of reference 1 leave open the question whether any of the
residual disagreement with experiment is due to the
nucleon mass expansion, the neglect of the small phase
shifts or possibly some, as yet obscure, high-energy
behavior. The basic premise to be tested by the present
work is that it is only the 6rst of these which is im-

portant. In addition, we make all of the same basic as-

sumptions of reference 1 with regard to the high-energy

* Supported in part by the Air Force OfEce of Scienti6c Re-
search.

t This work was begun while both authors were at Stanford
University, Stanford, California.

f National Science Foundation Post-doctoral Fellow.
' Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1337

(1957).Hereafter referred to as CGLN.' Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1345
(1957).' G. F. Chew and F. K. Low, Phys. Rev. 101, 1570 (1956);and
Phys. Rev. 101, 1579 (1956).

4 Uretsky, K,enny, Knapp, and Perez-Mendez, Phys. Rev.
Letters 1, 12 (1958). F. L. Goldwasser, Proceedings of the Sevent
Anneal Conference on High-Energy Nuclear I'hysics, 1957 (Inte
science Publishers, Inc. , New Vork, 1957).

h 'R. Omnes, Nuovo cimento 8, 316 (1958). See also, N. I.
r- Muskhelishvili, Singular Integral Equations (P. Noordhoff,

Groningen, 1953).
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section is a discussion of uniqueness of the solution as
well as a brief indication of possible procedures for the
required splitting up of the amplitude. The results thus
obtained are applied in Sec. III to the problem of pion-
nucleon scattering. Following CGLN, it is possible to
determine all phases in terms of 53~, and to obtain an
"identity" in 8» whose consistency measures the validity
of the method. With a particular choice for the splitting
up of the amplitude, agreement with those authors is
obtained in the limit as the nucleon mass becomes large.
No further progress on the location of the (3,3) reso-
nance is obtained by this method. The extension of this
approximation method to general processes, in which
final-state interaction sects are important, is straight-
forward, and is briefly examined in Sec. IV with specific
reference to photo- or meso-disintegration of the
deuteron. And finally, we make some concluding
remarks.

II. SOLUTION OF THE DISPERSION RELATIONS

The dispersion relations for pion-nucleon scattering,
photoproduction of mesons, 2 and electroproduction of
mesons' are all very similar in structure and the equa-
tion for a typical invariant function which makes up the
scattering amplitude may be written in the form

F00

A (x,v&) =B(x,vs)+ dy[Im-A (y, vii)]

able s by the relation

1
e~&'&F(s) = dy ImA (y, v&)

2~x ~.,

X ~, (3)
y —s y+s+2vii.

where now h(s) is given by'

F00

~(s)=- dy &(y)
y —s y+z+2vii.

P oo

p(*,ve) =— I dy b(y)J„ + . (|i)
y —x y+x+2vii

The symbol "I'"stands for principal value integral. By
making use of Eqs. (1), (3), (4), (5), we find the
relations

2zF~(x, vs) e'+"=
I
A (* v &) I

e" B(*,»)

We observe directly from Eq. (4) that as s approaches
the real axis from above (+) or from below (—), we
may write for x&zp

Ag(x, vs) =p(x, vs)mid(x),

where

X (1)
.y—x—ie y+x+2».

Here the (&) sign refers to evenness and oddness under
crossing; that is, we have

A (—x, vii) =aA (x—2», vs). (2)

The known inhomogeneous term B(x,v~) is the Born
approximation with similar behavior under crossing as
A; v& is essentially the momentum transfer which is a
6xed constant in the dispersion relations; x is an in-
variant which is connected to the energy in the center-
of-mass system 8' by a relation of the form

x= (W' —M')/2M,

and xp is some fixed positive lower limit which is simply
related to the masses. Once the 2's are known, the
scattering amplitude for the given process is obtained
from these by multiplying by appropriate invariants in-
volving the Dirac 7 matrices. The solution of Eq. (1)
ultimately yields, in this way, the entire matrix element.

Suppose for the moment that the function A of Eq.
(1) had a certain known phase7 8(x). Then, following
Omnes, ' we define a function F(s) of the complex vari-

6 Fubini, Nambu, and Wataghin, Phys. Rev. 111, 329 (1958).
7 Although in all applications which have so far been contem-

plated, 5 always turns out to be independent of momentum trans-
fer, this restriction is not in any way essential.

e'(F~(x, vs)e" F(x,va)e —' j= ~A(x, vii) ~sinb. (8)

goo

F(s) =
~

dy B(y,v&)2' sp

1
Xsin5(y)e ~&v "»

y —s y+s+2r ii
(10)

The function g is so far arbitrary except to the extent
that the integral containing it be finite. If one were to
substitute Eq. (10) into the preceding formulas to
obtain A, it becomes evident that only by choice g= &1
will satisfy the crossing symmetry as expressed by Eq.
(2) and thus this function is determined. It is note-
worthy that, even though in practice the crossing term
is often "small" under the dispersion integrals, one still

It goes without saying, of course, that we assume the existence
of all the integrals which we write down. Thus, for example, in
Eq. {4),B(y) must approach zero as y increases. However, for this
particular case, this restriction will be removed in later discussions.

Finally, eliminating the unknown function
~
A

~
between

these two equations, we obtain the result

F+(x,vs) F(x,ve)=e—v&*"» sin8(x)B(x, ve), (9)

from which it is clear that except for the addition of a
function which is continuous across the cuts along the
real axis, F(s) is given by
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A (x,vn) =B(x)vie)+
g p+i5

e ~'» sin5(y)B(y, vii)

y —x—.se y+x+ 2 vie.
'dy, (11)

which may be written in the equivalent form

A(x, vie) =B(x,vs)e" cos5

needs the crossing symmetry to remove this trouble-
some ambiguity. Thus, the solution to Eq. (1) under the
assumption that the phase of A is known can be found
from Eqs. (10), (3), and (1) to be

e,~, xp& x&&a
e2X, a& X~& b

$ —+$ ~ ~ ~ (12)

intervals to b."As will be directly shown, this ambiguity
is due to the possibility of adding solutions of the
homogeneous equation to the given solution. Such
ambiguities, which are very similar to those considered

by Castillejo, Dalitz, and Dyson, "may be thought of
as contributions from bound states whose connection
with the phase shift in this way is very suggestive of
Levinson's theorem" in potential scattering. Suppose
now that in the solution given by Eq. (11)we make the
replacement

g p+ib

+ I' dy e vl» sinb(y)B(y, v&)
~~p

X ~ . (11')
x y+x+2vii

It must be borne in mind that to the solution (11) we

may still add the term fe&+'s, where f is completely
arbitrary except that it has no branch cuts anywhere in
the complex plane. Since it is easily seen that this added
term is a solution of the homogeneous form of Eq. (1)
(i.e., with B=0) it can only be selected by some sort of a
boundary condition. For the present cases of interest,
we should like to argue that f is a polynomial which in
the case of pion-nucleon scattering and meson photo-
production vanishes identically. This follows from the
fact that by writing down the unsubtracted form of the
dispersion relations Eq. (1), we have made a definite
assumption with regard to the behavior of A at indnity.
Since with f=0, the solution (11) has all the correct
poles and branch cuts which it must have according to
Eq. (1), and since f must be continuous across the cuts

along the real axis, f can at worst be a polynomial. If in

addition we assume that A approaches zero at infinity

then this polynomical must clearly vanish. The solution

given by Eq. (11) corresponds to this case.s If A does

not approach zero sufficiently rapidly at infinity, then of
course f will assume a diferent form which will be
dictated by the conditions of the given situation. In any
event, for the present cases of interest, we make the
choice, f=0, and take (11) to be the appropriate solu-

tion of Eq. (1).
One last point concerning the solution as given by

Eq. (11) is that there still is the possibility of adding

arbitrary integral multiples of m in arbitrary energy

' This assumption neglects x~ scattering effects which may be
very important and would necessitate a subtraction in the dis-
persion relations. This is neglected here because we are primarily
interested in I'-wave rescattering effects which are relatively
insensitive to this subtraction.

X Sp X 8

yI2 + I2 nI ~~2 +~2 n2

X
y/2 gf2

(13)

where the primed symbols are defined by y'=y+v&,
b'= b+ vs, etc. , and where, of course, y is still the dummy
variable of integration. Consider now the identities

y"—a"f11'
x"—a" (y' —x' y'+x')

1 1 1 (y/a)+
y' —x' y'+x' x' —a' ( 1 )

1 py' a'
i, (14)

x'+a' I —1 i '

' We are grateful to Professor Dalitz and Professor Nambu for
pointing out this possibility to us as well as for some clarifying
conversations with regard to this point."Castillejo, Dalitz, and Dyson, Phys. Rev. 101,453 (1956).See
also R. Haag, Nuovo cimento 5, 203 (1956)."¹Levinson, Kgl. Danske Videnskab. Selskab, Mat. -fys.
Medd. 25, No. 9 (1949).

where m~, m2, ~ are even integers or zero, and the
collection a, b, ~ is an arbitrary monotonic increasing
set of points. Since this replacement leaves the original

Eq. (1) invariant, a similar invariance should be ob-
tained in the solution given by Eq. (11).However, be-
cause of the t,'p factors in that solution, this invariance
seems to be missing. We will now show that a trans-
formation of the form given by Eq. (12) corresponds to
the addition of solutions of the homogeneous form of
Eq. (1) to Eq. (11) and thus these appendages may be
deleted by making a suitable choice for the function f in
the manner discussed in the preceding paragraph. To
see this in detail, we note that the replacement Eq. (12)
influences the solution given by Eq. (11)by multiplying
the second term in this equation by the factor

+l'2 +~2 nI +~2 $12 n2
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x"—u" t' 1 1

y"—a" E y' —x' y'+x')

1 1 1 ( —1l
,+,

y' —x' y'+x' y'+a' (x'/a')

1 1
I, (14b)

y' —a' & x'/a')

which are appropriate to the case for n~ —e2=2. These
identities make clear, that this particularly simple ver-
sion of the transformation (12) only adds solutions of
the homogeneous equation to the one given by Eq. (11).
And as in the discussion above, we may remove these
spurious appendages by choosing a function f which will

cancel them out. Thus the result obtained from Eq.
(14a) must be subtracted o8 because it introduces new
and unphysical singularities into the physical region.
Similarly, the addition of (14b) is ruled out because of
the assumed behavior for A at infinity. Furthermore, it
is clear that if we multiply Eq. (14a) or Eq. (14b) by
additional factors of the form

[(y"—&")/(*"—&")j",
which corresponds to more complicated versions of the
transformation (12) than we have just considered, then
we generate only new solutions of the homogeneous
equation. These can again be eliminated in the manner
just discussed. We see, therefore, that this last ambiguity
in the solution to Eq. (1) is removed by the observation
that the transformation given by Eq. (12) merely ap-
pends solutions of the homogeneous equation. There-
fore, Eq. (11) as it stands is the solution to Eq. (1)
provided the behavior of A at infinity is correct as
assumed. For any other energy dependence at infinity,
solutions of the homogeneous equation must be added.

Now in order to apply the result given by Eq. (11) to
the cases of interest in pion physics, some modifications
are obviously required since in practice the phase of A
is usually not independently known. Thus, in order to
make practical use of the present result, it is necessary
to rewrite Eq. (1) in such a way that this phase condi-
tion may be approximately satisfied. Suppose, therefore,
that we have obtained a comparison function C(x,v~)
which is determined by the requirement that in a certain
energy interval the function D(x,vz) which in turn is
defined by

D(x, v~) =A (x,vs) C(x, v~), —(15)

has to a good approximation a known phase. For ex-
ample, in the case of meson photoproduction at moder-
ately low energies, C might be the contribution to the
amplitudes from all the states with small phase shifts, in
which case the phase of D would be simply 8». As will
become evident shortly, the functional properties of C,

such as poles and branch cuts, are relatively immaterial
except in that certain integrals which involve C are
convergent and a certain domain of analyticity in the
variable v~ exists. Because of the freedom so aGorded, in
general C may be chosen in various convenient ways.
One such way might be to take a part of the Born ap-
proximation; a second might be to take partial results
directly from experiment. And finally, the most inter-
esting possibility, of course, is to select C from the
results of a previous calculation. Indeed, once some
approximate solution is available, one may iterate by
taking the new C to be that part of the previous solution
which will yield an improved knowledge of the phase
of D.

More explicitly, let 6 be the known phase which is to
be associated with a given choice for C. By use of
obvious additions and subtractions on Eq. (1), and by
use of Eq. (15) one may derive a dispersion relation for
D in the form

1
D(x,v~) =B'(x,v~)+ 'dy[ImD—(y,v~)]

xp

X , (16)
y —x—ie y+x+2vz

where 8' is given by

B'(x,v&) =B(x,vp) C(x,vp)+ —dy[ImC(—y, v&)]

X + . (17)
y —x—$e y+x+2v~

One notes directly that 8' is purely real and further,
since the integral in Eq. (17) is assumed to exist, that
the function B'+C has the identical crossing symmetry
and analyticity properties" as are enjoyed by A. Now
since Eq. (16) for D is of the same form as Eq. (1), and
since by our choice for C, the phase of D is known, we
may use the result given by Eq. (11) together with Eq.
(15) to write the solution of Eq. (1) in the form

1
A (x,v~) =B(x,v~)+ dy[I—mC(y, v~)]

7l sp

X
y —x—$6 y+x+2vB

~p+ib

+ dy B'(y)e v&» sinb(y)—

X (18)
y x i e y. +—x+—2v~

"In this connection we think, of course, of the obvious analytic
continuations of these functions which are here de6ned along a
part of the rkal axis.
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where I(x,v33) is given by

X (19)
x y+ x+2 pit-

I'
I(x,F33) = dy I—mC(y, i 33)

7i xo .y —x y+x+23 &.

It is of some interest to examine the solution of Eq.
(18) in terms of its dependence on the momentum
transfer v& as well as the energy. This leads to a general
restriction on possible comparison functions C(x,333).
Evidently, the solution given by Eq. (18) has a branch
cut along the negative v& axis by virtue of the crossing
terms. ' In the case of meson-nucleon scattering this
corresponds to one of the branch lines which has been
discussed by Mandelstam. "It is clear that the needed
properties of the solution Eq. (18) can be obtained by
requiring that the functions ImC(x, is) and B'(x,vs)
have suitable analyticity properties in v&. In the case of
meson-nucleon scattering, for example, the choice of a
polynomial for C is certainly adequate. More speci6cally,
if C is chosen to be the Born term minus a finite number
of partial wave projection of this term, "then the proper
analyticity is also maintained. Thus, the requirement of
consistency with the Mandelstam representation some-
what restricts the choice for C.

Lastly we note one final simplifying approximation
which may be made in Eq. (19) at a possible resonance
energy x„. Since the integrand in Eq. (19) is then the
product of exp(p(xt, t 33)—p(y, t it) ) and a function which
is sharply peaked at this resonance, we may expand the
former in a power series

el (sr, vs3 p(s, vs3 1 y(i(y— X )+.. .
7

"S.Mandelstam, Phys. Rev. 112, 1344 (1938l.
'5 Although the extension of the amplitude to unphysical values

of the momentum transfer by means of a Legendre polynomial
expansion is open to question, for sufficiently small momentum
transfers considerations due to H. Lehmann, Nuovo cimento 10,
579 (1958), would seem to cast suspicion on the validity of this
procedure.

We emphasize again that the ambiguities relating to the
crossing terms and those relating to the solutions of the
homogeneous equations have been removed by means of
the known crossing symmetry and the assumed be-
havior at infinity of the function A. An alternate and
sometimes more convenient form for Eq. (18) may be
obtained by regrouping the delta function parts of the
integrals with the inhomogeneous term, with the result

A (x, 3 i3) =C (x,3 it)

+cos(3 e "[B(x,vii)+l(x, uii) ReC—(x,vit)]

~p+i5

+ I' dy e I'(s "» sini3(y)
SP

XfB(y, 3 33)+1(y,3 33) ReC(y—,v33))

in which only the first term will make an appreciable
contribution to the integral. Thus, the somewhat an-
noying e& factors may be dropped at a sharp resonance
with a consequent simplification of Eq. (19).

Therefore, we see that subject to the limitations dis-
cussed above, the solution of Eq. (1) may be obtained
provided only that one can find a comparison function C
as defined by Eq. (15) such that D has a known phase.
The solution is then given by the two equivalent forms
Eqs. (18) and (19).

~= l(pi+ps),
Q= s (qt+qs),
3(=-,'(qi —qs).

(21)

Out of these three vectors, one can construct only two
independent invariants which may be taken to be z' and
x which is de6ned by the relation

x= —(1/M)E Q+ (1/M)3('

In the center-of-mass system, rc' is one-half the three
momentum transfer to the nucleon and x is connected to

III. APPLICATION TO MESON-NUCLEON
SCATTERING

In order to study the proposed method in more detail,
let us now consider a specific application to the case of
meson-nucleon scattering at low energies. The necessary
selection of a suitable function C+ can be simply made in
this energy region because of the well-known (3,3)
resonance, which, around its maximum, dominates all
other states. Thus, in lowest order (in the sense of the
iterative scheme discussed above) we shall assume that
all states except this resonant one, are correctly given by
the Born approximation. In other words, since the Born
approximation is purely real, we are assuming that only
the (3,3) state makes an appreciable contribution to the
dispersion integrals —an approximation which is cer-
tainly reliable near the resonance. This means that if
we make the choice

C"(x,i(') =B+(x,3(') —Bss+(x,s'), (20)

where 8+ here is the relevant part of the Born approxi-
mation and B»+ is that part of the (3,3) projection of
the Born approximation which is to be associated with
the given B+, then the phase of D+(x,3(') as defined by
Eq. (15) is given by (3». We note that the function C+ as
defined in Eq. (20) is purely real for suKciently small
momentum transfer and thus the solution given by
Eqs. (18) and (19) will be conveniently simplified.

Before writing down the detailed solution, let us, for
the sake of completeness review brieQy some of the
kinematics. We shall follow the notation and arguments
of reference 1 as closely as possible. Let pi, ps, qi, qs be
the initial and 6nal momenta of the nucleons and
mesons respectively and define the three independent
four-vectors I', Q, and 3( by the relations
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the total energy 5' in this frame by the relation
x= (W' —M —1)/2M and is also the incident meson
energy in the laboratory frame. The T matrix for meson-
nucleon scattering may be written in the form

T= —A+iy QB, (22)

where A and 8 are matrices in isotopic spin space and
are functions of the two invariants x and I~:2. The as-
sumption of charge independence reduces this com-
plexity and allows only four independent functions
which may be defined by

A p=A+8 p+A=,'[~p, r j
and similarly for B p, where u and P are the initial and
final charge states of the pion. Finally, in terms of the
functions A+(x,z') and B+(x,z'), the scattering ampli-
tude f+ in the center-of-mass system may be written

f'=fi++(~ e~ e/q')f~+, (23)

where q is the magnitude of the meson momentum in the
c.m. system and where

Now in accordance with the choice for C+, Eq. (20),
we must project out b the (3,3) part of the Born
approximation which is given by the product of iy Q
and the inhomogeneous term in Eq. (25b). The isotopic
spin projecting is easily done and in the center-of-mass
frame the result may be written in the form

g2
~I~s ———

2M cos8+44 E M—E+M

'W —M W+M o qpo" qg

g' W—M 1 W+M
b38- n ——y (3q~ q&

—o q4o'q$),
2Mq'. E—M 2 E+M

where 8 is the angle of scattering of the meson and
1/a=q'/(Ere, ——,') is essentially the product of the
nucleon and meson velocities. The meson energy in the
center-of-mass system is co,. The P; angular momentum
state is easily projected from this formula, and we obtain
the result

E+M
f += [A++(W—M)B+],

2S'

E—M
fa+= [ A++ (W+—M)B+j,

28'

(24)

and

u 44+1 1 q4
+=1——ln

2 c—1 3 82',2

where 0. and y are given by

@+1 4 q'
7=3a+-', (1—3a') ln

1 15 Bcoq

p
-', yg'J(x)

a,,+(x,")=—
!
E —8) 2W1

A+(x,~') =- dyDmA+(y, K') j

and where lastly E is the total nucleon energy in this
system.

The dispersion relations, for fixed ~2, of the amplitudes
A+ and B+, on the assumption that no subtractions are l-ly u f Eq ' ( ) a ( 4)~

required, may be written in terms of the variable x and
are

X a, (25a)
y x i& —y+—x—2~'/M

W+M ( 214') W —Mx3 !1— !+. E+M & q') E—8E

g2

B+(x,14') =—
2M (x+ 1/2M x—1/2M —2~'/M i

+—
dy[ImB+ (y,~')j

1

and

( 3 ig'~(x)
b44+(x, ~') = —

!(——', ) 2W

3 (x
E+M E

(27)

2z2) 1

q') E M. —
X W . (25b)

y x i 4 y+x —214'/M— — where J depends only on the energy and is given by

Here g 4 and is the unrationalized pseudoscalar
coupling constant. In terms of the variables x and g2, the
crossing symmetry is expressed by the relations

W—M 1W+M
J(x)= Q

E—M 2E+M

A=L( —x g~)= ~A+(x+2'&/M q&)

B+( x, sP) =WB+(x+2~'/M, ~').—

Finally. , by use of Eqs. (18) and (20) we obtain as the

(26) solution with the correct crossing symmetry and the
assumed behavior at infinity,
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gP+ s&33

A+(x, ~') = ' dy e &&» sinb»(y)a»+(y)

and

8+(x,~') =—

X
. y x—i—e y+x 2~'/—M

2 1 1 (28)

2M x+1/2M x—1/2M —2~'/M

go+ ~&33

dy e &&» sinb»(y)b»+(y)

X
.y—x—ie y+x —2~'/M

where, of course, a»+ and b»+ are given by Eq. (27).
Thus, once 8» has been obtained, say from experiment,
one need only carry out the single integrals in Eq. (28)
to obtain the total scattering amplitude in this ap-
proximation. YVe note at this point that since 6» may be
presumed to approach m for large energies, it seems
necessary to perform a subtraction in p to make its
integral convergent. It is convenient to perform one
subtraction at x=z'/M because this retains explicitly
the crossing symmetry and does not add an arbitrary
constant to the solution. However, one subtraction is
actually automatic, since the integrals in question occur
in the combination p(x) —p(y).

It is perhaps worth emphasizing again, that the solu-
tion given by Eq. (28) is but an approximate one based
on a selection of C+ as given by Eqs. (20) and (27). The
obvious choice to make in order to obtain an improved
solution is to take for the new C+ the difference between
the solution given by Eq. (28) and its (3,3) projection.
One might then be hopeful that the phase of the new D+
as defined by Eq. (15') will be closer to b» than before.
Then by repeated use of Eq. (18) the improved solution
would be obtained.

For the present, let us content ourselves by comparing
the results given by Eq. (28) to experiment by actually
comparing them to the analogous results of reference 1.
In order to do this, it is first of all necessary to make a
partial wave expansion of Eq. (28). This procedure
turns out to be fairly complex because of the ~' de-
pendence in the crossing term of p that corresponds,
roughly speaking, to the effects of the (3,3) state on the
rescattering of, other states. We should now like to argue
that at low energies, to a good approximation, one may
neglect this particular sP dependence and thus obtain
simpli6cations in the partial wave decomposition. As we

have already argued above, in the neighborhood of the
resonance, the two e& factors in Eq. (28) tend to cancel
each other and thus the a' dependence in these expo-
nentials is probably not too important. In passing, we

note that in the crossed term under the integrals in
Eq. (28) the z~ dependence may be partially neglected at
moderately small momentum transfers because of the
1/M factor and because of the expectation that, in
general, the singular denominator in the uncrossed
term makes the large contribution to the integral.

Thus, assuming this neglect of the z' dependence,
which is generated solely by the crossing symmetry in

p, to be justified, the task of projecting the various
angular momentum states from Eq. (28) is simple. We
note that aq3+(x,z') and b33+(x,~') are linear functions of
~2 and thus the integrals can only make an appreciable
contribution to states of J=~ and J=~. Further, as
shown in reference 1 the phases of the two D~ states are
both ~&

1' up to the resonance energy and thus we need
to consider only the rescattering corrections to the
remaining S and I'y and E~ states. Following CGLN,
we obtain, using their normalization, the results

(29)

where f8 is the amplitude of the S states, etc., and where
f~+(x,z') and f2+(x,~') are given in terms of A+ and J3+

by Eq. (24), and finally, where the primes stand for
diGerentiation with respect to x'. Using the methods
of reference 1, the amplitudes of the other states as well

as the corrections to Eq. (29) due to these states may be
obtained. For the present purpose, however, Eq. (29)
will suKce.

The obtaining of explicit formulas for fs, f~; and f~;
in the two isotopic spin states, is now a simple matter.
One computes f&+(x,z~) and f2+(x,~') directly from

Eqs. (24) and (28) and substitutes these into Eq. (29)
to obtain the desired result. Fortunately, there is no
need to present the resultant, fairly complicated formu-
las here explicitly since they may be directly obtained
from the corresponding results of reference 1. Thus for
the 5 states one takes Eqs. (3.19) while for the P states
one takes Eqs. (3.29) and (3.32) of reference 1 and
makes there the substitution,

( 3 '&g'~(&r') .
gmf33+(p~ ) ~ ~ ~

eaes& I&

2W'

)&sinb»(vr, ') ep&»&-~& "&'&. (30)

This procedure will reproduce the present results.
For later applications to meson photoproduction and

for the sake of completeness, let us write down the
greatly simplified version of these formulas which is
obtained for I' waves by making the expansion in
inverse powers of the nucleon mass. Defining the vari-
able co= 8'—M and keeping only zeroth and first order
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in 1/M, there results for the I' waves

4 f2q2 PP(a))+3333(~) pao d(el
f»=- +efV

3 M 7l ~ g 0)
sin533 (e)') e—P("')

X +—+-
e)' . (u —i e—M 9 e)'+re

f2q2 3f2q2

11 +
3 Go M

(31)

the other hand, our formulation of the solution is
stated in a more general way and allows one to 6nd an
improved solution starting from any approximate one.
Furthermore, we expect the present method to be
applicable to other processes in which some phase will
be a given piece of data rather than something which
must be codetermined with the rest of the solution as in
pion-nucleon scattering,

IV. CONCLUDING REMARKS

The main result of the present study may be sum-
marized by noting that Eq. (18) is the solution to the
dispersion relation given by Eq. (1) subject, of course,
to our obtaining a suitable comparison function C. The
generality possible in the choice of this comparison
function makes it convenient to make use of partial
experimental information and also to improve any given
solution by iteration. Although the method is not
basically restricted to any particular energy region, in
the case of pion-nucleon scattering at low energies, the
obvious zeroth order comparison function yields es-
sential agreement with the results of CGLN. Further-
more, even though the present discussion has been
consistently slanted' towards simple processes which
directly involve mesons, it is evident that the proposed
method for solving the dispersion relation has wider
generality. In particular, the extension of the present
ideas to general processes involving strong interactions
in the final state is fairly straightforward provided, of
course, that one may write down a suitable form of the
dispersion relation.

As an example of such processes let us consider briefly
photo- or meso-disintegration of deuterium. The dis-
persion relation at constant momentum transfer v may
be written in terms of the total center-of-mass energy x
and is of the form

64 q2f'
t

"de)' sin533((0')
+— gp+&333

~
S P(~ )

27 2I 1 (3) e) +(0

3
f13=f31=4f»— f'q'

4M

The very striking similarity of the results given by Kq.
(31) to the corresponding formulas of reference 1 [Eq.
(4.1)]is not too surprising if one considers that Eq. (31)
may be obtained by use of the limiting form of the
substitution Eq. (30), Using the type of arguments
presented in the previous section where the solutions of
the dispersion relations were obtained, it is immediately
clear that f» as given in Eq. (31) is a solution of the
corresponding f32 equation of CGLN. In making this
argument, we take the f33 equation of CGLN, divide it
by q', and then assuming that we know the phase of
f»/q', a possible "solution" of this equation is given by
our Eq. (31) if crossing is treated approximately. In this
sense, the erst equation agrees completely with the
corresponding results of CGLN. The last set of equa-
tions in (31) is identical to the corresponding results of
CGLN and thus also requires no further discussion.
Lastly, the f» equation can easily be shown to coincide
with the results of CGLN at very low energies. Upon
letting the e& factors cancel each other, and upon
neglecting 8» in the exponential at low energies, we may
use the effective range expansion for f32 under the
integral in the f» equation, and thusly reproduce the
corresponding result. Ke see, therefore, that the choice
for C+ as given by Eq. (20) essentially yields the results
of CGLN in the 1/M limit and, thus, it enjoys the
corresponding agreement with experiment.

Finally, let us emphasize again that the purpose of
solving meson-nucleon scattering in the present context
is only with the viewpoint of illustrating the general
method and of deriving results to be used in a discussion
of pion photoproduction. The fairly remarkable agree-
ment with the results of reference 1 is, of course, no
accident in that the basic assumption of the dominance
of the (3,3) state under all dispersion integrals is made
there also. Indeed, from many points of view, the
formulas of reference 1 are preferable since these, for
example, involve dispersion integrals containing Imf»
rather than sin533 and the former is much more con-
venient because of the sharper peak at resgg. anqq. On

1 (' 1
A (x,v) = V(x,v)+— dy[ImA (y, v)]

X k6

where the unphysical and negative energy contributions
have been absorbed into the inhomogeneous term. V(e
assume that V(x, v) is known at least approximately.
Now at very low energies, assuming that only one
partial wave lp is appreciably different from its Born
approximation, we choose our lowest order comparison
function C by the relation C= V—Vlp where Vip is the
projection of V on the depth partial wave. The resulting
equation is easily solved by use of the methods described
above. An improved solution may now be obtained by
taking the new comparison function

C=A —Hip,

where A is the solution just obtained and A rp is its depth

' Similar work on photodisintegration has been independently
carried out in more detail by Bunji Sakita, Bull. Am. Phys. Soc,
ger. II, 4, 267 (1959),
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projection. Assuming that this choice for C will make
another partial wave dominate, we proceed as before.
Continuing in this way, and assuming further that each
V& is a slowly varying function of x, we find an ap-
proximate solution" in the form

1 t' 1
'y&Pt(cose) exp — bt(y)dy

p —s—ze
(32)

In writing down this solution, we have applied the
boundary condition that each partial wave must have
the scattering phase 8~ as demanded by unitarity, and
further in the limit as this phase approaches zero, the

'7%'e are grateful to Professor Nambu for first suggesting this
solution to us.

amplitude reduces to the Born approximation. The
possibility of making a subtraction in the exponential
is, of course, always understood. In this approximation,
we see that each partial wave has the correct phase
according to unitarity and its modulus diGers from the
Born approximation only by the easily computed ex-
ponential factor. For the cases in which Vg is not a
slowly varying function of the energy, the more general
Omnes solution must be used. In any event, Eq. (32)
would seem to offer a simple and convenient estimate of
final state interaction eRects.

In summary, the approach used here seems to allow
a convenient evaluation of final state interaction eGects
in a variety of processes. The results for pion-nucleon
scattering derived in Sec. III will be applied in a later
paper to the problem of photoproduction of pions from
nucleons.
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Photoproduction of ~ Mesons*f
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The di:spersion relations for meson photoproduction at moderately low energies are examined by means
of the comparison function method which was proposed in an earlier paper. Assuming that only the (3,3)
state is appreciably modified by rescattering effects, an approximate solution is obtained. Nucleon recoil
and crossing symmetry are treated exactly. The static limit of this solution yields substantial agreement
with the results of Chew, Goldberger, Low, and Nambu. It is hoped that an evaluation including effects of
nucleon recoil will improve the agreement in the resonance region. .

1. INTRODUCTION

FAIRIY exhaustive discussion of the photo-
production of m. mesons from nucleons in the

low-energy range has been carried out by Chew,
Goldberger, Low, and Nambu. ' This work is based on
the technique of dispersion relations, whose validity
for this process was recently established from the
general axioms of field theory by Oehme and Taylor. '
The evaluation of the dispersion relations was eRected

by using the relation between meson photoproduction
and pion-nucleon scattering demanded by unitarity, 3

* Supported in part by the Air Force OfFice of Scientihc Re-
search, and a grant by the National Science Foundation.

/This work was begun while both authors were at Stanford
University, Stanford, California.

f. National Science Foundation Post-doctoral Fellow.
' Chew, Goldberger, Low, and Nambu, Phys. Rev. 106, 1345

(1957). (Hereafter to be denoted by CGLN. ) Dispersion relations
for S and P waves to order 1 ' have also been derived by L. D.
Solov'ev, J. Exptl. Theoret. Phys. (U.S.S.R.) 85, 801 (1957)
[translation: Soviet Phys. JETP 6, 617 (1958)g.

2 R. Oehme and J. G. Taylor, Phys. Rev. 113, 371 (1959).' K. M. Watson, Phys. Rev. 95, 228 (1954).

and also by making an expansion in inverse powers of
the nucleon mass. The latter procedure makes it con-
veniently possible to compare these results to those of
the static model. 4 However, this expansion necessarily
restricts the results to energies near and below the
scattering resonance, where nucleon recoil effects are
relatively unimportant.

In the present study the comparison function method
which was proposed in a previous paper' is used together
with unitarity to obtain explicit approximate solutions
to the photoproduction dispersion relations. The
essential approximation made in applying this method
to the present case is the assumption that the (3,3)
scattering phase shift is the only one which is important
under the dispersion integrals. However, since the
crossing symmetry is treated exactly, the 6nal result
does contain some rescattering corrections of the (3,3)
state to all partial waves. Multi-meson production is

z G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956).' R. Blankenbecler and S. Gartenhaus, preceding paper /Phys.
Rev. 116, 1297 (1959)g (hereafter to be denoted by 1).


