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In order to trace out with more understanding the consequences of general relativity it is advantageous
to have exact solutions of Einstein's field equations which show more detail than the familiar solutions
with their high symmetry. In the present investigation, based on the method of separation of variables,
all solutions of the Geld equations for empty space have been found which (1) have the "linked pair" form
g;;=&8;;A (x',x')B (x',x'), and which (2) are nondegenerate —so far as could. be determined —in the
sense that all the g,; cannot be reduced to functions of only two variables. Other solutions have been
obtained from the solutions of the above form by interchange of variables. Explicit expressions are given
for all twenty nondegenerate solutions, all apparently new. Of degenerate solutions, ten are presented,
not all of them new. All thirty solutions are examined with respect to possible physical and geometrical
interpretations.

1. NEED FOR ADDITIONAL EXACT SOLUTIONS

KCKNT work increases the suspicion that general
relativity has many unusual consequences not

yet brought to light nor assimilated into the rest of
physics. It is reasonable to believe that it will help in
reading out these consequences to have a substantial
increase in the number and variety of exact solutions of
Kinstein's 6eld equations which are available for
analysis. This paper presents twenty solutions that
depend upon three variables, all apparently unknown
previously. They are oGered as raw material for future
studies about the nature of singularities, about the
topology of space-time, and about the kind of events
that can happen in a universe of pure "geometro-
dynamics. "

The most familiar of exact solutions of Einstein's
6eld equations known today are (1) the Schwarzschild
solution for a point mass'; (2) the Reissner-Nordstrom
solution for the combination of a point mass and a point
charge'; (3) the solutions of Friedmann (pure dust), and
Tolman (pure radiation), a,nd Gamow (mixture) for the
dynamics of a universe uniformly curved in space';
(4) the cylindrically symmetric gravitational waves of
Einstein and Rosen'; (5) the plane gravitational waves
of Bondi'; (6) the pure source-free time-symmetric and
axially symmetric gravitational waves which, as Brill
has proven, have positive de6nite mass and which—
endowed with sufficient strength —curl up the metric
into a closed space'; (7) multiply connected spaces

*Based on a thesis submitted to Princeton University in partial
fulfillment of the Ph.D. requirements, May, 1959.

t' Work assisted in part by the Once of Scienti6c Research,
Air Research and Development Command.

$ Presently at Los Alamos Scienti6c Laboratory, Los Alamos,
New Mexico.

'See for example L. Landau and E. Lifshitz, The Classical
Theory of Fields (Addison-Wesley Press, Inc., Cambridge, 1951).

See for example, H. Weyl, Space, Time, and M'atter (Dover
Publications, New York, 1922), p. 261.

3 See for example J. Weber and J. A. Wheeler, Revs. Modern
Phys. 29, 509 (1957).

4H. Bondi, Nature 179, 1072 (1957); Reports on Progress in
Physics (The Physical Society, London, 1959), Vol. 22.' Dieter Brill, Ann. Phys. (N.Y.) (to be published).

endowed with many "wormholes" in which source-free
electric lines of force are trapped to produce classical
electric charges —solutions for which Misner and
Wheeler' have given exact expressions at a moment of
time symmetry; and (8) Bertotti's exact solution' for a
space permeated with a uniform or covariantly constant
electromagnetic 6eld.

Reasons for wanting additional exact solutions of
Einstein's field equations are readily apparent from a
look at four sample areas of inquiry having to do with
(1) the question whether singularities are always bound
to appear, (2) departures of gravitational fields from
spherical symmetry, (3) interactions of gravitational
waves, and (4) snap-over from one topology to another.

(1) Is there any general answer as to the fate of a
solution of Einstein's 6eld equations as time evolves'
Only for a 6nite proper time is the familiar spherically
symmetric Schwarzschild solution free of singularity. s

Only for a finite time is an isotropic homogeneous closed
universe free of singularity, regardless whether the mass
arises from a uniform distribution of dust (Fredmann),
or radiation (Tolman), or any mixture of the two
(Gamow). Is this fmiteness of the time a property of
these special models, or is it a feature to be expected
quite generally' Additional special solutions will give
more background for considering this question. It does
not help in securing a general answer, although it is
most interesting, to learn the general theorem' that no
set of time-like geodesic curves can be continued without
intersection or other singularity for all time orthogonal
to an initial space-like surface unless that surface is Qat.
%hat one wants is information about the intrinsic
geometry of the 4-space, not about a particular coor-
dinate system.

(2) One knows that the electric potential near a point

' C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2, 590
(1957).

r B. Bertotti (to be published).' M. Kruskal (to be published).' A. Raychaudhuri, Phys. Rev. 98, 1123 (1955); 106, 172 (L)
(1957).A. Komar, Phys. Rev. 104, 544 (1956).
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charge can be expanded in the form

V= e/r+Q C, „V&t -~ (0 q)rt.

What are the analogous departures from the Schwarz-
schild solution? Can one find exact solutions for certain
sample cases of a Schwarzschild metric as modified by
a nonsymmetrical environment? How do these modi-
Gcations affeet the orbital motion of a planet or an
idealized test particle?

(3) How do gravitational waves interact with each
other and with Schwarzschild centers of mass? Can one
Gnd exact solutions" that describe special cases of either
type of interaction?

(4) When gravitational waves implode into a limited
region of space and create exceedingly strong local
curvatures, or when strong Quctuations in the metric
develop from other causes, can the topology snap over
from one connectivity to another? What can one do to
Gnd out what types of snap-over are possible? How
does the metric vary in the immediate neighborhood
of the critical point? This question recalls the problem
in hydrodynamics" to analyze Quid Qow as the neck
between two masses of liquid breaks during fission. The
topology of the droplet changes with time in the ex-
ample, yet the continuum equations of hydrodynamics
suKce to analyze what goes on right up to and right
after the moment of fission.

2. SIMILARITY SOLUTIONS AND LINKED
PAIR SOLUTIONS

This investigation began with the hope to investigate
the analogous fission process in geometrodynamics, near
the point of fission. The equations in both cases are of
course nonlinear. Therefore Wheeler suggested that
solutions of the Geld equation s of general relativity
could be sought by the similarity methods familiar in
hydrodynamics. Consider, for example, a shock wave
that strikes the corner of an object and is reQected from
it (Fig. 1); then it is found that, close to the corner,
the ratio of the radius r of the reQected wave to the
time t since impact is a constant. " Thus, r/t=k, or
r—kt =0. That the similarity principle behind this
experimental result and others can be used to solve the
nonlinear equations of hydrodynamics has long been
known. "A partial dif'ferential equation invariant under
a similarity transformation admits solutions that are
also invariant under the transformation. For example,

ISondi and Robinson give an exact solution which they
interpret as describing the interaction of two plane gravitational
waves. See also reference 3."See E. Power and J.A. Wheeler, Revs. Modern Phys. 29, 480
(1957), for a table ot analogies between general relativity and
hydrodynamics.

~ This result has been found experimentally in this laboratory:
W. Bleakney and A. H. Taub, Revs. Modern Phys. 21, 584 (1949).

"For a summary see for example G. Sirkho6, Hydrodynamics:
A Study ie Logic, Fact, oed Similitude (Dover Publications, New
York, 1955), especially Chap. IV.

is also invariant under the transformation. Substituting
this trial solution I into the partial differential equation,
one reduces it to an ordinary diGerential equation for a
function of a single variable.

Guided by this example, we considered metrics that
depend only upon selected combinations of certain
coordinates, thus

(2)

It should be mentioned, however, that the ratios of the
functions of the coordinates appearing here are no t
necessarily invariants in the sense discussed above.
When these proposed similarity expressions for the
metric were substituted into the equations of general
relativity, it was found that the equations to be solved
were too dificult to work with, and thus it was found
desirable to search for a simpler form. The search
proceeded as in the following outline.

(1) As was assumed implicitly above, the demand
was made that all the metric coefficients g;; should be
independent of the coordinate x'. If we require, in
addition, that the metric be invariant under the trans-
formation x'= —x", then it follows that (2) the metric
can be diagonalized. We note first that the coefficients
g;; of the differential terms dx'dx' (iW2) vanish; this is
an immediate result of the condition stated in the
previous sentences. We then make a coordinate trans-
formation of three coordinates x', x', x':

x'=y(x",x",x"), x'=g(x",x",x"), x'= h (x",x",x").

We impose on the three functions f, g, and h the three
conditions that each of the remaining nondiagonal
metric coefFicients go~, g03, and g~3 should vanish. This
completes the argument.

FIG. 1. Shock wave reflected from a corner.

the nonlinear equation

(0u/Bt)'= 8'u/Br'

is unchanged by the similarity transformation r =o r,
]'=n~t, u'= n &'t ') ~'I, Thus the two variables v

s= "/r ~"—'l" and x =r'/t

are also unchanged by this transformation. It follows
that the trial solution given by
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If forms (1) and (2) are assumed to be diagonal, then
it is still found that the field equations are too com-
plicated to work with easily. Accordingly, an, alternative
requirement was made. (3) It was demanded that the
metric should have the possibility to represent a wave
traveling in the x' direction or in the x' direction or
both, in this sense, that the g;; should have the "linked
pall s foi Di

g;; =5;,e;A s(x',x')B,s(x',x'). (3)

Here eo= —1, e1=e2=e~=1. Of course, it is not said,
nor is it true, that every solution of this form represents
a wave. It is true, however, that form (3) may admit
similarity effects. ; a special case of (3) is a metric of the
form

, (f(")i , (g(") )g;;=&,,eA,'I I& I
IC's(x')

Ea(x")) &b(x') J

Another special case of (1)—(3) is a solution of the
field equations in which one of the variables x', x', or x'
does not appear. Such solutions are here called de-
generate. Degenerate solutions were discarded (1)
because solutions in two variables have been quite
thoroughly treated in the literature, "and (2) because a
great saving in work resulted. However, special work
was required to identify solutions, ostensibly dependent
on three variables, which actually reduced to functions
of two variables; several of these were found. All ten
degenerate solutions are solutions which at first looked
as if they were functions of three variables. The twenty
nondegenerate solutions do not, apparently, reduce to
functions of two variables.

= eiege'(fi —f~)g'gj,
g

= fl, sf', '+f*,nfl, ' fl, 'f—l, s fl, 'l—,

(iA/, EAk, kNi)

(10a)

=f', ifl, '—fl, i' —fl, ;i+ele!e" ' "(fl,lfi, l
—fi, l'

—f, , ll)
—p e,e„e'«' ~"&f; fl, , (ill). (10b)

m+i, l

The contracted curvature tensor

has diagonal components

R;;=& Lf; ~fl; —fl;s —fl;~+e;ele'«'-»&
i&i

&&(fl, lf', l f'. l' —f'.« f'. l r. f, )ll(12a)
mWi Z

and off-diagonal (iNk) components

R's= 2 (fl, sfs. '+f .sfl. ' fl, 'fl, s fl,—s), (i&—k)

ferentiation. All components of the Riemann curvature
tensor

R'sl =I'sl ,
I—'el+, I' lI""s I—' lI'"s (9)

vanish except those of the following form:

gsi, A, Rsqqi = —Rsij„gs», — ei«e2(f i—ft)g &„~

3. THE FIELD EQUATIONS FOR A
DIAGONAL METRIC

The Riemann curvature tensor E.;;~~ and the con-
tracted or Ricci curvature tensor R;~—which is to be
zero in regions where space is empty —both take par-
ticularly simple forms when the metric is diagonal and
is expressed as an exponential:

g;I =5,1 eie'f',

where eo= —1, e1——e2=e3 ——I. The reciprocal of the
metric tensor is

4. APPLICATION OF TECHNIQUE OF SEPARATION
OF VARIABLES TO OBTAIN LINKED-

PAIR SOLUTIONS

We now specialize to a metric of the linked-pair form

g; =8; e;A,s(x'x')B,s(x' x') (13)

and find that of the 10 independent components of E,l„
three (Rss, Rls, and Rss) vanish automatically. The
demand of Einstein's field equations that all ten com-
ponents shall vanish in empty space therefore gives us
seven partial differential equations, each of the form

g~& = ej,gA. )e
—»1.

The Christoffel symbols

(6)
Q F,(x',x')G;(x', x') =0.

I sl sg (gms, l+gml, li gkl, m)

reduce to the form

I'sl=4„f, l+8;lf, l,
— 3elel,se'&» r'&fs,

where the comma denotes ordinary (not covariant) dif-

"For example: H. Weyl, Ann. Physik 54, 117 (1917);A. Ein-
stein and N. Rosen, J. Franklin Inst. 223, 43 (1937).

Here the F; and G; are built out of the A; and 8; and
their derivatives. By the method of separation of vari-
ables we have split up these equations into simpler
diGerential equations. The split-up process itself is
algebraic. Thus, we suppress the variable x'=T and
call x'=r, x'=s and arrive at the typical equation

'n

P R, (r)G;(s) =0.
i=1
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klF1 k2F3 j G1 klG2 j

P3WCF& (any constant C).

G3——k2G2 j

F1/0; G2/0;
(17)

Each of these possible algebraic solutions represents in
actuality a set of diRerential equations yet to be solved.
Moreover, the variable xp has to be restored to the
equations. If some of the F; and G; depend upon z',
then some or all of the "constants" of separation may
also depend upon x'.

In principle, this split-up could be carried out for all
seven equations E.,A, =0. In practice, it was sufficient to
break down in this way only the equation 813=0. The
information so obtained about the A; and 8,. was then
substituted into the other six equations to de6ne more
fully the allowable dependence of the A; (and 8,) upon
x' and x' (and x' and x').

Each case was analyzed in terms of the special
techniques appropriate to that case. As an example we
cite one type of equation which occurred often in the
analysis:

Cx'+Gg(y)x+G2(y) =Pg(x)[F2(x)y+F3(x)7'. (18)

We require that neither expression should equal zero.
Here C, k, the F;, and the G, are all to be determined.

In the general treatment, of Eq. (15), we consider
two possibilities:

I. F,=O.—This automatically reduces Eq. (15) from
an equation of e terms to an equation of m —1 terms.

II. F1/0.—We divide by F1 and differentiate with
respect to r. Again, Eq. (15) is reduced to e 1—terms.
If we continue this procedure, we obtain 2" mutually
exclusive cases of separation of Eq. (15). These cases
provide a complete separation of variables for Eq. (15).
(If one were applying the method of separation of
variables to a problem of lesser generality, such that
one or more of the F; or G; were known in advance to
be constant, then further simpli6cations could be
achieved by differentiating with respect to the missing
variable. )

Using this method of analysis, we can show, for
example, that Eq. (15) for the case v=3,

P] (r) Gq( s) +P2(r) G2( s)+ F3(r) G3( s) =0, (16)

possesses the following eight mutually exclusive solu-
tions:

i. F1——F2——F3——0.
2. F1——F2——G3=0; F3/0.
3. F1——G2=G3=0; F2/0.
4. F1——0; F3——kF2,. G2 ———kG3,. F2QO; G3&0.

5. G1——G2 ——G3 ——0; F1/0.
6. G2 ——0 F3=kF1' G1= —kG3,' F1&0; G3/0.

k2F1 j G1 k1G2 k2G3 j

F1/0; G2@0.

TWENTY

NON-DEGENERATE
SOLU&i ONS

Gi (XP; Xi; )(3)

~B

G( (XO+X(~ X3 )

G~ (q ( Xp X~ )'& X3)

nE)

G~ (.q(X~, X3), XO]

c
G, lq(X„X2); X3)
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FIG. 2. Classification of the twenty nondegenerate three-
variable solutions of Einstein's field equations. A check in response
to a question means yes; a blank, no. (i) refers to the number of
the solution in its particular category of classification. (u) Wave-
like appearance? (b) Time (xo)-dependents (c) i for which the
metric is invariant under x; —+ —x;. (d) Number of functions of
the single variable in a typical g;; (classification H only). (e)
Contains functions of unknown analytical. form. (f) Does a sine
appear? (g) Does a hyperbolic sine appear? (h) Total number of
solutions obtainable from this one by considering all possible
changes in the signs of the e s and by substituting other functions
for sinh8. The number does not include variations due to changes
in coordinates. Gi throughout this figure should read G;.

"Following the suggestion of Dr. Hans Buchdahl.

k and C are constants. If k=0, we see quickly that G1
and G~ are constants. If kWO, we take the (1jk)th
power of both sides and differentiate twice with respect
to y. Equating the coefficients of the powers of x to
zero, we get a set of differential equations which can be
solved easily. Six mutually exclusive solutions are
found.

In the present pork every appropriate simplification
was made. For example, when a function (F(x')72
appeared as a multiplicative factor in g;;, a change of
variables, x'*=x'*(x,), wa, s made to eliminate this
factor:

dx'* =F(x')Cx'

'Furthermore, degenerate solutions —those which were
functions of only two of the three variables x', x', and
x3—were all discarded, with the exception of a few
which appear later in the paper. All metrics for which
E.', E~——0, being Rat, were at once discarded.

Finally, some solutions were obtained from others
by complex coordinate transformations. "For example,
the transformation xp —+ix2, S2~ xp, l~$l changes
the solutions later designated as III—7 and III—8 into
III—9 and III—10.

It should be mentioned that the function sinho (8 a
function of the coordinates), wherever it appears, can
be replaced by cosho or e'; these functions cannot be
obtained from sinho by simple transformations.

Notation is as follows: all ~'s signify &1. c1 and e2,
where appearing, can independently take the values
~1. l and ) are always constants and may have either
sign. The e; are given by ep

———1, e1——e2 ——e3——1. The
x' are written with subscripts (x,) to facilitate writing.
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5. CLASSIFICATION OF SOLUTIONS A =xr/l; B=xp/l; C=sin(xs/l).

There are twenty separable nondegenerate solutions
of the form g;; =e;5;;A 2(xo,xr)Bis(go, xs) or derived
therefrom by an interchange of coordinates (Fig. 2).
Ten degenerate solutions are included. Each solution
receives two classificatory labels Dor example, I—A—1
and Gt(xo, xr, xs)j.

0 1 2

3
2
1 '

2
3
2

1
2
1
2
1
2

I. Typical metric component is a product of three
factors, each factor being a function of a single coor-
dinate or of a linear combination of coordinates.

A. The factors are functions of single coordinates.
Two solutions are included; the notation is

G;(xp, xl,.xs), i=1, 2.

3. One of the factors is a function of a single coor-
dinate (xs); at least one of the others is a function of
x0+xi. Four solutions are included; the notation is
G;(go+ xt't gs), 2= 1 to 4.

II. Typical metric component is a product of two
factors, one of which is a function of one variable and
the other of which is a function of two variables, quad-
ratic in at least one.

A. One is a f.unction of x3, one is a function quadratic
in x0 or x1 or both. Seven solutions are included; the
notation is G;fail(xo, xr); xsf, i =1 to 7.

B. One is a function of x0,' one is a function quadratic
in xi or xs or both. Three solutions are included; the
notation is G;Lq(xt, xs); xp), 2=1 to 3.

C. One is a function of x3, one is a function quadratic
in xi or x3 or both. Four solutions are included; the
notation is G;(il(xt, xs); xsj, 2 =1 to 4.

III. Degenerate solutions.

Ten are included; the notation is D;, i =1 to 10.

List of Solutions

I-A-1; Gt(xp, xr,. xs).)
3

d&2 P e is 2A2niB2miC2lidg .2 ~

'b )
i=0

I A 2
& Gs(gp& gt, gs).(

3

d&2 —P e is 2AsniBsmiCsliilg .2 ~

i=0

A =xi/l; B=xp/l; C=sinh(xs/l).

0 1 2

3

3

1
2
3
2
3
2

1
2
1
2
1
2

1
7/4

3

I—B—1;Gr(go~xi, xs).

3

dgs =p e,A2™iBsniCslidgl2 ~

i=0

A = (*o—*l)/l; B= (*o+x,)/l; C=sinh(2x, /l).

0 1

2 (1.+v2e) -2'(1+92e) ——2'%2e -'2 (2+~2e)
rl; —', (1—%2e) —,

' (1—%2e) —2'%2e -', (2—42e)
1

's 2 2 0 2

I—B—2; Gs(gongs, xs).

3

dss —Q e AsniBsmiC2lidg 2.
i=0

A = (g,—gp)/l; B= (gl+gp)/l; C= sin(2g, /l).

0

—,
' (1+%2e) 2 (1+%2e) 22&2e —22(2+~2e)

srl; —,
' (1—V2e) —', (1—V2e) —2'&2e 2 (2—V2e)

2 2 0 2

I-B—3; Gs(xp&xr, xs).
3

dss —P e .is.2A2niB2miCslidg 2 ~

i=0

A = (xp —xr)/l; B=xp/l; C= xs/l

rs; -', (I+v2er)
ftS; -', +es—&2er (2+2ps)

li 1
Qi 1

—', (I+42e,)
—',+ps —-,2%2et
—,'%2et(1+ps)

——',V2e,
—es+sv2er

-', (1—es)+-'sv2et( —3+ps)

—', (2+V2e,)
3+ps —42el(-,'+2es)

0
4 (1—es)+ sV2er (3es—1)

$ ft ofe aififed sis proof Dr. P. A. E.Pirani has recen.—tly informed me that solutions I-A-1 and I-A-2 may be reduced from functions of
three variables to functions of two variables. This may be accomplished by, for example, the transformations

X3 =Xi COS—
~ x3 ~ x3 ~

x1 =xi sin
&

in I—A-1 and x3 =xo sinh — x'p =xo cosh — in I-A-2.l'
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I-3-4; G4(xp+xg, gs).
8

des —g e .is 2As. niBsmiCsiidg, s.
iM

A = (xp —xg)/l; B=xg/l; C=x,/l.

I; —,
' (1+v2es)

sss; ,'+—es ,'—v2—es

l; -',%2e,(1+ps)

II—A—1; GsLq(xp, xx); xsj.

—,'(1+%2es)
-', +ps —%2eg (-', +2es)

1
1

——',%2es
—es+-,'v2eg

-', (1—es)+—sv2es( —3+co)

—,
' (2+%2eg)

3+es—42eg(-,'+2es)
0

—,
' (1—es)+-,'v2eg(3es —1)

3

d~s —P e .g,sAsniCslidx .s ~

iM

A = (xps/P) + (xs/l); C=xs/l.

—', (1+@Re)
li 1
Gy 1

II-A—2; Gst q(xo, xy); *s7.

-', (1+62e) ——',v2e —,
' (2+42e)

(1/7) (1+2v2e) (1/7) (2—3%2e) 0
1 (1/7) (3—v2e)

8

ds'=P e e'A'"'C' iD"'E' *dx'.
i=0

A = (x~/l) —(xp /16l ); C= (xs/l) —ey', D= (gs/l)+e„E= (esgs/l)+sV2es

ts; -,'(1+&2e)
k; —,'(2 —42e)
l; -', (4+3%2e)
sss; -3-v2e
a; 1

-,'(1+@2e)
—',42e

—,
' (2+V2 e)—1—V2e

——,'42e
—', (1—v2e)

—-', (1+F2e)
V2e

1

—,
' (2+v2e)
-', (1—V2e)
-', (1+v2e)—4—42e

2

II—A—3i Gslq(xo, xx); xs)

3

ds =p e 'is ' AsniCs&iDs&iEsmidg .s
'b 7

i=0

A = (gp/1)+ (gP/16P); C= (x,/l) —ei,
D= (gs/l)+ ey

&
E= (esgs/l)+-'sees.

i 0 1

-', (1+V2e) —so(1+~2e)
—,'(2+&2e) —', (4+3&2e)

—',vive -,'(2 —%2e)
yn; —1—v2e —3—V2e

ai 1

--',v2e
——', (1+v2e)

-', (1—%2e)
v2e

1

—,
' (2+v2 e)
—', (1+V2e)
—,
' (1—42e)
-4-@2e

2%2

In solutions II—A—4, II—A—5, II—3-2, and II—C-3,
I is a solution of the equation

des (sss —1$ (g+1)
i Ni i+V2e .

Eg-1)

In solutions II—A—6, II—A—7, II—8—3, and II—C—4,

e is a solution of the equation

dv f vs —1q 2v 4&3
+

dx 04xJ x—1 3 J

The definition of x will be given in each case.

II—A-4; Gsgq(gp, xg); xsg.

3

dgs —g eAsniCs&iD, siiEsmidg .s ~

i=0

A = (e~g '/16P)+ (x s/16P)+g g —g /l.

t' ssdg~ (Ns
C=expf ' f; D=,g;

x p &x-1j
0

ss; s (1+&2e) —', (1+V2e) —ss&2e ss (2+&2e)
—,
' (1+V2e) —,

' (1+V2e) —,'
—,
' (1+v2e)

0
mi 0 0 0
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II-A—5; GsLq(xp, x,); xs7.

3

d$2 =P e .AsniCskiasligsm dg 2'.
i=0

A = —(x '/16P) —(eyx 2/16P)+X x=xs/l.

( I
Ndg) (sss —I) *

C=expl I; D=e»; E=
I

x ) 4x—1)

II—B—1; GiLq(gl, xs); gpss.

3

de —Q e g 2A. 2niC2kiD2li~midx 2 ~

i=0

A = (x,/l) —(xP/16P); C= (xp/l) —el )

D= (xp/l)+el& 8= (esxp/l) j2&2es

ss; —,
' (I+%2e)

k; —,
' (1+v2e)

mi 0

—,
' (1+%2e)
s (1+v2e)

0

—sv2e
1
4

0
0

-', (2+v2e)
—,
' (1+%2e)

3

1

I; —2' (2+v2e) —2'(1+%2e)
—,
' (1+&2e) —,

' (4+3V2e)
l; -', (1—v2e) -,'(2 —%2e)
2N; —4—42e —3—&2e

a; 2v2 1

—-'2v2e
——', (I+v2e)
—,'(1—%2e)

v2e
I

—,
' (1+@2e)
-', (2+&2e)

—,'v2e
—1—%2e

X

II—A—6; Gs(q(xo, x&); xsj.
3

dss —P e AsniC2kiDsligsmidx .2 ~

i=0

A = (V3xl/31) —(xos/12P); x= xs/l;

( t- vdxq (v' —Iq -'*

C= exp[ I; D= —x; E=
fx) (x—1)

II-B-2; G2Lq(xl, xs); xpj.

3

d&2 —P e AsniC2kiLI2li+2mgdg .2 ~

7

i=0

(ss —1) * xo

4x—1) l
D= egx;

t ssdx)
A = (e x '/16P) —(gss/16P)+X C=ex. p~ x)

mi

ki
li

-', (2+43e)
—,'(3+2%3e)

—-'V3e6
0

—,
' (1+V3e) ——2'V3e —2, (3+V3e)

—,
' (3+2&3e) —-', -,'(3+2%3e)
——',(3+%3e) -sv3e —-', (6+%3e)

~ 0 0 1

ss; 22(2+V2e) 22(1+%2e) —22%2e 22 (I+V2e)
k; —,

' (I+42e) —,
' (1+%2e) ——,

'
—;(1+&2e)

4 0
mi 1 0 0 0

II—A—7; Gsgq(xp, xg); xsg.

3

d~2 —P e,A 2niCskiD2li+2midx .2 ~
'b 7

i=0

A = (V3go/3l)+ (x '/12P) x= xs/l;

( q vdxy (v' —Iq -'*

C=expf ~ f; D=x;
&x—1)

II—B—3; GsLq(xl, xs); xpj.

3

d~2 —p e A2niC2k. iD2li+2midx .2.
7

i=0

A = (%3x /3l) —(x '/12l') x=xp/l

( t vdx$ (v' —I) '
C=expj x) Ex—1)

ssc -', (1+43e) —',(2+%3e) —-2%3e —,'(3+V3e)
—s, (3+2V3e) —,

' (3+2%3e) ——,
' —s'(3+2v3e)

l; —-', (3+%3e) —-'sV3e -'sv3e ——,'(6+%3e)
0 0

n; —,'(3+VBe) -', (2+43e)
—', (3+2v3e) -', (3+243e)

l; ——,
' (6+%3e) —sV3 e

0

—-2%3e —', (1+%3e)
—,
' (3+2%3e)

ps&Be ——,
' (3+%Be)

0 0

II—C—1;G2Lq(xl, xs); xsj.
3

dss=g e,a,sAsn'Csi'dx'.
i=0

A = (xl/l) —(x22/P); C=xs/l.

—22~2e 22(1+V2e) 22 (1+42c) 2 (2+%2k)
l; (1/7) (2—3v2e) (1/7) (1+2v2e) 1 . 0
Gi 1 1 (1/7) (3—v2e)
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II—C-2; Gg/q(x&, xz); xaj.

Sr ~ 8 0 2g&~;C2k;D~t;+2m;d&. 2.$7
i=0

/
t. edxq /'p' —11 '

c=exI
I
Ea x ) Ex—1)

0
A = (xg/l) + (xpP/16P) ' C= (xp/l)

D= (x,/l)+„; Z= (p,x,/l)+-', V2.,
Si
ki
li

—-,'%3p
1
2

-pv3 p

0

—', (1+v3e)
-', (3+2%3p)—-', (3+@3p)

0

—,'(2+v3e)
—;(3+2%3p)

——,'VSe
0

-', (3+F3e)
—p'(3+2v3p)
—-', (6+v3e)

——,'42e
-', (1—&2p)

——;(1+42.)
V2p

—;(1+vZp)
-,'V2p

-,'(2+%2 p)—1—v2p

II—C-3; GpLg(xg, xp); xpg.

—,'(1+%2p)
—,'(2 —&2p)

-,'(4+3%2p)-3—V2p

—,
' (2+42p)
-', (1—%2p)
—,
' (1+42p)—4—42p

2%2

III—1; Dj.

ds'= —(xp/l) dx p'+ (l/x p)dxP+ (xp'/P) (dxl'+dx p').

III—2; Dg.

ds'= Pe'~—pndudm+PX'e"s+"'d @+Pe & "dg'

III-3' D8
dsp —p e .ApngC&&iD&iijv&midx, p ~

i=0

A = (x '/16P) —(pox '/16P)+X x=x /l

lp; ——,'V2 p —,
' (1+42p) —,

' (1+v2p) —,
' (2+V2 p)

k, ——,
'

—,
' (1+%2p) —,

' (1+%2p) —,
' (1+42p)

0
nzi 0 0 0 1

II-C-4; G4Lg (xg,xp); xpj.
8

ds2 —P eA2niC2kiD2li+2m, gdx .2 ~

7

i=0

A = (43xg/3l)+(xpP/12P); x=xp/l)

III—4; D4.

8

dsP —P e APnigrmidx. P.
i=0

A =xi/l; 8=sin(x, /l).

i 0 1 2 3
1 1 1 3
2 . 4 2 4
1 1 1 1

rtvg 2 4 2

8

ds2 —Q e'Apni+2midx 2 ~

i=0

A=xp/l; B=sinh(xp/l).

i 0 1 2 3
1 1 3
2 2 4
1 1 1
2 2 4

III—5; D5.
8

ds2 —Q e g 2A 2 niC&lidx .& ~

i=0

A =xp*/l, (xp*=xp+xg); C= xp/l.

S —,
' (1+V2pg) -', (1+%2pg) ——,'V2el —', (2+V2eg)

l (1//)9+ pp+V2pg(1 —2pp) j (1//)L3 pp+%2pg(1+2pp) j (1//) (1—2v2pl) 0
X 1 1

III—6; D6.
8

ds'= P e,a 'A'"'(x —pp)"'(x+ pp)"'x' 'dx, -';
i=0

A =xp*/l, (xp* ——xp+-p'v3xg); x=xp/l.

I; —', (2+VSp) —,
' (1+VSp) —y/3 p

k; —,
' (1+%3p) —,

' (1—V3 p)

l; —,
' (3+v3p) -', (3+2vSp) ——,

' (1+VSp)
lpga;

—
p (2+v3p) —p' (2+%3p) ~pV3 p

1 1

-,'(3+%3e)
1

—,
' (1+2&3p)
——,

' (4143p)
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III—7; Dy.

(1 x—ss/P)'

(2xoq—dxos+ sinh'I
I
dx,'&I)
dX3 X3

+—dxss.
(1—x '/P)' P

all of whom have investigated the Schwarzschild singu-
larity in one or another special way.

One method of investigating singularities in an
invariant manner has been proposed by Wheeler and
Brill."' Another such possible method would consist of
inspecting the invariants of the metric; singularities
appearing in the invariants would presumably be "real."

III—8; D8.

ds =
(1+xss/P)'

(2xop
dxo +slI1

l ldxP&i)
dX3 X3

+ + dxs. —
(I +x 2/P)2 P

III—9; Dg.

= g: 1 (2x, ~ds' = ——dxo'+ — sinh'l
l
dx '

(1+x,'/P)s

(2) Groups of Motions Admitted by the
Metric; Other Symmetries

Groups of motions are of especial interest in general
relativity, because they represent basic symmetries
which are unaltered by coordinate transformations.
This fact is illustrated by the requirement placed on a
metric g,; if the space of the g;; is to admit a group:
the fundamental form ds'= g;,dx'dx& must remain
functionally invariant under all infinitesimal trans-
formations of the group. " This requirement can be
expressed mathematically through the Killing equa-
tions 'p

III—10; Dgp.

+dxs +
(1+xss/P) '~

=
g'' 1 [ )2xsq

ds'= ——dxos+ sin'l
I
dx&'

+dxs'+
(1—xss/P)'

(1) Singularities, Topology, and Other Gross
Features of the Metric

The most obvious features of any metric are its
singularities; they may be the most important features,
as well. They have been interpreted by researchers as
the locations of mass points or distributions, wave
fronts, and a host of other physico-geometrical objects.
Singularities can sometimes be mere quirks of the coor-
dinate system of the metric, and it is often diKcult to
tell whether a singularity is of this type or is an indica-
tion of real physical meaning. The reader is, no doubt,
familiar with the old controversy over the meaning of
the Schwarzschild singularity, for example.

Some of the techniques used in treatment of the
Schwarzschild singularity may be of use in investigating
other singularities. The reader is referred to Finkel-
stein ' Kruskal Einstein and Rosen ' and I.indquist '

"D.Finkelstein, Phys. Rev. 110, 965 (1958).' A. Einstein and N. Rosen, Phys. Rev. 48, 73 (1935)."R. W. Lindquist (unpublished).

7. ANALYSIS OF THE METRICS

There are several techniques which can be used to
aid in analysis of metrics. Six will be briefly mentioned
here.

8;&+4 =o, (19)

where the P; are the infinitesimal generators of the
group. An excellent application of using Eqs. (19) to
restrict the g;; to a simple form is given in a paper by
Taub "

On the other hand, we may investigate the converse
problem: Given a metric g;;, which groups of motions
does it admit (if any) P In this case, in general, we must
solve Eqs. (19) for the generators t,. The question of
integrability of Eqs. (19) is discussed in Eisenhart. "

A simple, though incomplete, method of searching
for groups admitted by a metric is to inspect the metric
for independence of some variable. If the g;; are inde-
pendent of x~, then the space admits the one-parameter
group having generators +=Sos. This group merely
corresponds to the invariance of the metric under the
translation x'"=xs+n The sol.utions G, (xo, xt ', xs),
G;(xo~xt' xs) G'[g(xo, xr); xs$, and G;$g(xx xs); xo) are
all invariant under the transformation x"=x'+n, and
the solutions G,Lq(xr, xs); xsj are invariant under
x"=x'+n. A slight variation of this type of behavior
is provided by D5, which is invariant under the trans-
formation x"=x'+n, x"=x'—n.

Kundt22 has done a great deal of work on groups of
motions in general relativity and has classified several
solutions of the equations according to the groups of
motions which they admit. It was thought desirable that
the solutions of this paper should be similarly classified;
however, Eqs. (19), when written out, are suKciently
complicated not to have been solved up to now.

» J. A. Wheeler, Australian J. Phys. (to be published).
0 I.. P. Eisenhart, Riemarwiae Geometry (Princeton University

Press, Princeton, 1949).
s' A. H. Taub, Ann. Math. 53, 472 (1951).
~~ W. Kundt, Ph.n. thesis, University of Hamburg, 1958 (un-

published).
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(3) The Curvature Tensor; Canonical
Forms and Invariants

One especially fruitful method of investigating any
physical system is to look at the invariants of the
system. Closely associated with the invariants are the
canonical forms, which represent mutually exclusive
classes of the possible states of the system. The in-
variants and canonical forms of the Riemann tensor in
the theory of general relativity have been well discussed
by Komar" Kundt" Petrov" and Pirani. "Pirani, in
particular, has used the canonical forms to help outline
a criterion for the existence of gravitational radiation.
The metrics in this paper are all of canonical Type I;
according to Pirani's criterion, this means that none of
the metrics represent gravitational radiation. However,
Pirani has recently informed me" that he feels the
criterion to be too strong, and that he is studying possi-
bilities of relaxing it. Hence, we must wait for these
results before forming conclusions about the existence
of radiation in these metrics.

(4) Can the Metric be Imbedded in Euclidean
or Other Flat Space?

Imbedding of a metric, or a part of it, is actually only
a mathematical convenience, useful for visualization.
Because Qat spaces have no particular significance in
general relativity, imbedding has no physical meaning
and is actually foreign to the spirit of the theory. It is
mentioned here only as a possible tool for use in de-
scribing a given metric.

However, one Ands that imbedding is dificult to use,
even as a tool, because of the complexity of the equa-
tions. If the fundamental form of the lower dimensional
space is

dS =g '8$ ds~~ z)g= 1' ' 's

and if the fundamental form of the imbedding space is

ds'=P C.(dy )', n=1 m; m)e

where C =~1, then the following equations must be
satisfied" .

dS

dx' dx'
+I"ii

dS dS
(21)

Much information about the space can be gleaned from
a study of the geodesics. For example, a closed or quasi-
closed geodesic, as exists for the Schwarzschild metric,
may indicate a center of force. The concept of complete-
ness —a geodesic is designated as complete if it can be
extended indefinitely —can provide information about
the boundaries of the space. It should be possible to
investigate these features directly from Eqs. (21),
although the author is not prepared to do so at the
present.

Solution of Eqs. (21) for complicated metrics is
usually quite dificult. Some enlightenment can be
gained, however, from first integrals of motion. One of
these always exists and is given by

ds dS~

gs~
dS Q$

(22)

Other integrals of the motion exist if there are sym-
metries in the g, , We can see this by inspecting the
Euler equations for the system":

where

BI. d BL,
=0,

Bx' ds B(dx'/ds)

dx' dx') *

0 "ds ds)

(23)

If Bg;;/Bx'=0, then BL/Bx"=0, and BL/8(dxi/ds) is a
constant or first integral of the motion. If we evaluate
this and use the result that L=1 from Eqs. (22) and
(24), we find the following:

If Bg;g/Bk'=0, then

(5) The Geodesic Equations of Motion

Much of the physics inherent in any solution of the
field equations lies in the equations of motion of a par-
ticle and the geodesics of the space under consideration.
These equations are, as is well known, '

g;g(dx'/ds) =constant.
(20)

If the metric is diagonal, we get

(25)

These equations are much too dificult to solve in
general. Several general theorems on imbedding exist,
but do not aid the present problem. Nothing has been
done on the problem at the present time.

"A. Komar, Ph.D. thesis, Princeton University, 1956 (un-
published); Proc. Natl. Acad. Sci. U.S. 41, 758 (1955);Phys. Rev.
111, 1182 (1958).

'4 A. Z. Petrov, Sci. Note Kazan State Univ. 114, 55 (1954)."F.A. E. Pirani, Phys. Rev. 105, 1089 (1957)."F.A. E. Pirani (private communication).

dx /ds= X/gyp. (26)

2~ C. Mufller, The Theory of Relativity (Oxford University Press,
London, 1955), p. 229.

Equation (26) can be used to discuss types of singu-
larities. It shows that, for gi~ ——0, dx~/ds= ~, i.e.,
d$=0. Thus the points at the singularity in the x~

direction can perhaps be identified. For g~g, = ~,
dx~/ds=0, and xi=constant. This implies that there
is no communication —travel is forbidden —along the
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singularity in the x direction. Note that, of course,
these remarks only apply to a metric independent of x~.

Most solutions in this paper are independent of x';
the others are independent of x'. Thus, we have two
integrals of the motion available for each solution.
These are of most immediate interest in the singularity
treatment just outlined.

Another method of employing Eqs. (21) consists of
comparing them with the Newtonian equations of
motion for a known mass distribution. If the two sets of
equations are approximately equivalent, then the
metric probably represents the gravitational held of
the mass distribution. One example of this method is
found in the geodesic equations for the Schwarzschild
metric, which closely approximate the Newtonian equa-
tions of motion for a central gravitational held. ' An-
other very good example is found in a paper by Wilson';
by such a comparison as described above, he shows that
the metric he has represents the gravitational held of
an infinite line mass. Unfortunately, this method seems
to be useful in only a small number of cases.

(0) Topology and Structure of Space-Like Surfaces
at Moments of Time Symmetry

Interest in such three-dimensional spacelike surfaces
stems from the fact that they may be used as initial-
value data in the problem of constructing a four-
dimensional solution of the held equations. The topology
and structure of such surfaces will then determine the
topology and structure of the four-dimensional space.
The initial value problem for general relativity has been
studied extensively by I.ichnerowicz" and Foures" and
has been discussed by Misner and Wheeler. ' Christakis"
has discussed the initial value problem for the metrics
of this paper.

Five of the solutions in this paper are time-symmetric
with respect to the plane x'=0. They are all indicated
on the Bow chart.

We will now proceed to a discussion of the individual
solutions. Due to several circumstances, this discussion
will be rather brief. It is hoped that future study of
these metrics can produce more information about their
physical interpretation.

Solus oes I—A-1, I—A —Z

It is not clear whether the coordinates in I—A—1 are
cylindrical or spherical. I—A-2 is the analog of I—A—1,
but with sinh(xs/I) instead of sin(x'/I). The solutions
are quite similar for small x'/l

"W. Wilson, Phil. Mag. 40, 703 (1920).
2' A. Lichnerowicz, Problemes Globuux em 3fechaeiqne Relutiviste

(Hexmann et Cie, Paris, 1939); J. Math. Pures Appl. 23, 37
(1944); Helv. Phys. Acta, Suppl. IV, 176 (1956).

~ Y. Foures-Bruhat, Acta Math. 88, 141 (1952); J. Rational
Mech. Anal. 4, 951 (1956).

3' A. Christakis, Senior thesis, Princeton University, 1959
(unpublished).

Solu/zons I-B—1, I-B—Z

As these solutions stand, they look remarkably like
superimposed waves traveling in oppposite directions.
They might even be standing waves, except for a slight
asymmetry in the exponents. However, this behavior
may only be a feature of the coordinate system; the
substitution I=xs—x&, v =xs+ x&, destroys the wave-
like appearance, and it is not known which form is most
"physically real. " If the exponential form is used in
I—8—1, instead of the hyperbolic sine, the function C
can be simplihed considerably by a change of variable.

Solutioes I—B—3, I—B—4

These solutions also have plane-wave appearances.
The presence of x& by itself in I—8—4 might give rise to
possibilities of the attenuation needed in cylindrical
waves.

Solutzoes II-A —1 to II—A-7

These seven solutions are conveniently discussed
together. The other notation for them is G;Lg(xs, xg) xsj,
indicating the quadratic character of xs and/or x&.

Those solutions quadratic in xo seem to indicate some
sort of wave reQecting from the plane x~=0 at the time
xo= 0; those symmetrical in x& show waves going in both
directions from the plane x~=0.

Solutions II—A—4 to II—A—7 contain functions of x3
of unknown analytic form, and consequently, the x&

singularities are not easily discussed. Solutions II—A—2
to II—A-4, on the other hand, have three obvious xa
singularities. However, in order that the metric remain
real, we must require that C, D, and E should always
be positive. This requirement has the eGect of always
having xs/l) 1, so that the only effective singularity is
at xs//=1.

Solufioes II—B—1 to II—B—3

As is indicated by the alternative notation

G,Lg (xr,xs); xs],

these solutions are quadratic in xr and/or xs. H these
are rectangular coordinates, as seems most likely, then
the singularities of these solutions are elliptic, parabolic,
or hyperbolic cylinders. It is not known what physical
signi6cance such surfaces have. The xo singularities are
the same as the x3 singularities in the set

G,Lg(xs, x,); xs&.

Solu&zo0s II—C—1 &o II—C—V

These solutions, G;Lq(xr, xs); xs], combine the sin-
gular cylinders of the set II—3 with the xa singularities
of II—A. The solutions are purely static and are thus
time-symmetric.

Solution III—1 hardly needs discussion, because it has
such a simple form. III—2 is only a function of two
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variables but is nondiagonal. If we put I= (xo+xr)/E,
w= (xs—xr)/E, we return to the diagonal form, which
now is a function of three variables. Furthermore this
form has a plane-wave appearance.

Solltioes III—3 to III—6

These solutions are all degenerate, but have many
similarities to some of the nondegenerate solutions. Xo
new comments are necessary, except considering III—5
and III—6; in the xs+xi form, these solutions indicate
plane wave traveling in one direction. It is not certain,
of course, which form of the metric is most physical.

Solutions III-7 to III—10

sphere. Eisenhart" presents a very nice discussion of
imbedding the metric d8'+g«dit' in 3-space, where gee
is either sinh'9, cosh'0, or e".Any of these functions, as
pointed out in Sec. 4, is acceptable for use in (5—8). For
small 8, metric (5—8) is approximately spherically sym-
metric; it may be possible to piece such a metric to-
gether with the Schwarzschild metric.

Solutions III—7 and III—8 are somewhat different
from solutions III—9 and III—10 because of the diGerent
arrangement of the x; and the g;;. It seems quite obvious
from g~2 that we should de6ne x3=r, x2=$, where r
and 8 are cylindrical coordinates. III-7 has a pronounced
singularity at the cylinder r=l.

8. SUMMARY AND ACKNOWLEDGMENTS

The technique of separation of variables is a powerful
tool in obtaining solutions of the equations of general
relativity. It can be used to find all solutions of a given
class, or it can be used in many cases to check whether
a certain type of solution exists.

The solutions given in this paper are presented as raw
material for further research in general relativity. It is
hoped that their analysis will lead to further insights.

Any reader who desires a more detailed treatment of
the equations in this paper should consult the original
thesis of the same title (Princeton University, 1959,
unpublished). Microfilm copies may be obtained from
University Microfilms, Ann Arbor, Michigan.

I would like to thank especially John A. Wheeler,
under whose supervision this work was carried forward.
To him goes the credit for the initial ideas and for many
useful suggestions during the time the work was in
progress. I appreciate also the help given by Professor
Valentine Bargmann, Dr. Charles Misner, Dr. Wolfgang
Kundt, Dr. Hans Buchdahl, Dr. Felix Pirani, Dr. R. N.
Euwema, and Mr. R. W. Lindquist.

These solutions are most conveniently discussed as
a body. It should be noted from earlier discussions that
these are only related through comptex coordinate trans-
formations; in other words, each of these represents a
diGerent physical situation.

Solutions III—10 will have a more familiar look if we
de6ne

m gl) T sop

r =2m/(1 —xss/16m'),8=x,/2m,

y= xi/2m.

Substitution of these quantities into III—10 yields the
Schwarzschild solution. A similar transformation of
III—9 yields the metric

ds'= —
~

—1 ~dT'+r'(d8'+sinh'8dy')+
i 2m/r 1—

(5-S)

Because of the sinhe in g~~, this metric is not spherically

symmetric. Instead, it seems to represent a pseudo-
"L. P. Eisenhart, AN Introdetcteol to DQferertteot Geometry

(Princeton University Press, Princeton, 1947), pp. 277—286.


