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The bremsstrahlung matrix element at the short-wavelength
limit of the spectrum is calculated to lowest order in a=Z/137,
for an unscreened Coulomb field. The result, valid for relativistic
incoming electrons, is shown to be exactly o~ #~* times the com-
plex conjugate of Sauter’s relativistic matrix element for the
K-shell photoelectric effect. These matrix elements are the
leading terms in an expansion of the exact matrix elements in
powers of «, and they are found to be derivable from the first
two terms of the expansions in powers of a of the electron wave
functions. In this sense their structure is completely analogous
to that of the Bethe-Heitler bremsstrahlung matrix element.

This simple relation between the matrix elements derives from
an approximate equality (through first order in &) between the
Coulomb wave functions for bound and zero-momentum con-
tinuum states, which can be understood as due to the neglect of
the Coulomb binding energy, a second-order quantity in a.

Finally, the range of validity of Sauter’s approximation is
examined in detail. The lower bound of this (energy) range is
found to be simply related to the radius of convergence of the
expansion of the photoeffect matrix element in powers of a.

INTRODUCTION

HE inverse process to the atomic photoelectric
effect is the radiative capture of an electron by
an ionized atom. Another radiative process which may
also, in a sense, be thought of as inverse to the photo-
effect is the process of bremsstrahlung at the short-
wavelength limit of the spectrum, where the electron
is brought “completely to rest,” and its initial kinetic
energy converted entirely into radiation. The purpose
of this paper is to delineate exactly the sense in which
this process is inverse to the photoeffect, and to point
out some of the practical consequences of such a
relationship.

The most striking consequence of the relation is
the prediction that to every polarization phenomenon
in one of the processes corresponds an analogous po-
larization phenomenon in the other, a fact which
has recently been put to practical use by Motz and
Placious.! In addition, the relation in question provides
a means of investigating the bremsstrahlung process
at the spectrum limit, where the usual Born approxi-
mation breaks down,?? and conversely it sheds
considerable illumination on the meaning and validity
of the approximation techniques employed by Sauter?
in his calculation of the K-shell photoelectric effect.
Sauter’s calculation is closely related to a Born approxi-
mation; we shall show that it is entirely analogous to
the Bethe-Heitler® calculation of the bremsstrahlung
matrix element, and that the results of both calculations
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can be described as the sum of two “Feynman
diagrams.”

EXACT STATEMENT OF THE PROBLEM

One of the electron states involved in both the
photoeffect and bremsstrahlung at the spectrum tip
(“tip-bremsstrahlung,” as we shall call it) is a con-
tinuum Coulomb state of asymptotic momentum p.
In the calculation of the matrix elements for both
processes, we shall use for this state the first Born-
approximation wave function for a Coulomb field,
without screening. With this understanding, we can
state the asserted inverse relation, which is an approxi-
mate one, in terms of the following recipe: Calculate
the K-shell photoeffect martix element using the exact
Dirac spinor for the bound state, and calculate the
tip-bremsstrahlung matrix element using the exact
Dirac spinor for the zero-momentum final state.
Expand both matrix elements in powers of Z/137,
retaining only the lowest-order term in each case.
Then these two leading terms are complex conjugates
of each other except for a constant factor, which is the
ratio of normalization constants for the bound and
$=0 continuum states. Thus the cross sections for the
photoeffect and for tip-bremsstrahlung, in this approxi-
mation, are directly related to each other by detailed
balancing. The angular distributions, as well as the
polarization phenomena, will then be exactly the
same for the two processes, in this lowest-order
approximation.®

6 It is convenient to refer to this as the “first-order” approxi-
mation, or alternatively as the ‘“Sauter approximation.” The
Born-approximation continuum function by definition contains
zeroth- and first-order terms in Z/137, and one of the purposes
of our discussion is to show that, analogously, if the other wave
function entering the matrix element is expanded in powers of
Z /137, only its first two terms contribute in the present approxi-
mation. The lowest-order term of the resulting matrix element
vanishes, so only the next term, of first order relative to this
lowest possible term, contributes. Hence we call it the “first-

order” approximation even though, because of normalization
factors, it 1s not actually of first order in Z/137.
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BREMSSTRAHLUNG AND PHOTOELECTRIC EFFECT

Our main task in this paper is to construct a mathe-
matical proof of this inverse relationship. This proof
is unfortunately rather involved, but the physical
ideas behind it are actually very simple. To see this,
recall that the matrix elements for tip-bremsstrahlung
and for the photoeffect differ only in one of the electron
states, which is a zero-momentum continuum state in
one case, and a K-shell bound state in the other. The
energy eigenvalue of the zero-momentum state is m
(if ¢=1); that of the bound state is less, but in a
Coulomb field it differs from m only by an amount of
order (Z/137)2. Consequently the differential equations
satisfied by these two wave functions have eigenvalues
which differ only in second order in (Z/137), so that
if we expand the functions in powers of (Z/137), we
may expect them to agree through first order. (Of
course this argument applies only to the s; part of the
continuum state, for the K-shell state is an s; function.
However, the bremsstrahlung integral comes pre-
dominantly from this s; partial wave of the p=0
continuum state, for it is the one which is largest near
the origin.) Since (as we shall show) the radial variable
7 appears in these functions only as (Z/137)r, this
implies that the two functions should agree through
first order in 7, i.e., near the origin.

Another way of seeing this is by borrowing from the
effective range theory of nuclear forces the argument
that two low-energy solutions to the same wave
equation are expected to agree closely in any region of
space where the difference between their eigenvalues
is small compared to the potential energy. In a Coulomb
field, this requirement is always satisfied if we approach
close enough to the nucleus, so the two wave functions
should agree most closely as r — 0. To be more precise,
the difference between the eigenvalues for the above
two wave functions is approximately %(Z/137)m
(setting Z=c=1), so we expect them to agree well in
the region where

3(Z/137)*m<<(Z/137)/r,

Since aom=137, where a, is the Bohr radius, we may
write this as

or mrk2(137/2).

rL2a0/Z,

i.e., the functions should differ little if we are well
within the radius of the K-shell, ax=ao/Z.

Of course, this similarity between the wave functions
implies a similarity between the matrix elements for
tip-bremsstrahlung and the photoeffect only if the
major contributions to the integrals come from the
region where the wave functions agree. We expect the
principal contribution to come from 7 1/g, where ¢ is
the momentum transfer to the nucleus; using this
estimate, the matrix elements should agree best when

1/¢K2a0/Z, or qac>Z/2,
i.e.,, at high energy and low Z. The analysis given
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below shows that the ci‘iterion is actually
qac>Z, q/m>Z/137.

Mathematically, this comes about because the matrix
element has a power series expansion in the variable
a=(Z/137), with radius of convergence a=gq/m; the
criterion gap>aZ is merely the requirement that, if we
wish to approximate the series by only its first term
(the Sauter approximation), then we must be well
inside the circle of convergence.

As for the relation to previous calculations, the
photoeffect matrix element thus obtained is exactly
that of Sauter, given in reference 4. (For a further
discussion of this point, see other recent analyses and
extensions of Sauter’s work.”¥) The bremsstrahlung
matrix element obtained in this way has a close formal
relation to the Bethe-Heitler result. The latter may
be thought of as the first two terms of an expansion of
the exact matrix element in powers of Z/1378: and
Z/1378,, where 81 and B3, are the asymptotic velocities
of the initial and final electron states (in units where
¢=1). This Born-approximation result is of course
invalid for tip-bremsstrahlung, where B;=0, but is
replaced, according to the above recipe, by the first
two terms of an asymmetric double expansion, in powers
of Z/1378; and Z/137. The relation to the Born
approximation is in fact more than formal, and this
“Sauter approximation” bremsstrahlung cross section
is shown in reference 2, on the basis of the results of
the present paper, to differ from the Bethe-Heitler
cross section evaluated at B2=0 only by a normalization
factor (albeit an infinite one). Since the angular distribu-
tion and polarization properties of the Bethe-Heitler
cross section vary slowly with 8, near 8,=0, we expect
them to remain similar to those of the photoeffect in
the whole region near the tip of the bremsstrahlung
spectrum. This expectation is borne out by the experi-
mental results of reference 1.

ie.,

THE PHOTOELECTRIC EFFECT

We shall first consider in some detail the first-order
approximation to the photoeffect matrix element.
This approximation is identical with Sauter’s,* for
Sauter explicitly neglected second-order terms in Z/137,
though only in the last stages of his calculation. The
comparison with Sauter’s results is discussed in detail
in reference 8, so we need not dwell upon the point
here. Our purpose in this section will rather be to
rederive the Sauter result by an entirely different
method, one which is designed to enable us to see
exactly what properties of the bound state appear in
the matrix element. ‘

As for notational conventions, we shall set Z=c=m
=1, m being the electron mass. The parameter Ze?/%ic

7 Haakon Olson, Festskrift til Egil Hylleraas (Bruns Trondheim,
1958).
8 Fano, McVoy and Albers, Phys. Rev. 116, 1147 (1959).
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=7/137 will occur repeatedly throughout the discus-
sion, so in the interest of economy we shall employ the
somewhat unconventional but convenient definition,

a=Z7/137. (1)

In these terms, e.g., the Bohr radius for nuclear charge
Z is ag=a7}, so the radial dependence of the lowest
bound state of the Coulomb field is ~eo".

We shall write the photoeffect matrix element as

Mis(e)= f Pl e (@ Oy,  (2)

for the case in which an electron in state ¥, absorbs a
photon of momentum k and polarization e, thereby
going into the final state ¥, a state of the continuum.
We have indicated that My, depends on a, for we
restrict our considerations to the case in which both
Y1 and ¢. describe electrons in a Coulomb field:
V(r)=—a/r. M1*, of course, describes the emission
of such a photon, accompanied by an electronic transi-
tion from ¢, to ¢1. If ¢y is taken to be a continuum
rather than a bound state, M,* is the bremsstrahlung
matrix element. _

For y2(r), the continuum Coulomb state of asymp-
totic momentum ps, we shall use the first Born-
approximation wave function. In coordinate space we
write this 4-spinor in the “split notation” as

Eo+1)ws(pe
Y= <E2+1>—1[em-r+aF<r;p2>][( Jeap )], @3)

(0 p2)wa(ps)

where ws(p2) is a 2-spinor describing the polarization
of the state, and ¢ is the Pauli matrix. The function
F(r;p.) is actually a Dirac matrix operator, described
most simply in terms of its Fourier transform. If in
general we define the Fourier transform ¢(p) of a
function ¥(r) as

o®=n [ erywar, @
the transform of () is

e2(p)= (27r)%[53(p~p2)

L@ aptptE ][(E2+1)w2]
" 2m2 (52— 122 (p—p) L (o po)s J

It will also be convenient to write ¥; in the split

notation,
a1(r)
()= [vl(r)].

Then My, can be written as the sum of two terms,

(6)
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corresponding to the two terms of ¥»:

(Ee+ )M y=M s+aM 3, @)
with
(Est+1)w,1t 1(r)
Ma(@) =f [ (o-p )ZU ] (o) [1: (i)]e_iq'rdsr’ (82)
(Est-1)w,t 1)
ws@)= [ [ - ): ] Fi(e; p) <a‘e>[’: ; ]ed

with g=p.—k. Note that the a-dependence of M4 and
Mg comes entirely from ;.

For the K-shell photoeffect, ¢, is the k=—1 state,
with s and p components, which is conveniently written
in the split notation as

(A+v1)is ]
771—16~ar,
i(1—=y)¥(o-7)s
N=(2a)" [ 8ry: T (142v1) T,
V1= (1 - a2) %7

where s is a 2-spinor independent of » and « which
describes the polarization of the state; sfs=1; and
# is a unit vector parallel to r.

Consider first M 4(e), the part of the matrix element
which comes from the unperturbed outgoing plane-wave
state. Inserting Eq. (9) for ¢1, the two spatial integrals
encountered are

w=3|
©

Ula)= f yrlgmargTid gy (10a)

V(@)= f (- D)r1iewgivsgy,  (10b)

which are just the Fourier transforms, with respect to
q, of relatively simple functions of r. Since in ¢, we
have already neglected terms of order o? and higher,
we wish to expand U(e) and V(e) in powers of a, if
possible, and retain only terms of less than second
order. A particularly attractive and simple way of
doing this would be to expand ¢~ in the usual Taylor’s
series (valid for all 7), and integrate term by term, so
that the result would automatically be a power series
in « if this term-by-term integration could be justified.®

9 This is strictly true if the a which appears in y;=(1—a?)t is
neglected. The most consistent way of discussing the situation is
to consider the o which appears in v; as an entirely different
parameter, say o', from the « in e~. Then U, e.g., depends on
both « and «’, and has a power series expansion in « of the form

U(e,e) = Zpfn(@)a.

It is this series that we shall call the “expansion of U(a),” and
we shall be interested in it at o’ =a. With this note of explanation
as justification, we shall continue to use this slightly inexact but
very convenient terminology. Incidentally, we shall meet an
entirely analogous situation when we discuss bremsstrahlung.



BREMSSTRAHLUNG AND PHOTOELECTRIC EFFECT

Since a similar approach to a considerably more
complicated integral is very useful in discussing the
bremsstrahlung matrix element, we have taken some
pains in Appendix A to investigate the existence, form,
and range of convergence of the power series expansions
of functions of the form of U(«) and V (). The existence
of such a power series is equivalent to the existence of
a region of regularity about a=0 for the functions in
question. Consequently we have considered the basic
question to be that of the analytic properties of these
functions in the neighborhood of the origin. Since Eq.
(10) clearly defines U(«) and V(a) only for Re(a)>0,
it is necessary to investigate the possibility of ana-
lytically continuing them into the left half of the
a-plane. This analytic continuation, into the pocket
about the origin shown in Fig. 1, is explicitly con-
structed in Appendix A, and the singularity nearest
the origin is found to lie on the semicircular boundary
of the pocket. By this means these functions are shown
to possess convergent Taylor’s expansions about a=0,
with known, finite radii of convergence. Finally, by
explicitly calculating the coefficients of the expansions,
they are found to be exactly what one would obtain
by formally inserting the expansion of ¢ and the
integrating term by term (including a convergence
factor e~ to assure the convergence of the resulting
integrals).

The results of this Appendix are summarized in
Theorem (A-2), which states that the circle of con-
vergence of the Taylor’s expansions is |a| <g in both
cases, that the integral can be evaluated by a term-by-
term integration of the power series representation for
e, and that the result for any individual term of the
form V4, (7) is

11_1301(27r)~%fe—er,xylm(f)e—iq.rday
= (=)L (AN+2)g BV, (¢), (11)

for ¢#0, where the numerical coefficient S;(A+2) is
given by Eq. (A-5). One of its important properties is
that

Si(A+2)=0, if A=I(mod 2). (12)

Using these results, we can evaluate U(x), the
S-wave integral, with sufficient accuracy by making
the replacement

e vr=1—ar.

(13)

From the first term, we get a coefficient So(y1+1). Re-
calling that 1= (1—a?)?% we can use the approximation
v1=1, since we are neglecting o2 But in this approxima-
tion [Si(p) is an analytic function of p], the coefficient
is So(2), which is zero by Eq. (12): the leading term
vanishes, and the photoeffect matrix element is thus of
first order in «. This result has a direct analog in the
calculation of the Born-approximation matrix element
for bremsstrahlung, where both wave functions have only
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F1e. 1. Region of ana-
lyticity, in the « plane, of
U(a) and V(). 0

2

zeroth-order and first-order terms; the integral coming
from the zeroth-order terms of both functions vanishes
by momentum conservation, and the lowest-order
integrals then come from the two “cross terms.”'

The next term of (13) does contribute and gives

U(a)~ —a(2r)iSo(yi+2)g=ntd
~—a(2mr)iSo(3)¢gt=8mag™*.

(14)

In evaluating V (), the p-wave or “small component”’
integral, we need to keep only the first term of e, for
in ¢y this part of the spinor contains the factor (1—v4)?
~a/V2, which is already first-order in «. Equation (11)
then gives for this integral

V(e)~—i(2m)iS1(v1t+1)g e ¢
~—i(2m)3S1(2) g% §

= —8rig %0 q.

(15)

Inserting these results and Eq. (9) into Eq. (8a),
M 4(e) correct through first order in o becomes

(E2+ 1)'ZU2 i 2s
i, <a)zaz4,r%aq—4[ ] <a-e>[ ] o
(0 po)wa (o-Q)s

using N=a?(2r)~% to lowest order in «. Note that,
because the leading term of the upper component from
¥, vanished in this approximation, the contributions
from the upper and lower components of ¥; are both
of order a, as Sauter* found in his original calculation.

Next we must evaluate Mp, the term coming from
the perturbed part of the outgoing electron function.
Inserting Eq. (9) into (8b), the integral involving the
upper component of ¥ is

W (a)= f Fir; p)rm—teerVo(P)eicdiy.  (17)

The investigation of its regularity in a region about
a=0is more complicated than the similar investigation
of U(e), for this integrand contains the extra factor
F(r,ps), whose properties play an important role in the
argument. Appendix B is devoted to this investigation,
and the result is summarized in Theorem (B-2). The
conclusion is that, provided F possesses certain detailed

10 See, e.g., H. A. Bethe and E. E. Salpeter, Encyclopedia of
Physics, edited by S. Fliigge (Springer-Verlag, Berlin, 1957),
Vol. 35, p. 326.
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properties, W(a) does have a region of analyticity
about the origin in the oa-plane. This assures the
existence of a Taylor’s series for W(a), and within its
circle of convergence this series is again found to be
just what one would obtain by expanding e and
formally integrating term-by-term.

A central role is played in this theorem by a function
Gin(k,p; p2), defined in terms of G(p; p2), the Fourier
transform of F(r;ps). Gu.(k,p;ps2) is the coefficient
of Y.(p) in the spherical-harmonic expansion of
G(k—p;p2):

Gun(k,p; D) = f Gk—p; ) Vin(F)d2y  (18)

From Eq. (4), the dependence of G(k—p;p:) on the
direction of the momentum-space variable p is given
by the function

o (k—p)+B+E.
[(p—K)?— po+ie] (p+a)*+ic]

with q=p.—k as before. We have included the in-
finitesimal imaginary quantity (Ze) (as, e.g., in reference
10, p. 45) to assure that the singularities of this function
do not occur for real p. This is equivalent to employing
the Parseval’s theorem of Appendix B in the form of
Eq. (B-8), with €;7#0.

In order that W(a) have the desired Taylor’s
expansion, Gu.(k,p;p2) must: (a) possess all its de-
rivatives (with respect to p) on the real p axis; (b) be
analytic in some region || <R of the complex p plane;
and (c) vanish at least as fast as p=2 as p— . We
shall not prove these statements here, but it is possible
to verify that all three are true, that in fact R= | p.—k|,
and that G, actually vanishes at least as fast as p™
as p— «©.

Theorem (B-2) then states that, for |a| <|ps—k],
e can be expanded and the integral (17) done term
by term, the result for any single term #* being the
function (—1)!4;(\+2; m) given by (B-10) or (B-11).
Since M p already carries a factor o from the continuum
function, we only need the first term of the bound-state
function in this case, i.e., the replacement ¢ =1 is
sufficient. Since /=0 in (17), the result is 4¢(y1+1;2),
and expanding +vi,vi=1, we have finally W(a)
~A(2; 2), through zeroth order in @, which according
to Eq. (B-11) is

W(a)=A40(2; 2)= (27)'Goo' (,0; p2).

(19)

This is fortunate, for Goo(k,0; p2) is easy to evaluate,
and is in fact just G(k; p2)/Yoo= (47)}G(k; ps), as can
readily be inferred from the form of the expression (19):
since p occurs only in dot-products with other vectors,
if we think of G(k—p;ps) expanded in spherical
harmonics of the direction $, it is clear that at p=0,
only the s-wave part will remain, which is just

AND U. FANO
Y0oGoo(k,0,p2). Consequently, using Eq. (5) for G, we
have

W (a) = 2V27Gt(k; ps)
wk+B8+E, [(E2+1)w2] (20)
(p2— 1) (p2—K)2L (0-po)ws |

Furthermore, the lower component of ¢; with its
factor (1—+1)*~a does not contribute at all in this
first order approximation, because of the a from ¥, so
W (e) is the only contribution to M p. Incorporating it
into Eq. (8b) and recalling that the Vo= (4w)~* in
W (a) does not actually occur in ¢4, we have

= —4dria

114-)3(01)z —at

47t [(E2+ 1)‘22)2 IT

(P =R
2s
0

X(u'k+,3+E2)(a'e)[ ] (21)

(0'p2)w2

This completes our derivation of the Sauter-approxi-
mation matrix element for the K-shell photoelectric
effect. The essence of what we have accomplished by
this alternative method of derivation may be sum-
marized rather loosely in the statement that the Sauter
matrix element depends on only three very simple
properties of the bound-state wave function, ¥1(r): on
the magnitude, g(r=0), and the first radial derivative,
g (r=0), of the “large” component, and on the magni-
tude, f(r=0), of the “small” component, all evaluated
at r=0. This statement is “loose” in the sense that the
factor »m 1 with v;=(1—a?) <1, which appears both
in f(r) and g(r), makes all three of these quantities
infinite. However, if o?, and hence this entire factor, is
neglected throughout, the statement is exact.

These quantities are actually the first two coefficients
in the expansion of y; in powers of a, as is readily
verified. The approximate wave function obtained by
retaining only these two terms is, from Eq. (9),

2(1—011')5].

ai(e-7)s

1 (r)Eag(Zw)_;[ (22)

This function, obtained by making the approximations
e ~1—ar (upper component) and e *=1 (lower
component), is not intended to have any significance
in itself; its behavior for large 7, e.g., is entirely meaning-
less. Its significance in the present problem is seen only
through the work of Appendixes A and B, which
demonstrate that the desired expansion of Mis(a) can
formally be regarded as the result of integrating the
corresponding expansion of ¥, (of which ¢y is the first
two terms) term by term.!

11 Tn this sense 1 (7) is essentially what Lighthill calls a “general-
ized function.” See M. J. Lighthill, Introduction to Fourier
Analysis and Generalized Functions (Cambridge University Press,
Cambridge, 1958).
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The Sauter matrix element for the photoeffect, which
employs ¢; in this way, is thus seen to be entirely
analogous to the Bethe-Heitler matrix element for
bremsstrahlung. For, (a) it is the sum of two terms,
M4 and M3, corresponding to the two terms of the
Born approximation wave function for the outgoing
electron; (b) the leading (“zeroth-order’”) term of the
matrix element vanishes because of energy-momentum
conservation; and (c) the remaining contribution is the
sum of the two ‘“cross terms,” each containing the
zeroth-order term of one wave function and the first-
order term of the other.

Finally, it should be realized that our use of the
Born-approximation wave function for the continuum
state ¥, makes this entire calculation invalid as p, — 0,
as was emphasized by Sauter.* The above method of
derivation shows that, in fact, there is an additional
restriction upon the range of validity of the Sauter
approximation. As we have seen, the matrix element
calculated from the Born-approximation ¥, and the
exact Y1 has a power series expansion in «, whose
radius of convergence is finite and equal to ¢min
=|pa—Fk|. Neglecting the binding energy of the
K-shell, this means that the series converges only if
2k(Es— p2)>0a?. Thus no matter how many terms of
this series are retained, it cannot be used at energies
lower than this limit. Since the Sauter approximation
keeps only the first term of the series, it is valid only if
we are well within the circle of convergence, i.e., only
if 2k(E;— p2)>>a?. From the kinematics of the problem,
this restriction can be seen to be essentially a/B:K1,
i.e., the same as the restriction imposed by the use of
the Born-approximation wave function itself.

BREMSSTRAHLUNG

We can now make immediate use of this discussion
of the photoeffect to give a very simple derivation of
the Sauter-approximation matrix element for brems-
strahlung at the spectrum tip, and to prove that it
differs from the Sauter photoeffect matrix element
only by a constant factor.

As was mentioned earlier, the fact that the energy
of a bound state in the Coulomb field differs from m
only by terms of order o or higher suggests that a
bound-state wave function of given angular momentum
and parity will agree with the corresponding zero
momentum continuum function, through first order in
a. This can be demonstrated directly, and the com-
parison is made especially simple if we employ the
notation of Akhiezer and Berestetsky,!> who give both
the bound and continuum Coulomb functions in
exactly the same form. Their notation is quite standard,
and in particular y= (k¥—a?)? where « is the usual

12A. I. Akhiezer and V. B. Berestetsky, Quantum Elec-
trodynamics, a translation of Kuvanfovaya Elekirodinamika
(Gosudarstvennoe Izdatelstvo Tekhniko-Teoreticheskoi Liter-
atury, Moskva, 1953); available from Technical Services,
Department of Commerce, Washington 25, D. C.
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TasLE 1. Radial functions for the bound (B)
and threshold (7') states.

®) (am/n)~3gn () (am?)~4gr (r)
(=1 2(1—amr) 2(1—amr)
(+1) [(n2—1)/n2 T Famr Zamy
(=2) L(n+1)/n3(n—1) T iamr Samr

(am/m) ¥ (r) (am?) ~Hf7(r)
( - l) —a —o
(+1) —[@2—1)/n? T —a

Dirac quantum number; for the principal quantum
number in the bound-state case they use #, with
n=|k|, [x|4+1, etc. Their bound-state functions are
normalized to unity, and the continuum functions
“‘per unit energy.”

We need the limit of the continuum function as
$— 0, which we shall call the ‘“‘threshold function.”
The limit is facilitated by a form of Stirling’s
approximation,’?

lim |T'(y+iaE/p) | emlallrl| p| v—i= (27r) (am) 73,

| p|-0

(23)

Also, one of the factors which appears in the continuum
function for general asymptotic momentum p is
e (y+iaE/p); this can be written more conveniently as

7~ (/|G (E—m) (k=) (Ex—my) ]}
+i[ 5 (E+m) (c+v) (Ex—my) ]}}
~—i(k—v)F+iam/p, i p<Lm,
a form well suited for considering the limit p — 0.
The radial functions g(r) and f(r) of the “large” and

“small” components, respectively, of the continuum
function have power series expansions in 7 of the form

(24)

glr)y=rr1 % an(p,)r?,

n=0

()=t g bu(pa)r™.

It can readily be verified that @,(0,e) and b,(0,e) have
power series expansions in a, with leading term o™,
where m is linearly related to #. In other words, if we
take the limit p— 0 term-by-term, the series in 7
becomes a series in (ar), of which we need keep only
the first few terms for our purposes. In this way we
obtain the results shown in Table I, correct only
through first order in «, for the bound (B) and threshold
(T) states. All higher partial waves are proportional
to at least the second power of « [because of the factor
ot of Eq. (23)] and so are of no interest to us. The
proportionality between the corresponding first-order
bound and threshold functions is clear, the constant

13 Bateman Manuscript Project, edited by H. Erdelyi (McGraw-
Hill Book Company, New York, 1953), Vol. I, p. 47.
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of proportionality being just the ratio of normalization
constants.

These ‘“wave functions” have meaning in exactly
the sense which the ‘“approximate function” ¢, of
Eq. (22) has meaning—i.e., not as point functions, but
only in terms of integrals over them.!! For the bound
states, we have already shown that the power series
in 7, of which these functions are truncations, can
formally be substituted for ¢, in the integral of Eq. (2)
and the integral done term by term to give an expansion
of the photoeffect matrix element in powers of a. If
we can establish the same for the threshold function
series, which enters the tip-bremsstrahlung matrix
element, we can compare the two matrix elements
directly from the entries in Table I.

It is inconvenient to establish this directly, by the
method used for the photoeffect matrix element. The
investigation of the region of regularity of M4(a) and
M () for the photoeffect employed integral representa-
tions extensively; the threshold functions are less
amenable to this treatment, for they are Bessel functions
of argument (7)*—and this leads to integral representa-
tions which are unmanageable by the techniques em-
ployed above. An alternative approach is to calculate
the matrix element M2() [Eq. (2)] for “inverse brems-
strahlung,” using for ¢ (r) the exact continuum function
of momentum ;0. In this case the radial functions
have the form g(r)~r*e?r"F(y+14iaE/p1, 2v+1,
2ipyr) [where F(a,b,2) is the confluent hypergeometric
function], and f(r) is similar. These functions do have
simple integral representations, and by using them we
have shown in Theorems (A-2) and (B-2) of the Appen-
dixes that M4 (e,p1) and Mp(e,p,) are analytic in p;
for | p1] <|p2—Fk| and can formally be calculated by a
term-by-term integration of the series representation,
Eq. (25) of the continuum function ;. This result may
be of considerable interest in itself, but we will use it
only as a means of obtaining M4(a,0) and Mpz(e,0).
For $1#0, M 4 and M p contain p; only in the functions
an(p1,0) and ba(pe), which appear in the series
resulting from the term-by-term integration of (25).
But we obtained the p;— 0 limits of Table I by
taking the limit of the series (25) term by term;
clearly if we do the same for the present expansion of
M12(a), again only the first two terms at most will be
of less than second order in @, and the result, through
first order in «, will be exactly what one would obtain
by the use of the “functions” of Table I. In other
words, we can calculate tip-bremsstrahlung from the
threshold states of Table I exactly as we calculated
the photoeffect from the k= —1 bound state of Table I,
and the proportionality between the bound and
threshold states implies exactly the same proportional-
ity between the Sauter-approximation matrix elements,

1 For example in the investigation of bremsstrahlung near as
well as at the spectrum limit [G. W. Ford and C. J. Mullin
(private communication)].
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in the same angular momentum states, for the photo-
effect and tip-bremsstrahlung.

For 70, the continuum function ¥, of bremsstrah-
lung must asymptotically be a momentum eigenstate,
and thus contain all angular momentum substates.
These partial waves are all present even in the p;— 0
limit, and our sole remaining task is to show that only
the k= —1 state contributes terms to M12(a) which are
less than second order in «. This, however, is trivial,
if we use the results of Appendix A to do the integrals
arising from the x=-41, —2 functions of Table I.
(They all contain a factor @, and so at worst can
contribute to M4, whose integrals are considered in
Appendix A.) The x=-1 (p;) state integral has a
factor S1(3) from the large component and a factor So(2)
from the small component, where S;(p) is defined in
Eq. (A-5). But as is discussed there, S;(p)=0 if
p=1(mod 2), so both these integrals are zero. Similarly,
the integral from the upper component of the
k=—2 (p3) state has the factor S;(3), which again
is zero.

In summary, only the k=—1 (s;) state contributes
to the tip-bremsstrahlung matrix element in the Sauter
approximation. The matrix element can be calculated
from the threshold functions of Table I exactly as the
photoeffect matrix element was calculated from the
bound state of Table I, and from the proportionality
factor between the two wave functions we obtain our
final result:

MT—brem& (Oé) = (1/am%)MDh0t0-* (a>7 (26)

in the Sauter approximation. It is in this exact sense
that the two processes are inverse to each other, and,
by detailed balancing, have identical angular distribu-
tions and polarization properties in this approximation.
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APPENDIX A. FOURIER-BESSEL TRANSFORMS®

We shall define the Fourier-Bessel transform of
order 2, FBT(l)], of the function f(x) as

gi(p)= (72:)7 j; wf (@)7:(px)w*dx, (A-1)

provided the integral exists. If it does not, we use the
definition

2N}
a0=1tim (2) [ st @

15 The calculations in these Appendixes were carried out by
only one of the authors (K.W.M.)
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provided it exists. In either case, j;(x) is the spherical
Bessel function of (integral) order .

This transform is of interest here because it is the
“radial part” of the 3-dimensional Fourier transform
of a function F(r) which has the special form F(r)
=f1(r) V(7). This is easily seen by using the standard
partial-wave expansion of a plane wave,

e =4r 3 5, (p) Vim(P) YV i (P),
Im

from which the Fourier transform of f;(7) ¥V}, (?) is
mt 1OV m)e v e =i (P Via(h),

where gi(p) is just the FBT(J) of f,(r).

We are concerned in this Appendix with functions
f of the special form f(cx), ¢ being a constant parameter,
and wish to know under what conditions f(cx) can be
expanded as a power series in (¢x) and integrated
term-by-term, to get g;(c,p) in the form of a power series
in c.

Problems of a similar nature, but without the
complications of infinite series, have been considered
recently in a very lucid fashion by Lighthill,! following
the distribution-theory approach of L. Schwartz.
Although Lighthill’s work is exceedingly attractive, it
unfortunately cannot be used directly here because it
does not take advantage of the complex-variable
techniques which are essential to the solution of our
problem. However, the method of defining the trans-
form of x, as well as several other devices we use, will
be recognized as inspired by Lighthill’s book.

Since the direct justification of term-by-term inte-
gration of such a series, as well as a determination of
the radius of convergence of the resulting expansion in
¢, is very difficult, we shall use a different strategy.
We first define the FBT(}) of f(cx) as

NG [
wep=tim (=) [ stz @

For the function f in which we are interested, it will be
possible by direct inspection to establish the analyticity
(in ¢) of gi(¢,p) in a region of the complex ¢-plane about
¢=0. Thus we know that a Taylor’s series in ¢ exists,
and can find it by the usual methods. It is then possible
to verify a posteriori that this series is exactly the one
we would have obtained by a term-by-term trans-
formation of the series for f(cx).

In order to be able to recognize this fact, we must
know the transform of a power of x, which we shall
formulate as a lemma:

Lemma A-1—The FBT(J) of 2» W\>—1) is

2\! p= SiA+2)
lim(—) f e (pr)alde=——— p=0, (A-4)
T 0 P)\+3

0
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with
YT (I3[~ \+1+2)/2]
Sid+2)= ( ) 2T (1—N)/2]
Xsin[3r(A+0)]. (A-5)

Note that if N is integral, and A>7—2, then Sy 2!=0
if (\+-1) is even; in this case there is a gamma-functlon
pole in both numerator and denominator, which cancel,
and the zero of the sine makes the whole expression zero.

For this proof, as well as all that follow, we shall
employ an integral representation of the spherical
Bessel function!®:

1 1
Ju(m)=— f e#2P(s)ds,
2004

1

(A-6)

and valid for all z; P;(s) is the Legendre polynomial
of order I. This representation, in which z appears
only as ™ is particularly convenient, for in an integral
like (A-2) the convergence factor =< enables us to
perform the x (or z) integration first, thus finding the
Fourier transform (with respect to s) of x%~<f(x),
which is then to be multiplied by P;(s) and integrated
over s. By this device, many of the tricks commonly
used for Fourier transforms can be carried over to
Fourier-Bessel transforms, provided the subsequent
s-integration can be carried out.

Since the integrand of (A-6) is analytic in s for all 3,
we can deform the contour of integration from thereal
axis in any way we like. In particular, we shall use

i) =— f ¢ Py(5)ds,
2t Jp

1

(A-7)

where T' is the upper half of the unit circle in the
positive sense, from 41 to —1.

Using this representation and interchanging the
orders of integration, we have for the integral of (A-4),

( ) f Pl(s)ds dxe (e=ips)zpht2,
21/1 ()

Note that for s on I' and $>0, Re(—ips)2>0, so
Re(e—ips)>0. But from the definition of the I'-function
we know that

* I'(u+1) .
f Kt rdyr = T provided Re(a)>0,
0

at
and p> —1, so the above integral is

F()\+3)( ) f Py(s)ds _ I(\+3)
r (é—tps)"” 23U—N=8) ph+s

X(—)isz(s)s‘X*ds,
T r

16 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, New York, 1953), p. 1575.
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F16. 2. Contour employed in the
evaluation of the integral in
Eq. (A-8).

as €e— 0. Thus we need only evaluate the indicated
s integral. A convenient way of doing this is as follows.
By Rodrigues’ formula,

(—1tray
PL(Z): 211 (’d’;) (1_Z)l.

We can insert this in our integral and integrate by
parts / times, noting that the integrand vanishes at the
end points each time, and obtaining

(=1)!T(\+1+3)
f Py(2)g 2 3dz= —_—
r 271 T(\+3)

Xf (1—22)lg=>13dg,
T

(=1)!'T(A+I+3)
© 2yl T(A\-3)

Xf(l—w)lw_%(H‘“)“ldw,

the latter integral, completely around the unit circle,
coming from the change of variable 22=w.
Now consider the integral

f (1—2)lz*dz=0,

around the closed contour C of Fig. 2, under the
assumption Re(a)>0, />0 and integral. The contribu-
tion of the small circle vanishes as its radius — 0; 2% is
multiple-valued, and if we take it as real for z real and
increasing from zero to 1, and recognize the integral
over this interval as a beta function, we get

I+DT'(a
f (1— Z)lza~1dzzw(627ia_ 1).
J2l=1 r(+1+a)

=

Fic. 3. Region of ana-
lyticity of T2t (c,p) in the
9 ¢ plane.

7
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This was established for Re(a)>0, but by analytic
continuation clearly holds for any a not a negative
integer. Then using (M0 = (—1)k}"™MD we finally
obtain

'\ 3)

24 (—A=3)

f Pi(2)z23dz
r

| TOFHHDIT— O+H42)/2]
- 2 (1—))/2]

Xsin[3r(A+i+2)]. (A-8)
This is valid for X nonintegral; however, the numerator
contains a pole only if (A\4/4-2) is an even integer, and
in this case the zero from the sine cancels the pole, so
by analytic continuation, it holds for all A, and thus
establishes Lemma A-1. As we noted earlier, if >0
and #>[—2, the FBT(!) of x” is zero if n=1 (mod 2).
As can readily be checked, if /=0 (A-4) agrees with
Lighthill’s result'” for the sine transform of #™7, as it
should.

The simplest function of the form f(cx) which we
wish to consider is x*¢~*, Its FBT(!) can be written as
follows:

Lemma A-2.—Let Re(c) 20. Then FBT () of axre—e
is analytic in ¢ for 0<|¢| <p, and in this circle has the
Taylor’s expansion

2}
T2t (c,p)= lim (—) f e~ (T2, (pa)da

wS; 2) (—¢o)»
_$ A+n+2) (=0 ’ (A-9)

=0 P)\+n+3 n!

which is clearly what would be obtained by transforming
the series for a*?%~ term by term.

Using the same integral representation as before,
the x integration gives again

C T(AF3) £2\*
Tyl (6,p) = —Jim—— (~) f Py(s)
=0 24t T r

X (etc—1ips)~3ds.

Now for s on T, the upper half of the unit circle, and
$>0, (¢ps) is a point on the left half of the circle about
the origin with radius p. Thenfor Re(c¢) 2> 0,Re(e4-¢) >0,
and so the integrand can have no singularities for ¢ in
the right half-plane, so Th2!(c,p) is analytic in ¢ in
this region. In fact since (ips) is on the left half of the
circle of radius p, the region of analyticity in ¢ also
includes the region |¢|<|ps|=]|p]|, i.e., a pocket of
radius p about the origin in the ¢-plane, as shown in
Fig. 3. Thus T'(c¢,p) has a Taylor’s series in ¢ about
¢=0, with radius of convergence |c|=7p.

17 See reference 13, p. 43.
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We can find its coefficients by differentiating the
above integral under the integral sign (which is justified
since the integral is uniformly convergent in ¢ inside
the circle of radius p), giving

( )Tx+2l(6?)——1lm( )P(A—i—n-l—S)( )

Xf Py(s) (ed-c—ips)— O+ s,
T

Letting ¢ and e — 0, we find as before,

I\ SiAEn2)
(6_) T)\+2l(67?)lé‘=0:(_1)n ! . y

c P A+n+3

which establishes the Taylor’s expansion given by
(A-9). The radius of convergence R=p of this series is
determined, of course, by the end points s= =1 of the
contour I'.

With the help of these two lemmas, we can readily
obtain our desired result, the transform of the radial
Coulomb wave function.

Theorem A-1.—Let Re(b)>Re(a)>0, Re(c)>0,
Re(d) <Re(c), p>0. Then

G)\+2l(6;d; P’a7b) =

0

2\
lim (—) f e (2 F (a,b,dx) 7, (px) x2dx
m™ 0

o T'(a+n)T(b)
=2 — D c,p)d”
2=0 T'(a)T (b+n)n!

&5 I(a+m)T(b) Si(Am+n+2) =om
=0 m=0 I'(@)T (b+n)n!

(A-11)

)

(A-12)

p)\+m+n+3 m!

where T',! is defined in Lemma (A-2) and S;(p) in
Lemma (A-1). The region of convergence of the series
is at least |c| <p/2, |d|<p/2 for ¢ and d unrelated,
but in the special case ¢=d, it is |¢| <p. It converges
to the given integral if Re(¢) 20 and Re(c) > Re(d).

It is clear from the expansion

AT @r G

and the definition of T,} that the form (A-11) is
exactly what one would obtain by expanding the
confluent hypergeometric function (but not ) and
doing the integral term by term. The final form (A-12)
is thus exactly the double series which would result
from expanding both e=** and F(a,b,dx) in powers of x
and integrating the resulting double series ‘term by
term.
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This result may be obtained by the use of the
standard integral representation for the confluent
hypergeometric function,

T'(b) !

F(ab,dx)y=——— f eltao—1 (1 — fybe=1dy,
Ma)I'(b—a) Jo

valid for all x and for Re(d)>Re(a)>0. This repre-
sentation is particularly convenient, for the x depend-
ence of the integrand is exponential. Consequently, by
doing the ¢ integration last, the other manipulations
become very similar to those used in the proof of
Lemma (A-2). Using the same integral representation
as before for the spherical Bessel function, and recalling
that the assumptions made guarantee that Re(e-+c—d¢
—1ips)>0, we again do the x integration first:

r(b)
G2 (ed; prab) = — 16-’0 I'(a)T (b—a) Z'Ll( )

1
XfPL(S)de )ﬁ“—l(l_t)b—a-th
T

0

@0
Xf x)\+2e—(s+c—— td—-ips)xdx
0

TOTA+3) 1 72y}
=—lim———— -)
<0 ()T (b—a) 2i'\7

Xsz(s)ds fl fo=1(1— f)b—o—t
r 0

X (e+c—td—ips)~%dt. (A-13)
Since Re(e4-c—2d)>0 and Re(ips) <0, the integrand,
and by uniform convergence the resulting integral, are
analytic functions of & for Re(d)<Re(c), provided
Re(c) 20. Recalling that (ips) is a point on the left
half of the circle about the origin of radius p, it is clear
that, as in Lemma (A-2), we can use (A-13) as a
means of analytically continuing this function of d
into a pocket about the origin in the d-plane. All that
is necessary is to be sure that no zeros of (¢c—id—ips)
are encountered, which will be the case if we require,
e.g., that [c—{d| <p. The simplest and most symmetric
way of assuring this is to require that

le] <p/2 and [d]<p/2,

although this is clearly not the only set of regions
which will do. If on the other hand we consider the
special case c=d, then if we wish to guarantee that
le—ic|=|c|](1—1t)<p, we must clearly have |c|<p;
it is this special case with which we shall be most
concerned in our applications.

In either case, the function at hand is thus seen to
have a Taylor’s expansion in d about d=0, so again
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we wish its derivatives at d=0. Differentiating » times
under the integral sign, we obtain as before.

8 n
(—) G)\+2l (C;d; P,(Z,b) =
ad

 TBIO+n+3)
T e a)21,‘( ) f Puls)ds

1
X f jatn—1 ( 1— t)b—a—l (€+C— td— iﬁs)—(k+n+3)dt_
0

Letting d — 0, the ¢ integration conveniently becomes
independent of the s integration. Recognizing it as a
beta function,

T'(a+n)T(b—a)

A-
Tt (A-14)

1
f jotn—1 (1 — t) b—o—1Jf —
0
we have

a n
(_') G)\+2l (6:0; P,d,b)
ad

T (a+nm)T (b)
I‘(a)I‘(b+n)

1 /24\}%
lim———(——) sz(S)
0 Zil T T

X (et-c—ips)—Otntdigs,

which by (A-10) gives just the stated Taylor’s series,
(A-11). Either setting =0, or ¢=5b and ¢=0, repro-
duces Lemma (A-2), and ¢=0, ¢=0 reproduces Lemma,
(A-1), as it must.

Finally, the connection between Fourier-Bessel
transforms and three-dimensional Fourier transforms
enables us to state this theorem in terms of a three-
dimensional Fourier transform, for the case ¢=d in
which we are most interested :

Theorem (A-2).—Let Re(b)>Re(a)>0, Re(c)>0,
and »>0. Then the following expansion of the Fourier
transform of r*¢~°"F (a,b,c7) ¥ 1. (7) holds:

13-1310(271- —%fe“"r"e—"F (a,b,cr) Y 1 (P) e *d3r
o T'(a+n)T'(d)

=17V 1m(P) Z X

m=0 n=0 T'(a)T" (b+n)n!

Xsl(x+m+n+2) (—=1)m

P)\-I-m+n+3 m!

e, (A-15)

The series converges for |¢| <p, and converges to the
integral if Re(c)2>0. This is exactly the expansion
which would be obtained by expaunding both e~ and
F(a,b,cr) in powers of (cr), and integrating the resulting
double series term by term.
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APPENDIX B. INTEGRALS OVER FOURIER-
BESSEL TRANSFORMS

The purpose of this Appendix is to consider the
Taylor’s expansion, in the parameter ¢, of a radial
integral which commonly occurs in matrix-elements
involving Coulomb wave functions,

frre(c; a,p) = lim f e“xre=F (a,b,cx) F (x)x*dx, (B-1)
0+ 0

where F(a,b,2) is the confluent hypergeometric function,
A>—2, Re(c) 20, and F(x) is such as to assure the
convergence of the integral. In order that the Taylor’s
expansion exist and can be found explicitly, we shall
need to impose further restrictions on F(x) and its
Fourier-Bessel transforms. Provided these conditions
are satisfied, the Taylor’s expansion will be found to
have exactly the form one would get by inserting the
expansions

Flas,cx)= i I'(a+n)I'(b) )
GO =0 I'(a)T (b-+n)n! o
(B-2)
e‘m:i (—cx) ,
m=0 !

and integrating the resulting double series term by
term.

The functions F(x) of interest here are bounded as
% — o, but do not necessarily vanish there, so that in
general we can take the limit e — O only after perform-
ing the integration. Although we cannot actually do
the integration without knowing the exact form of
F (), it is possible to transform it into an integral over
the FBT(!)’s of the functions involved, and we shall
then find, as in Appendix A, that we can let ¢e—0
before performing this integration. The net result is
that the coefficients in the desired Taylor’s expansion
in ¢ are obtained in terms of integrals over the FBT (/)
of F(x)—a form which is particularly convenient in
the problem at hand.

We first need certain properties of these transforms.
Let xf(x) be absolutely integrable on the interval
(0,0); then we take as the FBT(?) of f(x) the function

a(p)= (,2?) f " fiprda,

and under this assumption the inversion theorem
holds,!8

(B-3)

J(x)= G) j; ’ 8u(p)j:(px)prdp. (B-4)

18 This is a special case of Hankel’s inversion theorem. See,
e.g., Bateman Manuscript Project, edited by H. Erdelyi (McGraw-
Hill Book Company, New York, 1953), Vol. II, p. 73.
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Then by evaluating the double integral

(;) fo i fu " e ()g(p)

in two different ways, we immediately have the very
useful Parseval’s theorem,

[ r@p@mea- [ streeorpar, ®5

0

valid for all /, where g;'(p) and g2(p) are the FBT(J),
respectively, of f1(x) and f2(x).

It will actually be more convenient for us to use a
slightly different form of this theorem. The integral
(B-3) is ordinarily thought of as defining g;(p) only for
#>0. However, we may take the same integral as
defining its analytic continuation for $<0. and from
the fact that ji(—x)=(—1)%(x), g(p) then has a
definite parity,

g(—=p)=(—1D'g(p).

Consequently the integrand of the second integral of
(B-5) is always even [independently of the properties
of fY(x) and f*(x)], so we may rewrite Parseval’s
theorem as

[ rer@ea=t [ goeoras, @9

a form which will be convenient later, when we shall
wish to deform the contour of integration to something
other than the real p axis.

Finally, if f*(x) and f%(x) are too divergent as x — o
to have transforms, but ¢~<f!(x) and e~<f2(x) are not,
we define

gi(p; = (;)! j; ’ e (x)jz-(Px)xzdx, (B-7)

and use Parseval’s theorem in the form

0

lim lim e~ (artedafl () f2(x)a’da
€10 €20 0
~timlim3 [ gt c)ei(os e)pdp. (B
€10 €20 o
With these preliminaries established, we shall

proceed, as in Appendix A, by considering the simplest
examples of our desired theorem first. As in Appendix A,
the essential difficulties occur even in the case ¢=0,
i.e., when the confluent hypergeometric function of
(B-1) is replaced by unity. We state the result for this
case as a somewhat lengthy lemma:

Lemma B-1.—Consider the integral

AN+2)= m f e~ s M2F (x)dx, (B-9)
0
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where (a) A>—2, (b) Jo°x|F(x)|dx exists, and (c)
Gi(p), the FBT() of F(x), possesses all its derivatives
everywhere on the real p-axis, and G (p)=0(p?) as
|p|— o, for all » and L If in addition m is the next
integer larger than A4-2, so that m—1<A4-2< m, the
integral (B-9) can be transformed into the integral

I'(A+3—m)

AN+F2)=A,(N2; m)=S; (A2
A+2)=4:(\+2;m) l<+)I‘(_)\+3)

X3 f Gy ()[e(p)]rmpmr-sdp, (B-10)

—00

valid for all 7, where S;(A\+2) is the function given by
Eq. (A-5), Gi(p)=1*Gi(p), and e(p) is the usual step-
function, 41 for $>0 and —1 for p<0.

The interpretation of the integral in (B-10) is
straightforward for A not integral, for the singularity
is then integrable; if we impose the additional restriction
that A>J—2, we may take the limit A > m—2 (m>1)
and find

D (1 m1)T[— 3 (Im) ]
(2m) 2T (m~+ )T [ (1—m—+2) ]
G, ™ (0), (I4+m) even

Ay(m;m)=

X - B-11
—i f (G (p)/p]dp, (I+m) odd, 1y

where the last integral is to be interpreted as a principal-
value integral. Finally, if F(x) does not possess the
requisite properties but ¢~%F (x) does, the lemma holds
with Gi(p) replaced by Gi(p; 8), as in Eq. (B-7).

This lemma by itself would appear to be rather
uninteresting, especially as the integrals (B-10) and
(B-11) are considerably more complicated than the
original one, (B-9). Its purpose, however, just as in
Appendix A, is to establish a theorem for the special
case in which the integrand is simply «*F(x); then
when we prove a similar theorem for a more complicated
integrand, say W (x)F(x), where W (x) has a Taylor’s
expansion valid for all x, we will be able to decide
easily whether or not the same result would have been
obtained by inserting this Taylor’s expansion and
integrating term by term. ,

The lemma is proved by the use of Parseval’s theorem
in the extended form (B-8); we shall assume for
simplicity that F(x) is convergent enough not to
require a convergence factor, but x*? clearly does. To
find the FBT(?) of «*, we shall, as in Appendix A, use

an integral representation for 7;(x), but in this case it

.will be more convenient to choose the straight-line

contour of (A-6) rather than the semicircle of (A-7).
Then just as in the proof of Lemma (A-1), the FBT(Z)
of xre=e is
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() f -y (pa)atd
( )’m“) f Pu(a) (e—ips) s,

If we now note that, if m is any positive integer,
I\ 3) TQA+3—m)
(e—ips)M3 (is)m

we can write the FBT () of e~a* as

G )’”Zﬁfim)m)(d,) [ roe

X (e—ips)™r3ds,

K. W. McVOY

(E[Z[—J)m(e—ips)"“*“g, (B-12)

(B-13)

a form which will be useful later. In applying Parseval’s
theorem, (B-8), the assumption that G;(p) has all its
derivatives allows us to do the p-integration by parts,
thus transferring the derivatives to Gi(p). The choice
of m is of course important; we take it to be the next
integer larger than A+42, so that —1<m—A—3<0.
Then the assumed behavior of G (p) as p—
assures that we get no integrated terms from the
integration by parts. Because of the factor $* which
appears in the Parseval theorem integral, it is con-
venient in doing the integration by parts to define

Gi(p)=p"G:(p). (B-14)
Then we find, using (B-13),

AN+2)= linol f e e F (x)a?da= A\ +2; m)
Lt 0

T(A+3—m) °° 1
=lim ————(—l)mf dpf ds
—0 —1

=0 2(27)k@m

XP;(S)S_’"(G‘—iPS)m_)—aéz("‘) (p). (B-15)

Taking the limit under the integral sign, the singularity
in the p integral is integrable, and the s integral becomes

1
Izm)‘Ef Py(s)s—m(—ips)ym~ds, (B-16)
-1

the evaluation of which is the core of our proof. It
appears at first sight to be divergent, but we shall find
by explicit evaluation. that it is not.

Note first that for « real,

(ix)a= leaei(r/2)a€(x)’ (B_l'])

where e(x)=-+1 for x>0 and —1 for <0, so that,

since p and s are real,

(—ips)x=| ps|*[cosima—ie(p)e(s) sinkma].
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Consequently the integral is
1
1 (@)= 19 [ Pi(o)ls]
-1

X{[e(s) I" cosim(m—N—3)—ie(p)[e(s) "t
Xsiniw(m—N—3)}ds.
Using the fact that P;(—s)= (—1)'Py(s), we have
LM ($)=2] p| "% coshr (m—A—3)

1
X f Py(s)s~>3ds, (m-+1) even
° (B-18)
=—2i| p|™3e(p) sinkw(m—A—3)
1
X f Py(s)s™3ds, (m~+1) odd.
0

An argument entirely analogous to that used in
establishing Eq. (A-8) gives the result,

f Py(s)s™3ds
’ (—=1)! TO\+14+-3)T[—

21

F(\FI+2)]
rA+3)riz(-x1

valid for all nonintegral A.
If we now note that

cosir (m—A—3) =17t singr (\+1),
and
singw (m—N—3)= —i X"t siniwr (1),
we find, comparing with Eq. (A-5),
(2m) B mD (— 1)1
(A +3)

, (B-19)

(m—+1) even

(m—+1) odd,

Ilmx (P) =

s Sun2) | plmrs] 1 ) even

Inserting this in (B-15) gives the stated result (B-10).

Finally, in order to take the limit A —m—2, an
integer, we must impose the further restriction that
m>1; for as N approaches a positive integer, one of the
I' functions in the numerator of S;(\+2) can have a
pole, and only if A>7—2 does another pole occur in the
denominator to cancel it. Fortunately, in Coulomb
functions it 7s true that A\>1—2.

If (I4m) is odd, the limiting process is simple, for

(B-20)

lim f G| 7| dp= f G,

where the result is a principal-value integral.
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If (J+m) is even, the factor siniw(/+N) in S;(A\+2)
tends to zero as A — m—2; in this case it can be re-
written as

sinir (A1) =4 sinir (m—N—2),

and we note that

lim f G(p

Provided G(p) is differentiable for all real p, the
evaluation of the second limit by integrating by parts
gives just #G(0). Inserting these limits and using the
definition (A-5) of S;(A\2), as well as

singm (m-1) = — D,

-11m27rf G(p)

ll&

for (m-1) odd, we obtain the limiting form (B-11) for
Aqi(m; m), provided m>1.
With these results established, the rest is easy. The
next most complicated function to consider is x\e**:
Lemma B-2.—Let the conditions of Lemma B-1 hold.
Then if in addition G;(p) is analytic in a region | p| <Ry,
for some R;>0, and Re(c) >0, the expansion

=13 — €L\ p—CT 2
Bx+2(c)—-11¢_rgj; e exre2F (x)x%dx

._cﬂ

=3 A(\+n+2) (B-21)

holds, for any J, in that part of the region |¢| <R; for
which Refc)>0. By comparison with Lemma (B-1),
this is just the expansion one would obtain by expanding
¢—°* in powers of (—cx) and integrating term by term.

Proof —Since the FBT(?) of e~ (<t92x* for Re(c) 20,
is, as in (B-12) and (B-13),

(;)§ PO;:S) j;l Py(s)(et+c—ips)=3ds

=(;)%I‘(>\-i;imm)(dp) sz(S)S”’”

X (e4-c—ips)m>—2ds,

Parseval’s theorem allows us to write the integral of
(B-21) in either of the two forms

lim 22:;;) f f dsP,(s)

B)\+2(C)— lim
X (e+c—ips)™pGy(p) (B-22a)
'\ +3—m) o0 1
= lim————(—l)’"f dpf ds
0 2(27,-)%1:(H‘rn) —w 1

X Py(s)s™(etc—ips)r=3G, ™ (p).

(B-22b)
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We wish to establish the analyticity (in ¢) of
By2(c) in a region about ¢=0, in order to prove that it
has a Taylor’s expansion about the origin. Under the
assumed conditions of F(x), the integral of (B-21) is
not necessarily convergent for Re(c) <0, so it cannot
serve as a means of analytically continuing B(c) into
the left half-plane. The definition (B-22a), on the
other hand, can provide the continuation.

To see this, we must first know something about the
singularities of the integrand,

(0= f Py(s) (e-Fo—ips)—-ds,

which results from doing the s integration. Since P;(s)
is a polynomial, the singularities of f(p,c) are simplest
to locate by considering the terms of the Legendre
polynomial separately. We can do the integral

1 i
[ =5
1 (a—I—ps A3

by integrating by parts # times, the final integral
having the form

1 1
— f (a+-ps)»>"2ds
AR

n—A—2
=———T(et+p)"~
p+

(a=p)™11.

Since #</, this has a pole at p=0 of order at most
(I+1), and possibly also poles at p=za. It is clear
that the integrated terms resulting from the integrations
by parts are of a similar form, so that f(p,c) has
singularities at only these three points. Further, it is
not difficult to see that any FBT (/) has a zero of order
! at p=0; consequently ?Gi(p) has a zero of order
(i+2) there, which cancels the poles of all the terms of
f(p,0) at p=0.

After the s integration is performed, then, the
integrand of the p integral, considered as a function of
¢, has singularities only at e+}-c===¢p, and these occur
in separate (additive) terms. Consider first that part
whose singularity occurs at e4-c=-ip. Since Re(e+-c)
>0 if Re(c) >0, this part of the integrand is analytic
in ¢ for any p such that Re(ip)=—Im(p)<0, ie., for
any p not in the lower half of the p plane—in particular,
for p real. But it is also analytic in $ in this region,

‘provided Gi(p) is analytic there. If in particular Gi(p)

is analytic for |p| <Ry, then this part of the integrand
is analytic in p in the shaded portion of the p plane
shown in Fig. 4, of radius p;<R;, and we are then free
to deform the contour of integration from the real p
axis to the contour of Fig. 4. But |p| 2 p: everywhere
on this contour, so this part of the integrand can have
no singularity whenever |¢| <p;<R; (for ¢— 0), and
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F16. 4. Contour employed,
o in the p plane, in the evaluation
of Byt2(c).

_

we thus have the analytic continuation of this part of
the integral into the left half of the ¢ plane, in the
pocket |¢c|<pi<R; ie., the region similar to the
shaded part of Fig. 3, of Appendix A. Similarly, the
part of the integral whose integrand is singular at
e+c=—1p can be analytically continued into the same
region by deforming the p contour into the lower half
of the p plane, and in this way we have established the
fact that Biye(c) has a continuation which is analytic
in a region |¢| <R; about the origin. Thus it must have
a Taylor’s series, which we can find most conveniently
by differentiating (B-22b) under the integral sign.
Using the fact that

L eromipd = (etomi
chC’LPS—'dpe‘:ipS)’

A

we may transform ¢ derivatives into p derivatives,
and then transfer them to G;(p) by integrating by parts,
so the result of differentiating (B-22b) » times is

I'(\+3—m)
Brip®(0)= lim —————(—1)m
0 2(27l') ,L(l+m+n)

0 1
X f dp f dsPy(s)s—mn
—0 -1

X (ec—ips)m2=3G,mtm (p),  (B-23)

But, setting ¢=0, we see by comparison with Eq.
(B-15) that
B)\_|_2(") (0) = ("‘ 1)"A z()\+ﬂ+2 ) m+n)

= (—1)"4A \+n+2),

so that the Taylor’s expansion of By;2(c) is

_)n

Byia(0)= Z A(H-n-l-z)

the radius of convergence, R;, being determined by the
position of the singularity of G;(p) nearest p=0.
(Since the Taylor’s expansion is actually independent
of /, we may conclude that R; is the same for all 1.)

In terms of these Lemmas, the last generalization is
straightforward :

Theorem (B 1).—Let the condition of Lemma (B- 2)
hold, and in addition suppose Re(b)>Re(a)>0,
Re(c)?,O, Re(d)< Re(c). Then we have the following

AND U. FANO

double series expansion:
Dy, 2(c,d; a,b)= lim f e “xre“F (a,b,dx)F (x)x*dx
€0 0

w T'(a+n)T(b)
=0 I'(a)T' (b4-n)n!
T'(a+n)T'(b)
n=0 m=0 T'(a)T" (b+n)n!

Biini2(0)d”

0 0

—1)m

(B-25)

(
XAN+m+n+2)

crdr,
m!

where F(a,b,2) is the confluent hypergeometric function.
The region of convergence is at least |c|<R/2,
|d| <R/2, for ¢ and d unrelated, and is |¢| <R if
c¢=d; R is defined as the smallest distance from the
origin of a singularity of Gi(p). The series converges
to the integral wherever the integral exists, i.e., at
least for Re(c) 20, Re(d) < Re(c).

The single series (B-24) is seen, by the definition
(B-21) of Ba(c) and the expansion (B-2) of the con-
fluent hypergeometric function, to be the result one
would obtain by inserting this expansion and inte-
grating term by term. The form (B-25) then follows
from Lemma, (B-2), and as in Appendix-A is the result
which would be obtained by expanding both F(a,b,dx)
and ¢ in powers of x and integrating this double
series term by term.

By employing the integral representation

T'(b)

F(ab,dx)=———
T'(a)T'(b—a)

1
f edta:ta—l (1 —_ t)bo—u—ldt’
0

in which the x dependence is exponential, the proof of
this theorem becomes very similar to the proof of
Lemma (B-2). Since by assumption Re(e+c—di—ips)
>0, we can use a slight generalization of (B-12) and
(B-13) to find the FBT(/) of the first factor in the
integrand. Using Parseval’s theorem and differentiating
under the integral sign # times with respect to d, we
find, as in (B-23),

a n
(_) D)\+2(C;d5 a)b)
ad

DT OOt —m)
0 22m) i ()T (b—a)

0 1 1
Xf dpf dsf dt P(s)s—mn
- -1 0

X (eFc—dt—ips)m2=3G, vt (p)
X Jetn—1 ( 1— t)b—a—l‘

(B-26)
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For n=0, this can be written in a form analogous to
Eq. (B-22a). By again distorting the contour of the p
integration to that of Fig. 4, with a semicircle of
radius R, we can use this form to analytically continue
(B-26) as a function of d from the region Re(d) < Re(c),
for Re(c)>0, to include a pocket about d=0. As in
the proof of theorem (B-1), singularities in d are
avoided if we require |c—di| <R, since |p|=R on
the new contour, and this can be accomplished (for
0<¢<1) by requiring, e.g., that |¢|<R/2, |d| <R/2 if
¢ and d are unrelated, or |[¢| <R if c=d.

By this means we see that Dy;2(c,d; a,b) is analytic
in d in a region about the origin and thus has a Taylor’s
expansion in d. The coefficients may be found from
(B-26), which is valid for Re(c) >0, Re(d) < Re(c), by
setting d=0. The ‘-integration then separates from the
other two, and by comparison with (B-22b) we see that

6 n
(_“) D7\+2(C)O; G,b)
od

T (b)

1
f jotn—1 (1 — t)b—nz——ldl
0

I'(a+n)T(b)
()T (b+n)

=B)\+n+2(0'
using Eq. (A-15), and this establishes the expansion
(B-24).

Finally, the form of the matrix element for the
emission or absorption of a photon, to which we wish
to apply this theorem, requires that we state it in a
slightly more general form. We need first the definition
of G(p), the three-dimensional Fourier transform of
F(r):

G(p)=(2m)~} f F(r)e=irdéy, (B-27)
The inverse theorem is then
F@=n [G@eras, B2

and the form of Parseval’s theorem which we need is
[rwerwer= [G@ea—par. ©-29)

Furthermore, if F(r) has the “partial wave” form,
F(r)=/1()Ym(?),
its Fourier transform is

G)=1"(p)Y m(D), (B-30)

1183

where g,(p) is exactly the FBT () of fi(r), as defined
above. Consequently, in this special case, Parseval’s
theorem takes the form

ff 1(1) Vi (7)€% *F () d3r
=it f g(p)Gu(k,p)p?dp, (B-31)

where g;(p) is the FBT() of fi(r), G(p) is the three-
dimensional Fourier transform of F(r), and

Gunll,p) = f 02, Vin(H)G(k—p).  (B-32)

Thus we have reduced the right-hand side of (B-31) to
a one-dimensional integral; using this as a basis, we
can readily prove the following generalization of
Theorem (B-1), for the case ¢=d in which we are most
interested.

Theorem (B-2).—Let the following conditions hold:
(a) A>1—2; (b) F(r) is absolutely integrable over all
space and has the Fourier transform G(p); (c) Gin(k,p)
= fGk—p)Vin($)d%; (d) Gu(k,p) possesses all its
derivatives with respect to p everywhere on the real p
axis, for k>0, and d"Gu/dp"=G 1™ (k,p)=0(p72) as
|p| — o, for all », I, and m, and for k>0; (&) Gin(k,p)
is analytic in p, for 0<|p|<R(E) for all I, and for
k>0; (f) Re(d)>Re(a)>0; Re(c) 20. Then

lilgl f e rre=F(a,b,cr) Y 1 (F) e *F (r)d?r

o0 0

I'(a+n)T(b)
=T Y
=0 m=0 T'(a)T' (b+n)n!

—1)m

XA ()\+m+n+2)(

Cm+n,

(B-33)
m!

where F(a,b,2) is the confluent hypergeometric function,
and A A\ +m-+n+2) is defined just as in (B-10), but
with G (k,p) substituted for G;(p). The series con-
verges for |¢c|<R(k), and converges to the stated
integral wherever the integral exists, i.e., at least for
Re(c)20. If we set ¢=0, the series reduces to the
single term m=n=0, and from the result for this
case we see that (B-33) is just the series which would
be obtained by expanding both ¢ and F(a,b,cr) in
powers of (¢r) and integrating the resulting double
series term by term.

To prove this, we note that by (B-31) the integral of
(B-33) can be transformed to



(=) T (@A) A+3—m) = 1 1
—i)tli d d dt
) T @ (—a) f_w ? f_l ’ j;
X Py(s)s™™(etc— ct—ips)™ 3G 1™ (k,p)
X jo—1 ( 1— t)b—a—-l,

(B-34)
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by the same manipulations as were used to obtain
Eq. (B-26). But except for the factor (—2)!, this is
identical with the integral of (B-26), with =0, ¢c=d,
and Gi(p) replaced by G (k,p). Consequently the
remainder of the proof follows identically the proof of
Theorem (B-1).
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The scattering of 18-Mev alpha particles by gaseous C3Hs, Oz, and H,S targets was studied with a
multiplate scattering chamber. The elastic angular distributions exhibit the diffraction-like pattern typical
of light elements. Carbon and oxygen show a sharp rise above the Rutherford cross sections at the backward
angles, with values o/or of 660 for carbon and 350 for oxygen near 173°. A good fit to the angular distri-
bution for inelastic scattering leading to the first excited state of C2 (4.43 Mev, 2%) is obtained using a
[72(gR)T* dependence with R=5.5X10"1 cm. No direct-interaction analysis is possible for the alpha-
particle groups corresponding to the 7.65-Mev and 9.61-Mev levels in C'? and to the excited states of O'6
up to the 8.87-Mev level. All these distributions show strong forward peaking. In the case of inelastic
scattering by S (Q=—2.44 Mev), an interaction radius of 6.5X 1071 cm can be deduced from the angular
distribution, though the agreement with [ f2(¢R)J? is rather poor. A summary of elastic scattering results
for elements in the range from Z=6 to Z=47 is presented. Expressions for the second-order geometry and

the multiple-scattering corrections are given.

I. INTRODUCTION

HIS investigation is part of a program to study
the scattering of 18- to 19-Mev alpha particles
by light and medium-heavy nuclei. The scattering
cross sections of Ne, Al, A, Cu, and Ag have been
discussed in earlier reports.t In the present study, C,
O, and S were investigated. The carbon and oxygen
targets were chosen because the elastic cross section
for neon had shown a significant rise at large angles
and it seemed desirable to check this trend at lower Z.
Sulfur was included as one of the heavier na-type nuclei
and because it was hoped that eventually an accurate
theory might allow the determination of the nuclear
deformation from the angular distribution of the
inelastically scattered alpha particles leaving S® in its
first excited state.*
With the present measurements, a fairly complete
survey of the elastic alpha-particle scattering at 18 to

1 Work supported in part by the U. S. Atomic Energy Com-
mission. This article is based on a doctoral thesis submitted by
J. C. Corelli to the faculty of Purdue University. Preliminary
reports have been given in Bull. Am. Phys. Soc. Ser. II, 2, 34
(1957), and Ser. II, 3, 199, 200 (1958).

* Now at Knolls Atomic Power Laboratory, Schenectady, New
York.

1E. Bleuler and D. J. Tendam, Phys. Rev. 99, 1605 (1955).

2 Seidlitz, Bleuler, and Tendam, Phys. Rev. 110, 682 (1958);
(references to earlier work are cited therein).

3 Gailar, Bleuler, and Tendam, Phys. Rev. 112, 1989 (1958).

4 S, Hayakawa and S. Yoshida, Proc. Phys. Soc. (London) A68,
656 (1955). S. Hayakawa and S. Yoshida, Progr. Theoret. Phys.
(Kyoto) 14, 1 (1955).

19 Mev is now available in the range of elements from
Z=06to Z=4T.

II. EXPERIMENTAL PROCEDURE

The experimental methods used were essentially
those described by Seidlitz et al.? The external alpha-
particle beam of the 37-inch cyclotron was focused by
means of a magnetic quadrupole lens into a 19-inch
diameter scattering chamber and collimated within a
cone of 0.56° half-angle before passing through the
target. The beam was collected by a Faraday cup and
measured with an integrator of the type designed by
Higinbotham and Rankowitz.® The maximum error in
the number of incident alpha particles is 1.5%,. The
average incident alpha-partcle energy was obtained,
with an estimated maximum error of 19}, by measuring
the mean range in aluminum.$

The target materials used were reagent grade propane
(C3Hs), oxygen (O;) and hydrogen sulfide (H,S), and,
for one auxiliary run, a polyethylene foil. The gases
were contained in a brass target cell with a 3-mil thick
Mylar window, described in detail by Corelli ef al.” The
metal parts of the target cell did not obstruct the paths
of particles scattered in the range of angles from 10°

5W. A. Higinbotham and S. Rankowitz, Rev. Sci. Instr. 22,
688 (1951).

6 Gailar, Seidlitz, Bleuler, and Tendam, Rev. Sci. Instr. 24,
126 (1953).
( 7 s(%relli, Livingston, and Seidlitz, Rev. Sci. Instr. 28, 471
1957).



