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Imaginary Part of the optical Potential*

L. C. GoMast
Departmelt of Physics artd Laboratory for Egclear Scsewce, Massachttsetts Irtststttte of Techrtotogy, Cambridge, 3dassachlsetts

(Received May 25, 1959)

The imaginary part of the optical potential has been investigated for low-energy incoming neutrons, by
means of the nucleon-nucleon cross sections in nuclear matter. The cross sections have been calculated under
the assumption that pair correlations for low excited states of nuclear matter are the same as those formed
in the ground state. The dependence of the effective mass on the single-particle momentum has been taken
into consideration using an empirical solution which reproduces the present assumptions for the single-
particle spectrum. The results have been applied to the nuclear surface in the Thomas-Fermi approximation.
The maximum in the imaginary potential was found to be at the surface outside of the half-density radius.
For low incident energies it is about 1.5X10 "cm beyond this radius.

HK reasonable success of the independent-pair
approximation' for the calculation of the prop-

erties of nuclear matter suggests an application of the
same method to the calculation of the imaginary part
of the potential in the optical model of the nucleus. It
is the magnitude which determines the "absorption"
of a nuclear particle propagating within nuclear matter
with an energy higher than the Fermi limit. This ab-
sorption is equivalent to the removal of the particle
from the configuration space of the one-particle problem
described by its motion in the optical potential. In the
approximation considered here it is equivalent to a
collision with another particle within the nuclear
matter.

The imaginary potential —iW which would describe
this absorption is given by

W = ', e.p(rr), —

where n is the velocity of the particle absorbed, and
(o.) is its average collision cross section with the par-
tides in the nuclear matter of density p. Hence the
problem reduces to the calculation of (a).

In this note we try to estimate the value of the
imaginary potential with simple considerations which
are not very accurate, but which are probably accurate
enough to bring out the essential features. It must be
borne in mind that the approximations inherent in
the fundamental assumptions do not warrant exact
evaluations. Very similar considerations were carried
out by Verlet and Gavoret. ' Their approach divers
from ours only in the treatment of the nucleon-nucleon
forces. They make use of a separable potential which
6ts the scattering data at low energy. The separability
of the potential makes it possible to calculate exactly
the inQuence of nuclear matter on the scattering. It is
questionable, however, whether this advantage out-
weighs the uncertainties introduced by the unphysical
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character of a separable potential. A treatment of the
same problem has also been reported by Shaw, ' and
Harada and Oda. 4

The collision cross section is diQ'erent from its value
for a collision of two isolated particles because of three
reasons:

1. Certain 6nal states of the collisions are excluded
because of the Pauli pnnciple.

2. The eGective mass of the particles is diferent from
their actual mass.

3. The interaction acts diR'erently for a pair within
a Fermi gas than for an isolated pair.

The effect of point (1) has been calculated by Lane
and handel' and Clementel and Villi. ' We will refer
to their results in which the points (2) and (3) have
been left out, as the "final states" approach. Point (2)
can be easily taken into account if the effective mass is
known as a function of the momentum. We will use the
following empirical dependence which reproduces pres-
ent assumptions for a particle with momentum k„(kr
is the Fermi momentum):

m 1—=—= 1+-
trt* t 1+8k ' (2)

with 2 =0.48fs, 8= 1.53fs (f is a fermi= j)&10 " cm).
Point (3) implies that the scattering is governed by the
Bethe-Goldstone equation rather than by the ordinary
two-particle Schrodinger equation. A collision of two
particles with initial momentum k and kti is described
by

Here k= ~k —kp~ is the magnitude of the relative
momentum, r=r~ —r2 is the vector between the par-
ticles, v(r) is the interaction potential, and F(r) is

3 G. I,. Shaw, Bull. Am. Phys. Soc. 4, 49 (1959).
4 K. Harada and N. Oda, Progr. Theoret. Phys. (Kyoto) 21,

260 (1959).
~ A. M. I.one and C. F. Kandel, Phys. Rev. 98, 1524 {1955).
E. Clementel and C. Villi, Nuovo cimento 2, 1''6 (1955).
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given by

P(r) — eik r

& r (2v)'

where the region of integration F includes only non-
occupied momentum states for the pair:

~
P+k~ & kp,

~

P—k( & kp, P=-,'(k +kp).
The solution of (3) can be written in the form

a.p( )r="'+f-p(f), ~)'""/,
and the scattering amplitude is given by

1 t v(r)f.p
——p—t—7(kr, p) e—' &' p p(r)dr,

We assume that the contribution to the cross section
from angular momenta l higher than 0, are not diferent
from the isolated case. We can calculate them by sub-
tracting from the experimental cross section the (1=0)
part as given by the phases of Christian, Gammel, and
Thaler. ' The (l=0) part is calculated by means of
formula (3). The wave function f p is taken from the
work of Gomes, Walecka, and Weisskopf. ' In that
paper only collisions of pairs are considered for which
both partners are within the Fermi distribution. For
the actual density of nuclear matter the s-part of this
function can be approximated by

(sinkr sinkc (v./2) —Si(1.10kpr) )
so=(4 )'*I — . I (7)

kr kc (v/2) —Si(1.10kpc) )

Expression (4) divers from the scattering amplitude for
the isolated case by the factor vp and by the fact that
f p(r) is different from the wave function in the iso-
lated case. I.et us call

1 f
2

e '""v(~)4-p(r)« .
2

S p would be the differential scattering cross section
0 p of an isolated pair, if Pp were the solution of the
ordinary two-particle Schrodinger equation. 0-

p is al-
most independent of the scattering angle at the mo-
menta considered here. We therefore are justified in
assuming that, here also, 5 p is independent of 8, q.
We then can calculate the average cross section (0)
appearing in (1):

1 t. fk kpf
(o)=—P ' /f. pf' sin8dedtp

E e~ k

where k~ is the final momentum of magnitude k and
direction 8, p,. furthermore we have

t1«r lkr+pl &~kp and ~ky
—

p~ &~kp.
n(4p)= i

I 0 otherwise.

where c is the core radius and "Si" is the sine integral.
We use here the same function for pairs of which one
partner is outside the Fermi distribution. This will be
a reasonable approximation if its momentum is not too
far from kp. For the potential v(r) we use a central
potential with a core radius c=0.4 and an attractive
exponential well which reproduces the singlet scattering
length and effective range. The effect of the tensor
force and of the singlet-triplet difterence is neglected.
It probably plays a smaller role here than in the isolated
case just as in nuclear matter. ' An approximate evalua-
tion of expression (5) is shown in Fig. 1 as function of
4k'= ~k —kp~' together with the scattering cross sec-
tion o. p for an isolated pair. This allows us now to
calculate the imaginary potential with the help of (6),
for a given incident momentum k &kg. The relation
of k with the incident energy e of the entering particle
is as follows. The kinetic energy of the particle inside
the nucleus will be e+8+Ep, where Ep is the Fermi
energy and 8 is the binding energy. Hence we find

(1/p)k '= (1/p)kps+g+e,

70

where

3
I

/k —kp/
p' dkp g(k, kp)(S.p)„;„, (6)

Ark'' & k

1 t. 8 (kr' —k')
g(k, kp) =—r)(ki, P) dk~,

u2
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and (5 p),p;„ is the average of S p over the diferent
spin pairs, isotopic and ordinary. We make use of a
well known approximate relation, 0-»= 0-„„=~o.„„which
gives us

(s.,).„.=-,'(s.,).„
where (S p) „„is the cross section given by (5) between
a neutron and a proton of momentum k and kp, re-
spectively.

0

Fio. 1. Curve (a) is (S p)„„as deirned in Eq. (3) and (h) is
o. p, the scattering cross section for an isolated pair. The vertical
scale is in units of f' (1f=10 " cm) and the horizontal scale is

~

k —kp~'=4k' in f '

' Gammel, Christian, and Thaler, Phys. Rev. 105, 311 (1937).
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TAsLE I. The 6rst column gives the excitation energy e of the
neutron in nuclear matter. The second column gives the value of
the imaginary potential 8" calculated by our method. The third
column gives the value of ~, the effective mass in units of nucleon
mass, for the corresponding e as given by Eq. (8). The fourth
column gives S' as calculated by the "6nal states" approach, and
the 6fth is the value calculated with our method but with v= 1.

e (Mev)
Independent-pair model
W (Mev) v

W by the
"final states"

approach
(Mev)

Independent-
pair model
W (Mev)
for v =1

1
7

14

1.06
2.34
4.62

0.77
0.78
0.80

1.88
4.03
6.88

2.11
4.59
7,82

where v is the ratio of eGective mass to normal mass.
Equations (8) and (2) give a relation between s and k .

Table I shows the result of this calculation for nuclear
matter of normal density (p=1.94)&10ss nucleons cm s,

kr ——1.42f '). The first column gives the energy e, the
second one the value of 8' as calculated by our meth-
od, and the third one the value of v for the corre-
sponding k as given by (8). The fourth column gives
8' as calculated by the "final states" approach, and
the fifth is the value calculated with our method but
with a=i. The values in the fifth column are larger
than the ones in the fourth, because in the most im-

portant energy region S p is larger than the isolated
cross section cr p, as shown in Fig. i. The difference
between the second column and the fourth column
comes mainly from the effective mass.

The small values of W reQect the fact that collisions
are strongly repressed by the Pauli principle (5); this,
in turn, is caused by the high Fermi momentum. We
expect, therefore that the lower density at the nuclear
surface will give rise to a higher absorption, in spite of
the fact that the density p enters as a factor in the ex-
pression of S'. In order to get a first orientation of this
eGect, we have calculated W as a function of thenuclear
radius by first calculating 8' as a function of density and
then substituting the well-known density distribution

5—

W(r) for different values of
incoming neutron en

G * Hoif-density ro

6' *14Mev

into 0 p for p ~ 0. In order to obtain a crude orienta-
tion, we have calculated S s with expression (7) for
densities p from the central density down to that
density p* for which we get S p(p*) =o p. From p* to
p=0, we simply have put S p(p) =o s.

It is then simple to compute the imaginary potential
as a function of the radius. The result is shown in Fig. 2.
The curves show that there is a strong increase at the
surface of the nucleus caused by an increase of the
effective mass and a lessening of the eGect of the Pauli
principle. It is perhaps significant that the maximum of
absorption lies outside the nuclear radius C which is
the point where the density drops to one-half.

It is highly doubtful, however, whether our method
of calculating 8 is applicable to the region where
classically no particle would be allowed. This is the
region in which the real part of the potential is less
than the binding energy of the last nucleon (8 Mev).
This region is outside a radius D, which is marked in
Fig. 2 and was obtained from the potential as given by
Ross, Mark, and Lawson. ' The curves for W are en-

tirely meaningless for r&D. In order to get some vague
information about 8' in that region, we have also calcu-
lated W without taking into account the Pauli prin-

ciple, by simply using the scattering cross sections for
isolated pairs. The nucleons in the nucleus were as-
sumed to be distributed with a Fermi distribution cor-
responding to the density p and the momentum of the
incident particle was assumed to be given by (8). The
resulting 8' is higher than the one calculated by the
previous method, but it is of the same order for values
r&D. We therefore believe that the fallo8 of 8' re-
sulting from the previous calculation is not an unreason-
able estimate, even for r&D.

with a 0.65 and C being the half-density radius
((.= 1.07)&10 isA& cm). This method. can only serve as
a crude approximation since our calculation of W(p) is
correct only for constant p. Hence it is applicable only
if p does not change over distances d characteristic to
the problem (d kr '). This is not fulfilled with the
above p(r).

The dependence of W' on p can be found as follows:
There is an explicit dependence of the integral (6) on
kr and Eq. (2) gives the dependence of r on k~. The
integral (5) also depends implicitly on the density be-
cause of the fact that the approximate expression (7)
for iP s only holds for densities close to the nuclear-
matter density. For low p, lt p goes over into the solu-

tion of the isolated problem. Hence S p should go over

6=7 Mev

e' = I Mev

0— I I I I I l~~
G-4 G-3 G-2 G-1 G G+I G+2 G+3 G+4

Fermis

FIG. 2. The imaginary part lV of the optical potential at the
nuclear surface, for different values of incoming neutron energies
(e). The vertical scale is in Mev and the horizontal scale in f; C
is the half-density radius. The dashed and dotted curve is the
density function p(r) in arbitrary vertical scale. D is the "classical"
turning point. Curve (a) is W in the classically forbidden region
calculated neglecting the exclusion principle.

' Ross, Mark, and Lawson, Phys. Rev. 102, 1613 (1956).
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A preponderance of collisions outside the nuclear
radius would have two consequences: It would mean
that direct reactions are favored, since collisions in the
surface would make compound nucleus formation less

likely. Also, the Coulomb barrier for nuclear reactions
is expected to corrrespond to a larger radius than C,
in particular with respect to direct reactions.
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The excitation function for the Aisr (d,np)Nas4 reaction has been measured between 0 and 28.1 Mev. The
external beam facilities of the Buenos Aires 71-in. synchrocyclotron were used together with the stacked-
foil technique. Between 19 and 28.1 Mev present results are more precise than those previously obtained,
showing that the maximum of the cross section is located at 24.25 Mev with a value of 51.4 mb.

1. INTRODUCTION

'HE excitation function for the APr(d, oP) reaction
as a function of energy was measured previously

between 0 and 190 Mev by Batzel et al.' using the
external beam of the Berkeley 60-in. cyclotron (from
0 to 19 Mev) and the beam of the Berkeley 184-in.
synchrocyclotron. Their measurements exhibit a sharp
peak between 20 and 25 Mev. They used the stacked-
foil technique and they point out that the peak. is
inherently ill-dined due to range straggling of the
190-Mev deuterons degraded by the absorber.

2. EXPERIMENT

We have used the recently available deQected
deuteron beam facilities of the Buenos Aires 71-in.
synchrocyclotron, illustrated in Fig. 1, and the stacked-
foil technique to measure the above-mentioned excita-

tion function between 0 and 28.1 Mev. The aluminum
foils were some 4.75 mgjcm' thick, cut in 4X4 cm
pieces, weighed individually to 0.1 mg. The error in
area was less than 0.5% and the error in thickness was
therefore less than 0.8%. The aluminum was found to
be at least 99.7% pure through spectrographic analysis.

The foils were stacked and aligned carefully, within
0.1 mm, in order to avoid geometry errors. They were
compressed between two metal disks, one of them
being perforated to permit the passage of the beam.
The stack was irradiated at a distance of 20 feet from
the machine (see Fig. 1), just in front of the scattering
chamber. I'he pipe was pumped by the vacuum system
of the machine. The deuteron beam was adequately
focused by two pairs of alternating gradient quadrupole
lenses. The beam spot is of the order of 1 cm'. Beam
current was 0.05 pA. Neutron background was low
because there is no need of collimators or slits along the

Fxo. 1.External beam
facilities of Buenos Aires
71-in. synchrocyclotron.
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