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Interaction of Static Nucleons*
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The Heitler-London method has been applied to the calculation of the energy of interaction of two
nucleons, as given by the 6xed-source model. Numerical results are also given for the normalization of the
state vector and the number of mesons in the cloud, for the states which comprise the deuteron. Particular
attention is given to the rate of convergence of the expansions and the in8uence of the excited states of the
nucleons. The relation to the Tamm-Dancoff method is also discussed in detail. It is shown that in T=0
states, the interaction does not appear to differ in any significant way from the one-meson exchange term.
In T=1 states, on the other hand very large contributions are obtained from the higher order terms. These
contributions have such a nature as to suggest that even at low energies it is improper to apply the Gxed-
source model, with the assumption that the meson cloud follows adiabatically the motion of the nucleons,
to T= 1 states.

I. INTRODUCTION

' "N this paper we present the results of some calcu-
' ~ lations of the properties of two-nucleon states, as
obtained from the static model. There have been many
earlier calculations based "on this model, ' ' but the
method used in this paper is somewhat diQ'erent from
those used by previous investigators, and the numerical
results also differ in certain particulars from those
previously reported, as we shall discuss below.

The model used herein is a very crude one, and great
care must be used in attempting to relate properties of
real two-nucleon states to the predictions of this model.
Nevertheless, since the model quite successfully repro-
duces many of the observed properties of the meson
cloud of a single nucleon, it may be hoped that the
meson exchange sects predicted by the model will

provide a useful first approximation to the actual
eGects of meson exchanges, especially when the nucleons
are far apart. Many effects, which are most important
at small distances, are left out of the model. These are
meson-meson interactions and other nonlinear meson
effects, the sects of the relative motion of the nucleons,
and the inhuence of all virtual particles except the pion.
These eGects can be simulated, approximately, by
making appropriate phenomenological modifications of
the interaction at small distances; in this way, as many
authors have pointed out, the model might be used to
correlate data on the two-nucleon system at low
energies. ~"
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In some of the earlier calculations of the nucleon
potential, it was assumed that the nucleons were point
sources; in others, extended sources were assumed. At
the distances at which one may have confidence in the
predictions of the model, there is very little difference
in the results. However, the view adopted here is that
an appropriate cutoG should be used. We are primarily
interested in exploring the mathematical properties of a
particular model, and this can be done in a self-con-
sistent way only if the same cutoff is used in all parts of
the calculation. Furthermore, we may expect that if the
parameters of the model are chosen to reproduce as
closely as possible the observed properties of the meson
cloud of a single physical nucleon, the additional
phenomenological modifications which are introduced
at small distances will be more significant.

(a) Properties of One-Nucleon States

Before we proceed with the discussion of two-nucleon
states, we shall examine some of the known properties
of one-nucleon states. This is done in order to introduce
the notation, and to obtain some numerical results
which will be referred to later. We also wish to see how
much the two-nucleon interaction is affected by a
reasonable change in the parameters of the model
(that is, a change allowed by the uncertainty in the
properties of one-nucleon states).

We wish to discuss the eigenstates of the Hamiltonian

EI=+g E/ls Gs—Wp(rx~ @~+Go pro)

+Zs (rts+tt-s*) &&*I+&,rj, (1)
where

U s=n *[foes(2E) &p-,rim, k exp(ik x)ja,.
We use natural units (S=c=3f =1), and express by
the corresponding capital the energy of a meson whose
momentum is denoted by a given lower case letter, e.g.,

'de Swart, Signell, and Marshak, Nuovo cimento 6, 1189
(1957).' J.J. de Swart and R. E. Marshak, Phys. Rev. 111,272 (1958)."S. Otsuki, Progr. Theoret. Phys. (Kyoto) 20, 171 (1958).

"W. Watari, Progr. Theoret. Phys. (Kyoto) 20, 181 (1958).
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E= (1+ks)&. The source function es is normalized so
that eI,=1 when E=O.

Some relations between the renormalization constants
and the meson-nucleon scattering amplitudes have
been derived by Cini and Fubini":

where coo is the resonance energy, and co& and m& are
typical energies for scattering in the other states;
co& or2~co. Values for some quantities of interest are
given in Table I."

(b) One-Meson Exchange Energy
1=sL1+(«s/9)+ («s/9)+ (~i/9) j

~i '=ZsL1 —(2~s/9)+ (~s/9)+ (~i/9) 3,

~s'=~sL1+(~s/9) —(2~s/9)+(~i/9)], (2)

The states of two interacting nucleons may be
classided according to their total isotopic spin, but there
is a preferred direction in space (the axis joining the
two nucleons) and we must distinguish between states
with diGerent components of angular momentum
(tn=&1 or 0) with respect to this axis. The states
with m= +1 and a given isotopic spin I are degenerate—we shall refer to these as the parallel spin states ((Pi).
There are two distinct states with m=O; the one which
is symmetric in the spins of the nucleons, corresponding
to the remaining member of the triplet„we shall call
the orthogonal state (Oi); the other, antisymmetric
m=0 state, is the singlet state (Sr). The Hamiltonian (1)
therefore has in general six distinct discrete energy
levels, although if the two nucleons are superposed,
the energies of the 6'~ and 8~ states coincide, as do also
the 6'0, 80, and S~ energies. The relation to the central
and tensor potentials is discussed in the Appendix.

It is well known that the one-meson exchange term
of the interaction energy is obtained correctly from
second order perturbation theory if the renormalized
coupling constant is used:

V = f'gs (e. e—„)e, ke„keg'E —'
&(expLik (x—y) j. (3)

As an introduction to the method which is found con-
venient for treating the higher order terms, we shall
examine separately the contribution to (3) of the
mesons with m=O with respect to the axis of the
nucleons, and the contribution of the mesons with
m= ~1.This is useful because the mesons with different
azimuthal angular momenta give not only characteristic
spin dependences, which can be related directly to the
spin eigenfunctions, but difkrent radial functions as
well. Let

4irps EessexpsLik (-x—y)j
=Ps f(k) exp(ik r) =F(r), (4)TAsr.E I. Numerical data for one-nucleon states.

then

We shall assume that the parameters of the model are
chosen so that the low-energy meson-nucleon scattering
is approximately reproduced; y=f'/4smu. st then be
about 0.08, and if the source function vI, is supposed to
dier very little from unity in the resonance region, one
finds that ns~2 6(if .y=0.08). If one assumes that
ns=s'ns (which is consistent with both the strong- and
weak-coupling limits), one then obtains from Eq. (2)
values for 0.&, Z2, and p& as shown in Table I. It may be
noted that the value of n~ so obtained is much larger
than 0,3."

The isotopic vector part of the nucleon magnetic
moment" and the resonance energy of the meson-
nucleon scattering"" depend on the quantity pM,
where M= Jt "es'k4E 4dk. If y=0.08, M should be
about 3.5. The product &3f is determined very roughly
by these comparisons, but a suitable way to compare
source functions with diferent shapes is to require that
yM be invariable. For instance, M=3.5 corresponds to
a sharp cutoff at E =5.5; however, a more con-
venient analytical form is given by e&= (A' —1)/
(g'+k') for which g= 7.

A measure of the average energy of the virtual mesons
in the cloud is given by oi=M 'Je"e&'k'E 'dk The.
average number of mesons may be shown to be approxi-
mately

37M' ( «soi «soi ntei
&o=

~
1+ + +

9(oi+ois) s 9(oi+ois) s 9(oi+eii) sj

CKS

CKI

g~-1
px
M
A.

Xp

0.08
2.6
5.4
3.0
0.36
3.5
7
6.1
3.0

0.10
2.24
4.9
2.g
0.40
2.g
6
5.5
2.5

"M. Cini and S. Fubini, Nuovo cimento 5, 764 (1956).
~ See also G. Salzman and F. Salzman, Phys. Rev. 108, 1619

(1957).
'4 H. Miyazawa, Phys. Rev. 101, 1564 (1956).
's G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).

and

Qs (k')'f(k) exp(ik r) = a„F(r)=—Z(r)—, (Sa)

~' These numerical values differ from those of reference 14 and
from those of Halpern, Sartori, Nishimura, and Spitzer, Ann.
Phys. (N. Y.) 7, 154 (1959).

Ps k+k f(k) exp(ik r) = —b„F(r)= —F(r), (5b)

where a„ is the operator d'/dr', and b„= r 'd/dr. The- —

signs were chosen so that both F and Z would be posi-
tive at large distances. Then Eq. (3) takes the form:

Vi=ve, e„Pu„+verb,)F(r), (6)
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TABLE II. The one-meson exchange energy.

1
—1
—1

0
—2

+2

Vl(T =0)

—3'
3yZ+6yI'3'—6yF

Vl(T =1)

VZ
—yZ —2yF
—yZ+2yI

where
&=o,'o „' and tl=+ (o,+o„+o o +).

It is sometimes convenient, in the main body of this
paper, to treat the charges of the mesons and their
angular momenta in a similar way; on such occasions
we shall write ~ .~„=rrr 'r„o+P(r +r„+r r„+),where
the "operators" n and P are +1 and —1, respectively.
In Table II we show the eigenvalues of $, r), and Vr, in
the eigenstates (P, 6, and S.

If the nucleon is taken as a point source (vq—=1), then
F(r)= (r '+r ')e " and Z(r)= (2r '+2r '+r ')e "

note that Z is considerably larger than V, especially at
large distances. However, if the nucleon core has a
finite extension, Z(r) changes sign at a distance about
equal to the core radius, and Z(0) = —I'(0).

The average momentum of the virtual mesons is
very large, and hence the interaction energy is very
sensitive to the nature of the source function. This is
illustrated in Fig. 1. At separations as large as one
meson Compton wavelength, corrections to the point-
source potential which are as large as 20 jo are obtained;
at smaller distances (r 0.5), the corrections are
enormous, and while the potentials obtained with the
diGerent extended sources differ among themselves by
a small percentage of the point-source potential, the
absolute magnitude of the differences is large. In in-
tegrating the Schrodinger equation, short-wavelength
Quctuations in the potential are smoothed over; never-
theless, we must conclude that the potential obtained
from the static model has at most a qualitative sig-
ni6cance at small distances. Figure 1 shows not only
that the energy is sensitive to poorly determined param-
eters of the model, but, moreover, that the model
predicts that virtual mesons with high momenta are
very important, and we do not know how accurately
the model reflects the actual properties of such mesons.

number of mesons common to the clouds of both
nucleons. In this section we shall calculate some of the
properties of the basic Heitler-London state 4,„, which
is obtained by multiplying together two operators, each
of which creates a single physical nucleon. An approxi-
mation which corresponds to the usual Heitler-London
method in the theory of molecular bonding is obtained
by using the basic state C,„as an approximation to the
exact two-nucleon state O',„.This approximation gives
an upper bound to the interaction energy. In the next
section, we shall examine the more complicated Heitler-
London states C „,s and C',„,si (in which one or both of
the nucleons is excited) and their role in the exact
eigenstate.

We shall examine in particular the 6'0 and 80 states,
as these occur in the triplet, even states (e.g. , in the
deuteron), which are the most well understood empiri-
cally; the comparison of our results with other potentials
is consequently most interesting for these states.

It was pointed out in I that there is a certain arbi-
trariness in constructing a Heitler-London representa-
tion, arising from the fact that the operators P,* Lsee
Eqs. (I,3) and (I,4)]may be taken to be functions of an
arbitrary set of canonical variables. For instance, 5 *
may depend on the q», the a&*, or on the mj,—the Grst
two cases were described in detail in I. In the present
problem the expansions for the matrix elements con-
verge much more rapidly when the u* operators are
used than when the q operators are used. When m

8-

6-

2-

II. THE HEITLER-LONDON APPROXIMATION

(a) Definition and Normalization of
the Basic State

In a previous paper, '7 the author described a way of
relating properties of two-nucleon states to properties
of isolated nucleons. The method used a twofold expan-
sion: an expansion of the state vector in a Heitler-
London representation, and an expansion of the matrix
elements between Heitler-London states in terms of the

' R. E. Cutkosky, Phys. Rev. 112, 1027 (1958).Hereafter this
paper is referred to as I.A very similar approach was suggested by
Novozhilov, references 18 and 20.

-2
0 OA

Frc. 1. The function Z(r) obtained from different cutoff func-
tions: (a) os=i (point source); (b) os=(hm —l)(hs+ks) r with
X=7; {c) ~&——(X —1)~(n —1)~(X+A )-~(n+k )-~, with X=14
and 0=4.68 (this gives the same M as case (b)j; (d) es has the
same form as in (b), but it =6.
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operators are used, the normalization of the basic
state is almost exactly unity and the expansion which
gives this quantity converges extremely rapidly. How-
ever, when an appropriate rearrangement of terms is
made, the expectation values of operators in normalized
states converge about equally rapidly in all cases. The
best approximation to the exact state (in the sense of
giving the lowest interaction energy) is obtained when
the basic state is dehned in terms of q operators, and
the poorest approximation is given by the x operators,
but the basic states obtained in all methods give auto-
matically both the second and fourth order perturbation
theory results (with the renormalized coupling con-
stant).

We shall use operators de6ned as functions of the uh,
*

in the discussion which follows, partly because the
convergence rates are suitable, and partly because the
graphical description of the matrix elements corresponds
closely to the Feynman graphs obtained in the Tamm-
DancoR method, as we shall discuss in some detail
below. This makes the relation to previous calculations
and some eGects of nonadiabatic corrections most easily
understood when this method is used. "

We may write the expansion (I, 11') for the norm of
C,„in the form

(C,C.„)=1+3,„=P A„,

where A„represents the contribution of e exchanged.
mesons. There is a close relation between the norm and
the average number of mesons in the state C „,as given
by Eq. (I, 28). Let X,„=(C,„,XC,„).From (I, 28) it
follows that

K,„=2(1+2,„)Np+5X,v+5K „', (7)

where So is the average number of mesons in the
physical nucleon,

801 =P tsar„,

and 8%,„' is a relatively small correction given by

XL(*I~t* u,*(x—Np)a„+t rr. I~)

x(yIa„* . .a,+,*rr, rr&Iy&

+symmetrical term in (x,y)]. (8)

The average number of mesons in the state 4 „is then

2Np+5N, where 5N= (5%+8K')/(1+2).
' This definition of the basic state is the same as that discussed

by Iu. V. Novozhilov, J. Exptl. Theoret. Phys. U.S.S.R. 32, 1262
(1957) /translation: Soviet Phys. JKTP 5, 1030 (1958)j;J.Exptl.
Theoret. Phys. U.S.S.R. 33, 901 (1957) Ltranslation: Soviet Phys.
JETP 6, 692 (1958)j.

There is no need to calculate 8X very accurately, so in
Eq. (8) we shall neglect the off-diagonal matrix ele-
ments of K-Np (between physical states), and equate
the diagonal elements to the number of incident
mes ons,

We might expect that when the two nucleons coincide,
a large contribution to the expansions would come from
the 2Npth order terms (i.e., e 5 or 6). Our present
method of evaluating the matrix elements in terms of
expansions is therefore likely to be useful only at large
distances. We wish to find out how the rate of con-
vergence depends on the separation; the expansion for
the norm is typical so we shall examine the erst few
terms of this expansion in some detail.

The 6rst term is

Ar ——Pq f'~, ~„e, krr„. kvs'E 'exp(ik r). (9)

Let E 'f(k) =g(k), and let Pp g(k) exp(ik r) =G(r).
We obtain for A~ an expression which is similar to
Eq. (6), with F(r) replaced by —G(r). In the lowest
order approximation, 6K=A &. We may note an illustra-
tion of a general qualitative result, that an increase in
the average number of mesons in the cloud is usually
associated with an attraction between the two nucleons,
and vice versa.

The second term in the expansion for the norm is

a,=g„(-;(xILV,(a+E)- v,
+V (H+I.)—'Vsj

I x)(E+I.)—'
x(yl iv.*(~+I)-v,*+V,*(~+E)-V.*)Iy)

+I symmetrical term in (x,y)j
+(*Iv (ay ) '(a+I) 'v*I )

x(y I
«(&+I)-'(&+E)-'v *Iy)&; (10)

we have used some well-known identities to eliminate
the creation and annihilation operators. We evaluate
(10) by the standard closure expansion method —a sum
over a complete set of eigenstates is inserted between
the V operators in each one-nucleon matrix element.
It is convenient to distinguish three parts of A2. the
"zero-meson" or perturbation-theory part, A2&'~, is ob-
tained when we keep only the zero-meson intermediate
states in each sum; the resonant correction, A2& &,

arises when the contribution of the (s, ss) resonant
scattering states to one sum is included, and either the
zero-meson states or resonant states are included in the
other sum; the nonresonant correction, A2(~~&, which
consists of all remaining terms, depends on so many
unknown quantities that we cannot evaluate it accu-
rately, but we shall be able to show that it is relatively
small.

The examination of the spin dependence of the
various parts of A2 is easiest if one treats separately the
"uncrossed" terms, in which the VI, and V operators
occur in the same order in each matrix element, and
the "crossed" terms, in which they occur in the opposite
order. The zero-meson uncrossed part of A2 may easily
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be shown to have the form

where

and where

Av(r) =lim„,A v(r, $),

Av(r, $) = (y2/8) UrU&Gv(», $),

Cg (6') = a„a,+4b„b„

C~(e) =a„a, 2(a„b,+b„—a,);
Cz is again easily obtained from Cz.

To simplify the numerical calculations we approxi-
mate the integrands in Eqs. (11) and (12) by a product:
we replace (K+L) ' by 1/4EL. Then Gv(r, $)~G&(r,$)

G(r)G($). This introduces an error of perhaps 10%
or 20%, which is small compared with other, more
unavoidable errors, and to the eGect of changing the
parameters of the model slightly. In all the remaining
calculations, we also approximate all six or nine dimen-
sional Fourier integrals by appropriate sums of similar
products.

The contribution of the resonant intermediate states
to the matrix element (0 j U&f(H) U1*~0) is

42rX(4EL)—'*ese1(k. I——0'o. ke. 1) (81,1——0'~1, .e1),

where

X= (3/2r) sin2& (p) e
—

2p—2f(p)dl-'

Since the width of the resonance is small compared to
the average energy of the virtual mesons which are
exchanged between the two nucleons, we may use the
isobar approximation, which consists of replacing I' by
an appropriate average. Then

X=itsy f(010);

Gv(» $) = (42r) 2+ s1 4esse12E 'I. '(E—+L)
Xexp(ik r+il s). (11)

The operator U~ depends on the angular momentum
state of the nucleons:

Ug(o') =a„a„
U~(8) = a„a,+2(a„b,+b„a,)+4b„b,.

There is no need to write down U~($), because it can
be obtained from Uz(8) by changing the signs of b„
and b,. This rule holds throughout the calculation, so
we only need to give results for (P and 8 states. The
operator Uy, which depends on the isotopic spin, is
easily obtained by replacing the a's and b's by n and P,
respectively.

The crossed zero-meson part of A~ is obtained in a
similar way from

A c(»,$) = (3y'/8)Cr C~Gv(r, $),
where

Gv= (42r)'+21 'tIseE1'L 0(4/3)L1 —EL(E+L) 'j
&(exp(ik r+i1 s), (12)

we choose oro so that

n, y/&u0
——(3/2r) t sin262(P) v 'P '—P —'dP—

which gives +0=2.1. This approximation is equivalent
to replacing the scattering states by a discrete state of
energy oro.

In evaluating the Fourier transforms which are
associated with A2(~~, we encounter the following
integrals (with N=O, 1, or 2):

G„(r)=ps g(k) exp(ik r)E"/(K+000)"

LIn calculating the corresponding contribution to U2 we
also require F„(r)=Ps f(k) exp(ik r)E"/(K+000)".j
These integrals, and the related functions (2',„(r)
=aG„(r), $„(r)=bG„(r), etc. , have been evaluated
numerically, using the cutoff function e&=48/(49+02). '0

After making the approximations describedabove,
we obtain for the contribution to 32& ~ of the crossed

FIG. 2. Graphs (a) and
(b) correspond to contribu-
tions to A2&") and V2(~),
but graph (c) is associated
with the one-meson Heitler-
London state. The cross-
hatched areas represent the
(2, 2) scattering state.

diagram, Fig. 2(a), the following expression:

A2 = sQ'0'r +1I+1A/G0(r)G1($)+2G1(r)G1($) 1

where

R1g(O') = —,'$2a„a,+2b,b,],
~» (8)=

2 E2a„a,+2 (a„b,+b„a,)+6b„b,]
The contribution of the uncrossed diagram, Fig. 2(b),
which vanishes in T=O states, is

A2~ 2 = sc23'r +27+2AGO(r)G1($)~
where

Esp (6') = —0'L2a„a,+6b„b,),
24&(8)= sE2a~, 2(a„b,+b,a,)+2b—,b,j.

Our numerical results also include the much smaller
contribution to 32&~& of the diagrams in which there is

"An IBM-650 electronic computor was used for these calcu-
lations. The author is grateful to Dr. S. H. Vosko for writing the
program and explaining the operation of the machine.
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a resonant meson scattering at each nucleon, but we
shall not write the formulas.

An estimate of A2&~~' may be obtained by using the
renormalization constants which were discussed in
Sec. I. In Eq. (10) we replace the Hamiltonian H, where
it appears explicitly, by zero—that is, in the closure
expansions we assume the energies of the virtual states
are small in comparison with the average energy cu(r)
of the mesons which are exchanged when the nucleons
are separated by the distance r. This is very crude,
especially at large distances, but we can partially com-
pensate for the error at the end. With this approxima-
tion, and using the explicit form of V~, we may evaluate
A2 in terms of Z2 and p~. We then subtract A2"& and
the contribution of the resonant states (A2&"& with ceo

0.6—
LL

L

LL

ILL

I
L

AN

0.3—

Ap

AR

-0.5 0.4 0.8

FIG. 3. The contribution of various terms to A ~ for the (Pp
and 8p states. The solid lines show the exact contributions, the
dashed lines the approximations obtained by neglecting the
energies of the one-nucleon states, as described in the text.

Fn. 4. Some typical
graphs included in the cal-
culation of A3.

than in the second order term. The contribution of the
resonant-scattering states cannot be calculated without
additional assumptions, because it depends on the
matrix element (xp~ V~ ~xq), which is related. to meson
production. We approximate this matrix element by
5„,(x~ Vq~x). A combination of effects—the energy de-
nominators, and the spin and isotopic spin matrix
elements —makes the resulting contribution to A3'~& of
the terms which depend on this matrix element rela-
tively small. Some typical diagrams which contribute
to A3 are shown in Fig. 4.

In Fig. 5 we show the contributions of the one-, two-,
and three-meson exchange terms to 1+2. The modifi-
cations of the norm are smaller for the (Pp state than,
for the 6p state, and also appear to converge more
rapidly. The m= ~1 mesons are less important for the
(Pp state, and the resonant-scattering corrections tend
to cancel the zero order term, both in A2 (as may be
seen. from Fig. 3) and in As. It appears that this feature
persists in the higher order terms. In general, we may
conclude that the norm 1+2 could be obtained to a
reasonable degree of accuracy (say, 15%) from the
erst few terms in the expansion at distances r&0.2 for
the 5'p state, and r&0.4 for the 8p state, although the
accuracy to which we have actually obtained the terms
is probably somewhat less than this in the present
calculation.

set equal to zero). We are left with an approximation
to A2&~"&. In Fig. 3 it is shown that when ~p is neg-
lected, A2~~' is overestimated by a factor of about 2, for
the distances of greatest interest. This is consistent
with co(r) being slightly smaller than co. Considering the
higher energy of the virtual states which give the non-
resonant correction, it seems reasonable that the correct
A2&~~~ might be about one-sixth that shown in Fig. 3;
if this is correct, neglect of A2~~~& is not serious.

The calculation of the third order term A3 re-
quires the evaluation of matrix elements such as
(x~ VI f~(H)Vgf2(H)V ~x), where f~(H) and f2(H) stand
for certain energy denominators. We use a double-
closure expansion, although the corrections to the per-
turbation theory approxima. tion are more important

1.0

FIG. 5. The one-, two-, and three-meson contributions to the
norm of the basic state. The two-meson curve is not shown for
the (Pp sty, te jn ogler to q,voiQ overcrowginH; the 0;rap/,
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FIG. 6. Graph ia) is maxi-
mal, (b} is nonmaximal.

(b) Interaction Energy and the Relation to
the Tamm-Banco'' Method

The expansion for the "potential" V,„=(C,„,BC,„)
is very closely related to the interaction in the Tamm-
Dancoff method, in which case the "potential" 'U „(E)
is an explicit function of the energy E of the state under
consideration. Let us select from the terms in the
Tamm-Dancoff expansion of U (E) the subset of
"maximal" terms —those e-meson exchange terms
which are represented by diagrams in which all e
mesons are at some time simultaneously present in the
6eld. In these maximal e-meson terms, we set the
energy E equal to zero in all the energy denominators
except those for the states which contain all e ex-
changed mesons. The resulting contribution to 'U(E)
we call 'U . (E). It can be shown that V='U, (0)
(i.e., E is set equal to zero in all the energy denomi-
nators) and A = —L(d/dE)'U (E)ja s. This may be
shown by considering the interaction representation,
and the corresponding Feynman graph interpretation
of C „and its matrix elements; the expression of matrix
elements in terms of renormalized quantities was ob-
tained by considering the Heisenberg representation.
A relation between the renormalized expansions for 3
and V may be obtained as follows: In the one-nucleon
matrix elements in (I, 11'), closure expansions over
states e and e„are inserted between the creation and
destruction operators; if the summand is then multiplied
by E(n,)+E(e„)+P;E';, the expansion for V is
obtained.

It is not hard to verify the remarks above by explicit
calculation for the two- and three-meson exchange
terms; for instance, diagrams (a) and (b) in Fig. 2
(which are to be interpreted as referring to renormalized
quantities) give the same contribution to V as to 'U(0),
while diagram (c), which is not a maximal diagram,
is excluded from V. The contribution of diagram (c) to
the interaction energy E is obtained when we include
the one-meson Heitler-London state C „,I, in the expan-
sion of the eigenstate 4 „. The contribution of the
maximal three-meson diagram /Fig. 6(a)$ is similarly
included in V (the vertical dotted line denotes the
intermediate state in which all three mesons are
present) while diagram 6(b), which is excluded from V,
is likewise included in the contribution of the one-
meson state C,„,~.

Since the terms included in the expansion of V „are
just a subset of the terms which contribute to 'U „, and
in fact, are the terms in which the energy denominators
are especially large, we may expect the expansion for
V,„(and that for A,„) to converge considerably more
rapidly than the expansion of the Tamm-Banco'
method. The terms which might cause the expansion
for 'U (E) to converge slowly, or not at all, are separated
off and treated by a diGerent method. Furthermore,
the complications which arise from the explicit energy
dependence of 'U(E) are absent in the Heitler-London
method, in particular, all nonadiabatic eGects are
associated with the contribution of the "excited"
Heitler-London states, which, it may be anticipated,
will make such effects easier to understand.

The relation of the Heitler-London to the Tamm-
Dancoff method gives the interesting result, that the

l2-

IQ-

Ep

6-

4-

0,4 0.8
r

I.6

Fr@. 7. The energy E0, calculated from the basic Heitler-London
states for the (P0 and 60 states (which comprise the triplet even
states). The two-meson curve is not shown for the (Po state.

approximation

'U (E)= U-*(0)+EL(d/~E) U--(E) js

provides a variational approximation to the interaction
energy E. We also note the importance of examining
the E dependence of the Tamm-Banco& energy de-
nominators.

It is clear from the remarks above that the calculation
of V „is completely analogous to the calculation of 3 „,
so we do not need to discuss in detail either the method
of calculation or the accuracy of the results. The
expectation value of the energy in the state 4,„ is
Es(r)=V,„/(1+A,„). When only a few terms of V
or A are calculated, the various ways of representing
the ratio might give somewhat different results, and we
wish to choose the way which gives the most rapid
convergence. Note that V = —+co(r)A„, and in the
present linear model, when m is large, A ~CB"/n!,

where C and 8 are functions of the spin and position
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variables. If the A and V have the forms cited, it
appears that the most simple way of attaining rapi
convergence is to expand (1+2) ' and group in the
expanded ratio all terms which contain the same
number of exchanged mesons, as follows:

+0=+01++02++08+ '
j

&oi= Vi,

Ep

0

-2—

-4—

&o2= ~2—A i~i,
Sos= +s +1(V2 +1) 1) ~si 1&

(13)

-8-

l2 .

Io.

Ep

6-

Successive approximations obtained from q.
~ ~

f E . (13~
are plotted in Figs. 7, 8, and 9. It can be seen that rather
rapid convergence is obtained in T=0 states, especia y
in the 6'o state. However, Eo2 and Sos are obtained as
the differences of large numbers, and therefore are not

-lo—
0.4 0.8

Fzo. 9. Same as Fig. 8, for the (Pj and 8i states
(which comprise the triplet odd states).

1.2

Note that at the distances at which the expansions
converge well, 5E is much smaller than 2/o.

III. ROLE OF THE EXCITED STATES

In this section we shall examine the contribution of
the excited configurations of the meson Qe to e
state vector 0 „and the energy E. In the Heitler-
London representation these excited configurations are
expressed in terms of operators which create nucleons
in meson-scattering states. "

2- 0.4-

0.2—

"2
OA 0.8 l.2

0.

FIG. 8. The solid lines denote the one- and two-meson con-
tribution to the energy Ep of the singlet states. The dashed lines
indicate the one-meson contribution.

-0.2-

given very reliably by the present calculation. Never-
theless, we note that the one-meson potential is muc
more important than the corrections which are obtaine
in the Heitler-London approximation. The uncertainties
in the potential which arise from the uncertainty in
the model are apparently more important than the
higher order corrections to Eo, especially in the 5'o

state. In T= 1 states, however, the convergence proper-
ties seem to be quite different; we note that the two-
meson contributions are strongly attractive, particularly
int e isae.h 6' t t It is likely that the three-meson terms

e shallare also important in T=1 states, but, as we s a
discuss, other effects, which are harder to calculate,
appear to be so large in 7=1 states that it does not
seem useful to carry further the calculation given above.

The close relation between the change in the average
number of mesons in the field, the energy Eo, and the
corrections to the norm, which was discussed above, is
also seen in a comparison of Fig. 10 with Figs. 5 an

Q4 ~

-0.6-

-o.s-
FiG. 10. The amount pE by which the average number of

mesons in the 6'p and Cp states differs from that of two isolated
nucleons. The solid curves denote the value of bE calculated from
the basic Heitler-London state; the dashed curves denote the

1 f '
I d the two-meson excited state. Note that use of

=0. This isthe basic Heitler-London state does not imply that bE=0. This i
a consequence o e s a

'
f th t tistical correlations between the mesons

Isoint ein ivi ua couh
'

d 'd 1 louds which are properly included. Note a so
the si nthat bE is small compared with 21Vp for r)0.3, and that e g

of bE is related to the sign of Ep as shown in Fig.
2P The de6nition of the excited Heitler-London states given in I

and use in t is sec ion id h t d ffers from that of Novozhilov, reference
17, and also Iu. V. Novozhilov, J. Kxptl. Theoret. Phys. U.S. .
35, 742 (1958) Ltranslation: Soviet Phys. JZTP 35(8), 515
(1959)g. Vestnik Leningrad. Univ. , No. 16, Ser. Fis. i Khim. , 21
(1958).
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We approximate the exact state vector by

+.,=go@.„+Qp x(k)c'*„,p (14)

An equation for g(k) is found by minimizing the
expectation value of the energy. It is convenient to
use as base vectors for the one-meson states, states
which are orthogonal to the basic state, and which are
approximately normalized. Therefore we write

x(k) =F~(k),
xp ——Fl yp —Q p I'A (; k)Fy(k) j, (15)

where F= (1+A) '*, and A (; k) = (C,„P „,p), as de6ned
in I. We use a matrix notation in which F, A, and
A (; k) are considered as 16)&16 matrices. The coupled
equations for the amplitudes are

@bp=Ep@p+Qy, W(k)P(k),

@5(k)+Ep E B(k,l)y(l) = Wt (k)goy (Eo+E)y(k)
+g, W(k, l)y(l). (16)

In Eq. (16), Ep is the expectation of the energy in the
basic state, as calculated in the previous section,
Furthermore, in terms of the quantities defined in I
and above,

W(k) =
FL V(; k) EoA (; k)—$F,

B(k,l)=FI A(k l) —A(k )F'A( l)]F
W(k, l) =Fl V(k; l)+-,'(E+1,)A(k; l)

+A (k;)I"EoA (; l) —V(k;)I"'A (; l)
—A(k )F'V(; l) jF.

From the general expansions given in I it can be
shown that the one-meson exchange part of Wt(k) is

w~'(k) =Z. ((» I v.*l*&(yI v. Ir&

+&*Iv.*l*&Skiv, l»)D-'+(&+~)-'3 (»)
This may be expressed in terms of the scattering ampli-
tude for a meson with momentum k, and is therefore
quite independent of many of the details of the model,
although it is sensitive to the cutoff function. Note
that we may always write Wt(k) as the sum of two
terms, Wt=W, t+W„t, where W,t contains the meson
scattering bra (»I, and can be considered to be the
part of 8"t which excites the nucleon at x into a one-
meson scattering state. We may similarly write W(k, l)
and B(k,l) as the sum of four terms. This suggests
writing P(k) =P (k)+P„(k), where

(E E.-~)~.(k)+-E(B..+B.,)(~.+~,)
=W. ~+(W,+W.,)(~.+~,) (»)

In Eq. (19) the meson momentum has been absorbed
into the matrix notation. Ke also have

but the multiple scattering effect gives corrections of
relative order r '. Note that if we use Eq. (21), the
last two terms of Eq. (20) give contributions to the
energy E which have the form of a three-meson ex-
change, and which we must therefore drop, since we are
making no attempt to calculate the three-meson terms.
However, the integration over the intermediate meson
momentum involves the scattering cross section; if the
cross section had a narrow resonance, this would give
an exponential falloG at large distances which was
almost as slow as the e '" decrease obtained from the
first two terms, and it is desirable to prove that such
terms are actually spurious and are cancelled by terms
coming from corrections to Eq. (21).

As a consequence of the multiple scattering effect,
the states 4 „,I, are very imperfectly orthogonal, and
g, and p„are only in a very loose sense interpretable as
amplitudes for excitation of a given nucleon. For
instance, a typical term in A (k; l) is

Z. (&—&~i~)-'(&—I-~i~)-'(»
I v. I*&(y I v.*lyl&,

which at large distances involves derivatives with
respect to r of the singular factor

(I.—E'&iq) 'r '(e+""—e~~p")

Similar singularities occur in the higher order terms of
W(k). If we use as an approximate solution of Eq. (19)
the following equation:

E '(W~, t+W—p,t—)go+It. 'Wg, „E 'Wg„tgo, (22)

we find, by using the I ow scattering equation, that the
contribution of the singular three-meson terms to the
energy are cancelled and the remaining three-meson
terms decrease with the exponential factor e '". By
adding additional terms to Eq. (22), this procedure of
cancelling the long-range multiple scattering effects can
be carried further.

5E1

(E Ep)go= W&,+W„P—„+W.y„+W„y,. (20) OA 0.8
t

l.2

The solution of Eq. (19) is very complicated in
general. At large distances we expect that

g (k) —E 'Wy, (k)gp, (21)

FIG. 11. The additional attraction obtained from the excited
Heitler-London state in which one meson is being scattered by a
nucleon. Only the (-'„-,') resonant scattering was included in the
calculation.
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The discussion above shows that the appropriate
perturbation solution of Eq. (19) gives the following
estimate of the contribution of one-meson states to the
energy:

8Ei= (E—Ep) = —Q g, E 't Wi (k)Wi,t (k)

+Wiv(k) Wiv'(k) j (23)

This is precisely the counterpart of diagram 2(c). In
evaluating Eq. (23) we use the isobar-approximation
described in Sec. II. The results are shown in Fig. 11.
An estimate of the probability that one of the nucleons
is excited into the resonant or "isobar" state is given by
&i= —3Ei/pip. Since we have used a perturbation
method to calculate p, (k), Eq. (23) is not accurate
unless 8~&&1. From Fig. 12 it is seen that this restricts
the validity of Eq. (23) to rather large distances, but
we may certainly infer that the one-meson configuration
must play an extremely important role in T=1 states
at small distances.

In evaluating the contribution of two-meson states
to the interaction energy, we neglect meson production
in meson-nucleon collisions, so one meson must be
scattered by each nucleon. The method applied above
then gives

3Es= —Qpi Wi(k, l) (E+L) 'Wit(k, l), (24)
where

Wit(k, l) =Q„(xk( V„*[x)(y/[ V„(y)
&&I(I'+E) '+(I'+I-) 'j--

The probability of ending both nucleons excited into

IO

eu
IO

0

IO

the resonant state is approximately I's ———5E,/2ppp,

which, for the (Po and 80 states, is also shown in Fig. 12.
In T=O states, if we neglect the scattering in all but
the resonant (ss, sp) state, we find Pi=0; by using the
values of n& and n2 given in Sec. I we may estimate that
in the (Po state I'& is about equal to the value of I'2
shown in Fig. 12, while in the 80 state I'j is probably
somewhat larger than I'2. These values are of course
very rough. In the 7=1 states, the other scattering
amplitudes give a negligible contribution to I'~ except
in the 8~ state. The contribution of the two meson
states to the average number of mesons in the cloud is
indicated by a dashed line in Fig. 10.

At small distances, the perturbation theory method
outlined above is not a convenient way to study the
excited configurations. A more suitable approach is to
use a variational method, with a simple trial function
P(k). The differences in the energies Ep obtained from
the basic state become larger than ~0 at small distances,
so in states in which a strong repulsion is obtained from
the basic state, there is a tendency for C „„,& or C „,&& to
become a major component of the eigenstate; the
variational method appears to be the only suitable way
to treat such effects.

An interesting insight into the role of the excited
states is obtained from a comparison with the results of
Zharkov" and Matsumoto et a/. "who used perturba-
tion theory to treat a model in which the nucleon core
has an excited state (the isobar). We have shown that
for T=O states it is indeed a good approximation to
replace Eo by the second order perturbation theory
result; furthermore, the contribution of the excited
configurations given by Eq. (23) and Eq. (24) can be
seen to agree exactly with the contribution of the
isobar to the corresponding terms of Zharkov's results,
if one makes an appropriate identification of the
coupling constants, and remembers that in the calcula-
tions reported here an extended source was used, while
in those of Zharkov a point source was used. Zharkov's
coupling constant for the isobar, g~, is related to the
Parameters used here by the relation gis/g'=np/6.
However, while Zharkov used approximately the same
value for g' as we use for f'/err, his value for gi is twice
as large as that which is obtained from the more funda-
mental approach of this paper, and his numerical
results therefore seriously overestimate the eGect of
the isobar.

IO

IO
0 0.5 I.o I.5 2.0

IV. DISCUSSION

The method suggested in I, the expansion of the
state vector in Heitler-London states, provides a
straightforward, unambiguous way of deriving auto-
matically renormalized expressions for the interaction

FIG. 12. The curves labeled (P&, 6&, and S& give the probability
PI of 6nding the one-meson excited state present in these eigen-
states. The curves labeled 6'0 and 8O give the probability P& that
the two-meson con6guration is present. The Sp curve (not shown)
is similar to those for 6'p and 80.

G. F, Zharkov, J. Exptl. Theoret. Phys. U.S.S.R. 34, 1211
(1958) I translation: Soviet Phys. JETP 34(7), 83'7 (1958)g.

2'Matsumoto, Hamada, and Sugawara, Progr. Theoret. Phys.
(Kyoto) 10, 199 (1953);T. Matsumoto and M. Sugawara, Progr.
Theoret. Phys. (Kyoto) 12, 553 (1954).
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FIG. 13. The "radially adiabatic" potential V calculated by
the method discussed in the Appendix. The solid curves show U
as calculated from Eo((PO) and Eo(8o) and for comparison the
corresponding central potential V.. The dashed curve shows the
result of including BE2 in the calculation of V,.

energy. The full utility of the method, however, lies in
the fact that renormalized expressions for all matrix
elements may be derived by similar techniques. In this
paper we have only examined, as a by-product, the
average number of mesons in the field (Fig. 10),
although this quantity is of interest merely as an
illustration of certain qualitative features of the struc-
ture of two-nucleon states. A more extensive examina-
tion of two-nucleon states, using a more realistic model,
will be required before we may acquire confidence in our
understanding of nuclear interactions. Our principal
conclusion is that we may anticipate that the Heitler-
London method will be useful for this purpose.

We may, nevertheless, also draw from the numerical
results several interesting conclusions, which are diGer-
ent for T=O and T= j. states. In T=O states the cor-
rections to the one-meson potential are mostly small
and masked by the uncertainties in the form of the
one-meson potential at small distances. While an addi-
tional attraction at small distances is obtained from
the excited Heitler-London states (see Figs. 12 and 13),
the use of the static approximation is quite suspect for
these terms, and their contribution is not larger than
other eGects one might reasonably anticipate at the
distances (r(0.6) at which they become important.
We may therefore conclude that for T=O states the
only important qualitative features of the potential
which may reasonably be inferred from the static model
are just the features of the one-meson potential.

The principal characteristics of the one-meson poten-
tial in T=O states are a strong, attractive tensor poten-
tial, and, in the So state, a very weak attraction at large
distances and a strong repulsion at smaller distances.
It has been shown"" that the one-meson potential
gives a reasonable description of the properties of the
deuteron. The uncertainty in the pion potential at
small distances gives just enough freedom to allow one

to 6t the binding energy easily. Therefore, there is as
yet no evidence for important nonpion e6ects in T=O
states. It must be noted that the theoretical arguments
underlying the Gartenhaus' potential dier from those
given in this paper in two important respects. In the
Gartenhaus potential, all the scattering corrections
were omitted, and, moreover, the terms which correct
the expectation value of the energy for the improper
normalization of the state vector (the terms involving
the A„ in Eq. (13)$ were omitted. Fortunately, these
two corrections have opposite signs and so tend to
cancel; furthermore, they are not as important as the
T=0 one-meson potential.

The higher order corrections to the T=1 potentials
appear to be very important (partly because the one-
meson energy is only 3 as great as in the corresponding
T=O states). The perturbation theory part of Ess is
more attractive and does not cancel the attractive
scattering corrections. In addition to Eo, there is an
enormous attraction at small distances from the one-
meson excited states (see Fig. 11),although our approxi-
mative calculation probably overestimates this eGect.
It is clear from Figs. 8, 9, and 11, that strongly repulsive
nonpion effects (or pion effects which have not been
included) must enter at very small distances, otherwise,
agreement with our empirical knowledge of these states
would not be possible.

It can be seen from Fig. 9 that the T=i tensor
potential is greatly reduced by the two-meson terms
in Es, and changes sign at r 0.4 (such a sign change
also occurs in the Gartenhaus potential). If the energy
6E, (Fig. 11) is added to Es, the sign change occurs at
r 0.7, and the tensor potential becomes strongly
attractive at smaller distances. This contradicts one
of the assumptions from which the existence of a
strong spin-orbit potential was inferred;7 so to the
extent that the static part of the interaction may be
deduced from the adiabatic approximation, these results
tend to weaken the empirical evidence for a spin-orbit
interaction.

The only published numerical results which are
similar to those given here are those of Konuma,
Miyazawa, and Otsuki. The KMO potential is just the
sum of our Eo, 6E~, and bE2, with a small additional
contribution from the S-wave pion-nucleon interaction;
a point source was also used for the calculation so the
results correspond to ours only for r&0.8. It has been
shown that terms can be added to the static-model
interaction Hamiltonian in such a way that the low-

energy S-wave meson scattering is reproduced. " Our
methods would then lead to the same S-wave contribu-
tion as that in reference 5 (except for a reduction due to
the finite source). Since there is no reason to believe
that such a description of the S-wave interaction can
give better than a very rough estimate of the correct
S-wave eGects, and since it has been shown in refer-

~3 Drell, Friedman, and Zachariasen, Phys. Rev. 104, 236
(1956).
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ence 5 that the S-wave effects calculated in this way
are very small, we have not attempted to include them.

We have already remarked that the Heitler-London
method, compared to an approach like that used in
reference 5, has the advantage that a straightforward
calculation of additional properties of two-nucleon
states is easily made. In addition, the separation of
the eGects obtained from the basic Heitler-London
state from those associated with the excited states is
very useful. This separation makes it easier for us to
judge the accuracy of the calculation and the validity
of the adiabatic assumption. The expansion for the
energy Eo apparently converges quite rapidly, but
while we may be sure that the excited states given an
additional attraction, the discussion in Sec. III shows
that it is very hard to calculate this attraction accu-
rately.

Nonadiabatic eGects are also particularlyassociated
with the excited Heitler-London states, especially the
one-meson states. As pointed out in Sec. II, the con-
tribution of these states corresponds to the graphs with
relatively small energy denominators. The importance
of nonadiabatic corrections to 5E& can be estimated by
the ratio e/co&, where e, the kinetic energy of the nucleons
in the interaction region, is always quite big. '4 The
large attraction which was obtained from the one-
meson excited states is therefore an indication that the
static potential concept has limited utility in T=1
states. Only by including explicitly the excited con-
Ggurations of the meson field can nonadiabatic effects,
especially such nonadiabatic phenomena as real meson
production, be adequately treated. A natural general-
ization of the usual semiphenomenological approach,
as suggested by the Heitler-London method, would be
to consider not a Schrodinger equation for a single

wave function, but coupled equations for amplitudes

qs(r), qt(r, k), and q»(r, k), where ps(r) would denote
the amplitude for finding unexcited nucleons displaced

by the amount r, and q;(r, k) the amplitude for finding

the ith nucleon scattering a meson. The numerical

results obtained in Sec. III suggest that such an

approach might lead to conclusions which diGered

considerably from those obtained by assuming that a
static potential could correctly describe the true inter-
action for r &1 in T= I states.
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"As a simple illustration, note that in the 'So state of two
protons, the intermediate isobar-nucleon system forms a 'Do
state, in which the centrifugal energy alone is greater than coo

when r &0.65.

However, the representation of the wave function by
orbital angular momentum eigenstates is not necessary,
and is not particularly convenient unless the centrifugal
energy is large compared with 6Vz,. in the deuteron,
at distances where the interaction is strong, this is not
the case. The introduction of radially adiabatic eigen-
states makes the inQuence of the tensor force much
more clear "

We erst note that the states with I=J are pure 6'

states, and that the 'Eo state of two protons is a pure 5~
state. In the other cases, we begin with the usual
coupled equations for amplitudes N(r) (I.=J 1) and-
ro(r) (1.=J+1):

2J+J.

6I:7(J+1)j'*
Vga =EQ7

2J+1

1 (J+1)(J+2) 2(J+2)——'lp +- m QVgw- Vpm
M 3'' 2J+1

6LJ(J+1)]-'*
Vzn= Ex,J+

(A1)

where the primes indicate diGerentiation with respect
to r. We transform these coupled equations by writing

N(r) =u(r) cosn —tV(r) sinn,

tt (r) =e(r) cosn+u(r) sinn, (A2)

where n is a function of r which is chosen to diagonalize,
at a given separation of the two nucleons, the sum of
the tensor and centrifugal potentials. Let

p J = —3Mr'Ur/(2J+1); (A3)

pg denotes the ratio of the splitting of the (P and 8
states at a given distance r to the centrifugal splitting
of the L=J~i states at the same distance. Then

tan2n~=2p JJ'*(J+1)i/(pg+2J+1). (A4)

s5 R. S. Christian and E. W. Hart, Phys. Rev. 77, 441 (1950).
In this reference, the transformation given below was introduced
in conjunction with the WEB approximation. We shall show that
it may be formulated in a rigorous and generally useful way. The
work "adiabatic" in the remainder of this Appendix refers to the
spin-angular eigenfunctions, and should not be confused with the
assumption that the meson field follows adiabatically the motion
of the nucleons.

APPENDIX

In the adiabatic approximation the interaction energy
E „is interpreted as the potential energy of a two-body
Schrodinger equation. The conventional central and
tensor potentials are obtained from the relations
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The coupled equations for t7 and Co are

1 1f d d——zz"+V,a+—
i

n'—+—n' izii=Ezz, (AS)
M M 0 dr dr )

1 1 ( d d——e"+Vow ——
i

n'—+—rr' izz=Ee. (A6)
M M 4 dr dr

If a spin-orbit interaction is added to (A1), an appro-
priate modification of (A3) leads again to equations of
the form of (AS) and (A6).

A small term from the radial kinetic energy is in-

cluded in the adiabatic potentials V and V~. If p J&0
(as in the deuteron), V, and Vt, have the form

V =E((P)+LJ(J—1)/Mr')+6+n"/M,
Vt, =E (8)+L (J+1) (J+2)/Mrz) d+n'z//M, —(A7)

where

6=LJ—J&(J+1)& tannq)LE(8) —E((P))/(2J+1).

When there is a very weak, attractive tensor potential
(p~-0+)

J J+1
LE(8)-E((P)) 1—p~— +0( ~')

2J+1 2J+1

When pg~ —eo, the expressions (AS) for V, and Vt,

are interchanged.
In the deuteron (where J=1),p&1 when 0.3&r&1.2,

and V, therefore diGers greatly from V„as is shown in
Fig. 13. It should be noted that (AS) and (A6) can be
derived from a variational principle; therefore if nr is
set equal to zero in (AS), the resulting equation for u
gives an upper bound to E. The coupling between the
adiabatic eigenstates depends on the product of 0,

' and
the radial velocity"; when r&0.5, n'&0.2, so the
coupling is su%ciently small in the outer part of the
deuteron that perturbation theory can be used to
calculate its eQ'ect in this region. At small distances,
the coupling term in (AS) is larger, but its efFect is
masked by the uncertainty in V. The quadrupole
moment depends on e, u, and tu at large distances, and
the contribution of Co depends mainly on n and u at
large distances, because V& gives an extremely strong
repulsion at small distances. This shows (in accordance
with the conclusion of Iwadari ef al. ') that the quad-
rupole moment of the deuteron depends primarily on
the one-meson part of the interaction at large dis-
tances, where the size of the source has a small eGect.

The error in the calculated U for the T=O, J=1
states depends primarily on the error in the calculation
of E((P) since the (Po state is the principal component
of the radially adiabatic eigenstate. We have

b V,=bE((P) cos'(n —n)+bE(8) sin'(u —ct),

When pg ~ ~, the 6 and 6' states become eigenstates,
tannJ ~ J&(J+1) &, and

where
u=tan '(2 i).

V.-E((P)+ (Jz+J)/Mrz,

Vg E(8)+(J'+J+2)/Mr' (AS)

26 Thus when the radial velocity is assumed very small, as in
the WEB approximation (reference 25}, one has only Eq. (AS} to
consider.


