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Influence of Elastic Anisotropy on the Dislocation Contribution
to the Elastic Constants~

J. S. KOEHLER AND G. DEWIT
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(Received July 16, 1959)

Calculations of the dislocation contribution to the measured elastic constants of face-centered cubic
crystals are made as follows. First, the displacement of a pinned dislocation segment under an externally
applied stress is evaluated. Then the contribution to the resulting macroscopic distortion of the specimen
resulting from the motion of all the dislocations present is calculated. The results are that the contributions
for given dislocation arrangements increase with increasing anisotropy. For copper and lead the contribu-
tions can amount to a few percent in a pure well annealed crystal and can be as large as 10% in slightly
deformed crystals. Edge dislocations are found to make about ten times larger contributions than a similar
density of screw dislocations.
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I. INTRODUCTION
" T has been known for some time that the internal
& - friction and the elastic constants of elastically
anisotropic crystals even when measured at very low
strain amplitudes are rather sensitive to the dislocation
density. This paper attempts to calculate the dislocation
contribution to the elastic constants and it attempts
to describe how the dislocation and perfect crystal
contributions to the elastic constants can be obtained
experimentally. The calculations are given in a form
suitable for the face-centered cubic metals, but the basic
concepts can be applied to any crystal.

Eshelby' was the first to note that the presence of
dislocations would lower the measured elastic constants.
In 1952 a detailed calculation' of the motion under a
small oscillating stress of a dislocation pinned down by
impurity atoms was given. This calculation showed
that the reversible dislocation motion gives rise to a
small extra strain which is interpreted in elastic constant
measurement to mean a smaller elastic constant than is
actually appropriate for the perfect crystal. If the dis-
locations are very thoroughly pinned down by im-

purity atoms then this picture predicts that they will

not make any appreciable contribution to the elastic
constants. Recently Thompson and Holmes' have ob-
tained beautiful data in which they have pinned down
the dislocations in 99.999% pure copper single crystals.
These data are given in Table I. Thompson and Holmes
point out that the defect concentrations introduced by
such irradiations are so small that it is inconceivable
that the changes are a result of alterations of the perfect
crystal elastic constants.

Two points should be noted. Marx and Koehler4 and
later Brad6eld and Pursey' demonstrated that in copper

* Research supported in part by the Ofhce of Naval Research.
' J. D. Eshelby, Proc. Roy. Soc. (London) A197, 396 (1949).' J. S. Koehler, in Imperfectionsin Nearly I'erfect Crystals (John

Wiley 8z Sons, Inc. , New York, 1952), p. 197.' D. O. Thompson and D. K. Holmes, J. Appl. Phys. 27, 713
(1956).' J. Marx and J. S. Koehler, Plastic Deforrrtatiort of Crystaltiwe
Solids, Ofhce of Naval Research Pittsburgh Conference, p. 171,
1950 (unpublished).

~ G. Brad6eld and H. Pursey, Phil. Mag. 44, 437 (1953).

II. THE NATURE OF THE DISLOCATION
CONTRIBUTION

There are two kinds of problems which must be
discussed to clarify the dislocation contribution to the
elastic constants. First, how does each pinned down

length of dislocation move in response to an external
applied stress. Second, knowing how each loop behaves,
what is the contribution of all the dislocations to the
elastic constants. The erst problem contains the major
physical points involved. The second is essentially an

TABLE I. Increase in Young's modulus of copper single crystals
produced by pile irradiation (data of Thompson and Holmes).

Qp(/P12
crystal dyne/cm2)

(zf —zo)

QQ

Integrated
flux
(n7lt)

1A
2A
28
2C
3A
38
4A

83A

1.227
1.008
1.013
1.021
1.460
1.474
1.107
1.142

1.344
1.023
1.028
1.0325
1.472
1.477
1.149
1.196

0.0955
0.0149
0.0148
0.0113
0.0082
0.0022
0.0380
0.0472

15 X10"
10 X 10'7
3.1X1015

10 X 10'7
10 X10»
8.5X 10'5
2.4X 10'
4.8X 10'8

e Granato, de Klerk, and Truell, Phys. Rev. 1PS, 895 (1957).

single and polycrystals, respectively, small amounts of
impurity can pin down the dislocations and hence in-
crease the elastic constants. Less than one atomic per-
cent of impurities is required. In addition, small
amounts of cold work produce large changes in the
measured elastic constants. Probably the large 9.55%
change in Young's modulus observed by Thompson and
Holmes in specimen 1A (see Table I) was the result of
a small deformation. Another example concerns NaCl.
Granato, de Klerk, and Truell' found that the velocity
of compressional elastic waves along the (100) direction
increased with frequency 0.5% from 1 to 100 mega-
cycles per second in undeformed NaC1. After a 0.06%
compression, a 4'%%u~ increase was observed. They attrib-
ute the increase to the inability of the dislocations to
follow the rapid oscillations.
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where V is the volume of the specimen. The number of
loops of a specified type in V is N(l, gp) Vdldgp/l. Hence
we find that the average shearing strain associated
with the motion of these dislocations is:

e„(l,gp, o„)dldgo = (0/21) 1V(lgp) dA (1,8p,rr„)dld8 p. (1)

(a)

=e,

e=e,

(b&

Fro. 1. (a) Quantities used to calculate change in strain due to dis-
location motion. (b) Coordinate system used to calculate 1'dA.

averaging problem. Let us consider the entire problem
6rst.

To clarify the way in which a dislocation contributes
to the total strain, it is useful to review an operational
way of defining a dislocation:~ make a cut in the
material which ends on the dislocation line; choose the
surface of the cut which would be reached first if the
dislocation is encircled in the direction that a right
hand screw turns in order to advance in the positive
direction of the dislocation; translate this surface by b
with respect to the other surface; glue the material
together again and let it relax. When an external shear-
ing stress is applied, a dislocation line pinned at its ends
bows out. The material above the area swept out by the
dislocation is translated by b relative to the material
below this area. Let the xy plane be the slip plane; let
x be in the direction of the Burger's vector. The resolved
shearing stress is o„.Suppose j'dA (l,gp, o„)is the area
swept out by the dislocation as the stress increases
from zero to its final value and N(l, gp)dldgp is the total
length of dislocations per unit volume which have,
lengths between 1 and 1+dl, and whose Burger's vectors
make angle between gp and gp+dgp with the dislocation
in the unstressed condition (see Fig. 1, the curve x
ttersgs y represents the bowed out dislocation). Let
«, (1,8p,o,)dld8p be the average shearing strain caused
by the motion of such dislocations. Note that the
average shearing strain produced by the motion of
each dislocation loop is

b
dA(1,8„~„),

2V
~A. H. Cottrell, Dislocations and Plastic Floe in Crystals

(Oxford University Press, New York, 1953), p. 15.
See reference 7, p. 19.

The strain given by (1) is associated only with
dislocations originally characterized by /, 80, and with
one particular Burgers vector and occuring in slip
planes of one orientation. To get the 6nal macroscopic
result the strain would have to be integrated over / and
Ho, and averaged over the area of the slip plane if
N(l, gp) varies in space. Then the contributions from
dislocations in various slip planes and with various
Burgers vector (e.g. , all the f111}planes and all the
(110) directions in face-centered cubic crystals) would
have to be combined. This could be done by choosing
some axes fixed in the crystal and, by usual tensor
methods, taking the components along these axes of the
e, for each slip system, and adding. It should be
mentioned that the o, which occurs in J'dA in (1) is
also a function of the orientation of the slip planes,
since it is some component of the stress applied to the
crystal,

Evaluation of J'dA

The area swept out by the dislocation in reaching its
equilibrium position must now be calculated. In an
earlier paper an expression is obtained' which gives
the shape of a dislocation in an elastically anisotropic
crystal under an applied stress as the solution of the
differential equation of equilibrium. It is found that
one cannot, in general, get an explicit expression for the
constants of integration such that the dislocation curve
passes through the fixed end points, that is, to identify
which part of the curve x versus y (the general solution
to the differential equation) represents the dislocation.
Thus J'dA cannot be evaluated in general. However, if
0. , is suKciently small, an approximate relation for
J'dA can be obtained.

To calculate the area swept out by a dislocation
segment which originally was of length / and made an
angle of 80 with the Burgers vector, define a local
coordinate system (v, ttt) with origin at the point on the
curve x versus y where the tangent makes an angle of Hl)

with the Burgers vector, and with the v axis tangent
to the curve at this point. See Fig. 1. Thus

tt(g) = L&(g) —a(go)$ cosgo+Q(8) —y(go)$ singo,

w(g) =—Lx(g) —x(gp) j sings++(g) —y(gp)] cosgo.
(2)

Finally, J'dA. can be evaluated as

dA=
J L~(g) —~(gt) ld~(g).

g,
' G. deWit and J. S. Koehler, preceding paper /Phys. Rev. 116,

1113 (1959)j.
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In the earlier paper it is shown that the shape of a
dislocation lying in a glide plane under an external
shearing stress 0-„is given by

@=co—{a,.b} '{sinHE(8)+cosH(dE/d8) },
y= ci+ {o.„b}'{cosHE(8)—sinH(dE/dH) },

(3)

where E(8) is the energy required to produce unit length
of dislocation having angle 8 between the tangent to the
dislocation and the Burgers vector. Dislocation inter-
actions are neglected in Eq. (3). It will be assumed that
the dislocation does not bow out much so that 8~—Hp

and Oq
—

Op are much less than one. We then insert x
and y from (3) into (2) and expand about Ho. One finds:

v(83) —it(Hi) = l, w(83) —w(Hi) =0. (4)

Finally J'dA can be evaluated as:

8g

dA =
) t w(8) —w(Hi) jdv(8).

Oy

If this procedure is carried out, the following is obtained

(Hi —Ho) = —(83—Ho) =-,'3,

o(83) = —3 (Hi) =-,'l,

w(83) =w(8,) = ——3'd,

~dA =-', oP,

where
c=bog, E/(E+d'E/d8') .o. (6)

In the above, ( )o means that quantity in parentheses
is evaluated at 8=8p. The quantity e must be small if
(6) is to be valid. The strain 3,, can now be found from
(1) as follows:

3*.(l,Ho, a *.)dldHo = (1/24) N (l,Ho) blodld83. (7)
If the preceding calculation is carried out to a higher
order of approximation, e„alsohas a term in e'.

The Integrating Process
As mentioned before, the strain given in (7) must be

summed as follows:

e„=
i dldHoo, (E,Ho,o„),

where e, is the total strain caused by the motion of all
the dislocations in one slip system.

There is a possible difhculty associated with the
evaluation of (8). In order for the expressions (7) and
(8) to be valid, the following must be satisfied:.=Pa..t/(E+doE/d83)o]«1. (9)
Thus a„must be chosen so small that (9) is valid
for the largest value of E which would be included
in the integral (8). It would be hard to satisfy (9) if
(E+d'E/dH')o approaches zero, as it might in some
cases.

TAsLE II. Slip systems for the face-centered cubic crystals.

Unit normal to slip plane

3 &(111)

3 &(111)

3 5(111)

3 &(111)

Unit vector 1n direction of b

2-~(0»)
2 $(101)
2 5(110)
2 &(011)
2 &(101)
2-~(110)
2 &(0»)
2-~(101)
2-~(»0)
2-~(0»)
2 5(101)
2 5(110)

If it is assumed that a. , is small enough so that (9) is
satisfied, then e .- takes the form

e„=(a„/24)
~

'

LdldHoJ a

&&X(l 83)b'P/(E+d'E/dH') oj=Sa„.(10)

If it is also assumed that X(E,Ho) is independent of a„,
then S will also be independent of 0,. In deriving the
equilibrium shape of the dislocation given by (3) a„
was taken to be constant. If an attempt is made to
apply (10) to a case where a, varies in space, but
slowly enough so that it is essentially constant over the
length of the dislocation segment, then the assumption
that E(1,83) is independent of a, may be poor.

Geometric Aspects of the Prob1em

The last step in finding the dislocation contribution
so the elastic moduli, that is, combining the eGects
due to dislocations in the various slip systems, will now
be considered for the case of the face-centered cubic
crystal. The procedure is as follows. Using the cubic
axes of the crystal for reference, an arbitrary stress
field 0,, is assumed. The value of 0. . for each slip
system is found in terms of a.;;. Using (10), the disloca-
tion contribution to the strain e„is obtained and its
components with respect to the reference axes evalu-
ated. It is assumed that S, in (10), is a constant and the
same for all slip systems. When the contributions from
all the slip systems are added, the result is 8e;;, the
total dislocation contribution to the strain, referred to
the cubic axes and expressed in terms of the applied
stress.

The twelve slip systems are listed in Table II. The
results of the calculation are

Hoii = (8/3) Sa.ii—(4/3) Sa.33—(4/3) Sa 33)

3&33———(4/3) Sa»+ (8/3) Sa'» —(4/3) Sa33)

8333=—(4/3) Sa ii—(4/3) Sa»+ (8/3) Sa33,

8333——(4/3) Sa.33,

booi ——(4/3) Sooi,

&oio= (4/3)Sa. io.
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For the cubic crystals, the relation between stress and
strain is"

etl Sll&11+512o22+512o 33'

e22 512o 11+Sile22+ 512o 33)

e33 512o 11+512o22+Silo 33)

2&3=S44023,

2@3'=S440 31,

2 &12 S44&12p

and thus it can be seen that

851,——(8/3) S,
8522= —(4/3) 5,
8544= (8/3) S,

where 8S;; is the apparent change in S;; due to
dislocations.

Numerical Estimate of S

It is desirable to try to get some rough estimate of the
magnitude of S. From (1) and (10)

S= (1/6) ' dld8oN (1,8o)2rl2/

Dn(~/«) )LE+~'E/«'jo (11)

where E= Lb2E(8)/42rj 1n(E/ro), E is the average dis-

location separation, and ro is the core radius of a dis-

location. Two very simple forms of N(1,83) will be
considered

No(l, 8o) = &(l—l) &(8o—0)N(l, 0),

N ),(l,8o) = 8 (l—l) b (8o—or/2)N(l, lr/2), (12)

where b(g) is the Dirac delta function and N(l, ,0) and

N(llr/2) represent the density of screw and of edge
dislocations, respectively, which are associated with
one slip system. Both of the above represent a situa-
tion where all the dislocation segments have the same

length, l. In the first case, all the dislocations are screw,
while in the second, all the dislocations are edge. H the
integration in (11) is performed, S becomes

So= (2r/6) N (l,0)l2/Lln(R/ro) )$E+d2E/d82j3 o,

5 ~2= (2r/6)N(l, rr/2)l'/Dn(R/ro)TE+d'E/d8'jo= g2.

It might be expected that a correct value of S would

fall between So and S ~2.

An attempt must now be made to obtain approximate
values for the various quantities appearing in the rela-
tions for So and S l2.

'p The s;j are defined for a system where a; =Z s;;0.;.The relation
between the two systems is as follows: e1=e», e2=~», e3=~»,
64=2823& Cro= 2&31& Op= 2612& $1=$1]& $2=$222 $3=$33& $4=$232 $&r=$132

s6=s12. The g; are not components of a tensor. Further discussion
of this can be found in J. F. Nye, Physical Properties of Crystals
(Clarendon Press, Oxford, 1957), Chaps. V, VI, and VIII.

N(l, 0) represents the number of cm of dislocation
per unit volume in one slip system for the simple case
in which all the dislocations are screw, while N(t, 2r/2)
is the corresponding quantity for the case in which
all the dislocations are edge. Both of these will be
approximated by:

N(l, )—N/I, (14)

ro=b=3X10 s cm.

' From the relations derived in the previous paper
it is found that (E+d'E/d8') ha's the following values
in dynes/cm'

Pb
Cu

e=0
3.02X10»

12.3 X10»

e=~/2
0.549X 10»
1.24 X10»

If the approximations given by (14) through (17) are
used, and if E is taken as 10' cm ', the values obtained
for 5 in cm'/dyne are

Pb
CU

Sp
0.01 X10-»
0.003X10 '2

S~I2
0.08X10 '2

0.03X10-»

Since the change in each of the s;; is of the order of S,
a comparison of the above with the s;; will give an idea
of how significant the dislocation contribution might be.
The s;, are, " in cm'/dyne

$11
$12
$44

CU

&,49 X10-»
—0.625X 10-»

33 X10

Pb
9.39X10 "
4.30X10 "
6.95X10 "

The preceding tables indicate that the dislocation con-
tribution to the elastic moduli is about a few percent.
However, care should be taken in interpreting these

"Cu, D. Lazarus, Phys. Rev. 76, 545 (1949);Pb, E. Goens and
J. Weerts, Physik. Z. 37, 321 (1936).

where X is a value which falls within the range of values
observed experimentally for the total number of centi-
meters of dislocation per cm' in a crystal, and e is the
number of slip systems.

If the pinning points are mostly dislocation nodes,
a reasonable approximation for / might be

)~g—&

However, if point defects are introduced into the
crystal, / could be decreased without changing X. In
constrast, deformation of a crystal might introduce
some additional dislocations of long length, and thus
increase E without decreasing t.

If E is taken as the average distance between dis-
locations, then the correct order of magnitude is ob-
tained if

(16)

The radius of the core is usually taken to be some-
thing like the length of the Burgers vector. For this
rough calculation the following is suftj. ciently accurate
for both Pb and Cu
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results because many simplyifying assumptions have
been used to derive the expressions in (13) and evaluate
them numerically. In particular, note that So and S ~2

dier by a factor of 5 or 10, which indicates that the
angular distribution is important and should be con-
sidered more carefully. Also, it should be mentioned
that even though the expressions found in the earlier
paper may be a fairly good approximation to E, it does
not follow that the result of a double differentiation
will yield an equally good approximation to d'E/d8'.

Some data of Thompson and Holmes are shown in
Table I.The Young's modulus (which would be the recip-
rOCal Of SI~ if the SpeCimen axiS Were alOng a CubiC axiS Of

the crystal) is measured before and after pile irradiation.
The diGerence between these is interpreted as the dis-
location contribution since by thoroughly pinning the
dislocations, the irradiation reduces or eliminates the

dislocation motion. The change is of the same order of
magnitude as calculated above and in well annealed
elastically anisotropic crystals can amount to a percent
or two of the elastic constants.

In slightly deformed crystals (such as Thompson
and Holmes specimen 1A) the change can amount to
10'Pci. The fact that anisotropic crystals give large dis-
location motion for small stresses is also of importance
if one considers the dislocation damping, i.e., the in-
ternal friction associated with dislocation motion. One
expects that for specimens of comparable purity and
perfection the logarithmic decrement at low strain
amplitudes increases as the elastic anisotropy in-
creases. Although a quantitative comparison is de.cult,
the present data do indicate a trend of this kind. "

"A. Granato and K. Lucke, J. Appl. Phys. 27, 791 (1956).
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Relative Measurement of the Photodetachment Cross Section for H—

STEPHEN J. SMITH AND DAVID S. BURCH
Atomic Physics Section, National Bureau of Standards, Washington, D. C.

(Received July 13, 1959)

The spectral dependence of the photodetachment cross section for the negative ion of atomic hydrogen
has been measured in the range from 4000 A to 13 000 A with approximately 300-A resolution. Measure-
ments were made with twenty-five band pass filters, each measurement taken relative to the value obtained
with a control filter at 5280 A. A probable error of about 2% is attached to the relative value obtained
for each filter. The results are in significant disagreement with available calculated cross sections.

E have carried out a careful measurement of
the wavelength dependence of the photon

absorption cross section of the negative ion of atomic
hydrogen. A direct interest in this cross section has
arisen from the fact that solar emissivity is controlled
by H, through bound-free and free-free transitions.
A special theoretical interest arises from the fact that
the process is a particular case of the quantum-mechan-
ical three-body problem; a wavelength dependence
measurement would be useful in checking the success
of various theoretical approximation methods.

The H photodetachment reaction is

H—+ht —+ H+e,

and the cross section for this is

(2)

Here D is a dipole length operator, Ps is the wave
function for the H ion, and P, is the wave function
describing an outgoing electron in the field of the

*Now at Oregon State College, Corvallis, Oregon.

residual H atom. Approximations to fs have been
developed from the Ritz variational principle of
minimum energy, using wave functions with various
modifications and as many as 24 adjustable param-
eters" to calculate the electron binding energy of H .
These calculations have satisfactorily converged on
0.754 ev, although no accurate experimental check
exists. Furthermore, Chandrasekhar' has shown that
values obtained for the cross section from Eq. (2), or
from velocity and acceleration forms derived from
Eq. (2), are not very dependent on the number of
variational parameters used, above about ten. We can
then believe that the H ground-state wave functions
are quite good; and that internal inconsistencies in
values calculated from Eq. (2), and from the velocity
and acceleration forms derived from Eq. (2), are due
mainly to the limitations of the plane-wave and static
central Geld approximations used for the continuum
state, ll, . No calculation of the photodetachment cross
section presently available goes beyond the static

1E. A. Hylleraas and J. Midtdal, Phys. Rev. 109, 1013 (1958).
2 J. F. Hart and G. Herzberg, Phys. Rev. 108, 79 (1957).' S. Chandrasekhar and D. D. Elbert, Astrophys. J. 128, 633

(1958). See also earlier work referred therein.


