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The equilibrium shape of a dislocation segment between two pinning points in the same glide plane is
calculated. The assumption is made that the dependence of the dislocation self-energy on the geometry
of the dislocation line can be expressed by using an energy per unit length, E, which is a function only of the
angle, 0, between the Burgers vector and the tangent to the dislocation. Only glide of the dislocation, not
climb, is considered. The results obtained are compared with those for elastically isotropic crystals. It is
found that the character of the dislocation shape is altered considerably if E+d?E/d6? can be negative. It is
suggested that the change in sign of this quantity is associated with diffusionless phase changes.

I. INTRODUCTION

N this paper, anisotropic elasticity theory is used to
study the interaction of dislocations with an ex-
ternally applied stress in a single crystal.

In Sec. II, the self-energy of a dislocation is con-
sidered. The results of a method for calculating the
elastic energy per unit length of a long straight disloca-
tion! are given. The other contributions to the self-
energy of an arbitrarily shaped dislocation are also
discussed briefly.

The equilibrium of a single pinned dislocation seg-
ment under an applied stress is studied in Sec. III.
The differential equation for the shape of the deformed
dislocation is derived and it is shown how the solution
depends on the self-energy function.

A comparison is made between the results obtained
in this paper and those obtained when isotropic elas-
ticity theory is used. The type of self-energy function
found for some of the various crystal types is discussed.
In addition, some experimental evidence linking dis-
location behavior with diffusionless phase changes is
presented.

II. SELF-ENERGY OF A DISLOCATION
A. Introductory Remarks

It is desired to obtain an expression for the self-
energy of an arbitrarily shaped dislocation in an aniso-
tropic crystal. Since this is a very general problem,
attention is first focused on the elastic energy of a
straight dislocation. Even for this simpler problem an
analytic solution does not exist for an arbitrary orienta-
tion of the dislocation in an anisotropic crystal, but a
numerical solution can be obtained for any particular
orientation. In what follows a number of special cases
are considered where the Burgers vector is fixed and
the dislocation is confined to a certain plane in the
crystal. For these cases, numerical results are used to
obtain a function which approximately gives the de-
pendence of the elastic energy per unit length on the

* This paper is based on a dissertation submitted by G. deWit
in partial fulfilment of the requirements for the Ph.D. degree at
the University of Illinois. The work was supported in part by the

Office of Naval Research.
1 A. J. E. Foreman, Acta Met. 3, 322 (1955).

dislocation orientation for a straight dislocation. This is
then employed as an approximation to the total self-
energy per unit length of a curved dislocation.

B. Elastic Energy of a Long Straight Dislocation

Foreman' shows that in an elastically anisotropic
crystal, E, the elastic energy per unit length of a long
straight dislocation, is given by

E=[0/4x J[In(R/ro) LK ], ¢y

where & is the magnitude of the Burgers vector, R has
the dimensions of the crystal if there is only one dis-
location in the crystal, 7 is the radius of the dislocation
core, and K is a function of the elastic constants of the
crystal and the orientation with respect to the crystal
axes of both the Burgers vector and the dislocation.
For an isotropic crystal, K can be expressed as a func-
tion of the angle § between the Burgers vector and the
dislocation as follows:

K=[3u/(1—»)JL(2—»)—» cos2f], 2

where u is the shear modulus and » is Poisson’s ratio.
For an arbitrary orientation of the dislocation in an
anisotropic crystal, K must be found numerically.

Later in this paper it will be useful to know how
K varies when the Burgers vector remains fixed and
the dislocation changes its direction on a particular
plane. For this case, the orientation of the dislocation
in the crystal is determined if 6 is specified, and thus K
can be represented by the series

K=Y [a,cosnd+B., sinnd ],

n=0

)

where @, and B, are functions only of the elastic con-
stants of the crystal, not of 6.

Values of K for various values of § have been found
numerically, using experimentally determined elastic
constants, for each of the materials Cu, Pb, and Li. The
results are summarized in Table I. For Cu and Pb,
which are face-centered cubic crystals, the calculations
were carried out for the Burgers vector along a (110)
direction and the dislocation in a (111) plane, while for
body-centered cubic Li, the calculations were carried
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TasiE I. Summary of numerical calculations of K.

2Cq4 Direction of
- Type of slip Burgers
Crystal Temp. Cu® Cro2 Cas® (C11—C12) Source for Cij plane vector
Cu Room 17.10 12.39 7.56 3.21 LazarusP (111) (110)
Pb Room 4.76 4.03 1.44 3.95 Goens and Weerts® (111) (110)
Li 78°K 1.48 1.25 1.08 9.31 Nash and Smithd (110) (111)
Pb Cu Li
‘] Ka ] K ] K
0 0.725 0 4.21 —/2 0.712
w/12 0.798 /6 5.19 —2ye 0.663
/6 0.958 /3 6.74 —y 0.481
w/4 1.142 /2 7.45 0 0.241
/3 1.326 w/2—2y 0.363
Sw/12 1.444 w/3—y 0.421
/2 1.479 2 0.539
T/2—y 0.699
T—3Y 0.724
27/3—y 0.719
/2 0.712
& K and C;; are in units of 10! dynes/cm?2,
b D. Lazarus, Phys. Rev. 76, 545 (1949).
¢ E. Goens and I. Weerts, Physik. Z. 37, 321 (1936).
d H. C. Nash and C. S. Smith, J. Phys. Chem. Solids 9, 113 (1959).
ey =sin"1(1/V3).
out for the Burgers vector along a (111) direction and Cu

the dislocation in a (110) plane. These values of K were
then used to obtain the coefficients in a truncated form
of (3), as follows:

8.0
7.0
6.0
Q.9
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F1c. 1. Results of numerical calculations of K (in units
of 101 dynes/cm?) as a function of 6.

K=(5.93—1.60 cos26—0.08 cos4d
—0.02 cos66-+0.01 cos86) X 10 dynes/cm?,
Pb
K=(1.128—0.374 cos26—0.020 cos44
—0.030 cos66—0.006 cos86) X 10" dynes/cm?,
Li
K=(0.534—0.226 c0s26—0.057 cos4—0.010 cos6d
+0.044 sin26—0.014 sin46—0.008 sin66)
X 10" dynes/cm?.  (4)
These curves are shown in Fig. 1, together with the
values of K from Table I. The calculations also show

that for a {111} slip plane and a (110) Burgers vector
in any cubic crystal, the following is true

()

while for a {110} slip plane and a (111) Burgers vector
in any cubic crystal, these relations hold:

azn1=0, B,=0,

Ol2n+1=0, 182,,4_1:0. (6)
C. Some Other Contributions to the Self-Energy
of a Dislocation

In the above, some relationships have been presented
which give E, the elastic energy per unit length of a long
straight dislocation. Equation (1) summarizes the re-
sults of Foreman and shows how E is related to K,
which gives the orientation dependence. Equations (5)
and (6) show what general form K takes when con-
sideration is restricted to a particular direction of & and
a particular slip plane. Equation (4) gives K by means
of numerical coefficients calculated for particular
crystals.



DISLOCATION INTERACTIONS IN ANISOTROPIC CRYSTALS

According to Nabarro,? if there are many dislocations
in the crystal, R should be taken as the average distance
to the nearest dislocation of opposite sign. This effec-
tively cuts off the integration of the energy density at R.

In what follows, (1) is used to approximate the
energy of a curved dislocation. According to Friedel?
at distances closer to the curve than the radius of
curvature, the stresses, and thus the energy density,
are much the same as those of a straight dislocation.
Thus if the radius of curvature of the dislocation line
is larger than the distance between dislocations, there
will be little trouble with the approximation. Some
measure of the error can be obtained by considering a
simple example for the case where trouble might begin,
i.e., where the radius of curvature is equal to the
values used for R. If the exact expression for the energy
of a circular dislocation or radius R in an isotropic
crystal is compared with the result obtained from (1),
the error is about 69 if the distance between disloca-
tions-is 1073 cm and the core radius is 5X 108 cm.

One more qualification must be mentioned before (1)
can be used to represent the self-energy of an arbitrary
dislocation segment. This expression does not include
the core energy, that is, the energy associated with that
part of the crystal closer to the dislocation than 7.
Within the core, linear elasticity theory does not apply,
and more detailied information about atom to atom
interactions is needed.

III. EQUILIBRIUM OF A PINNED DISLOCATION
SUBJECT TO AN APPLIED STRESS

A. Statement of the Problem

There is considerable interest in the problem of
what happens when a stress is applied to a segment of
dislocation between two pinning points. The Frank-
Read* source is based on such a situation. Therefore,
the work that follows considers the differential equation
of equilibrium of such a dislocation segment for the
case of a uniform applied stress. The solution of this
differential equation gives information about the equilib-
rium shape of the dislocation and also about the “critical
stress” above which no equilibrium is possible.

B. Derivation of the Differential Equation
of Equilibrium

If a stress is applied to a crystal, a dislocation in the
crystal will be subject to a force, and a segment between
two pinning points will tend to bow out. Since the
external stress will do work on the dislocation, there will
be an interaction energy. The self-energy will also
change as the dislocation bows out, and the equilibrium
will be determined by minimizing the total energy.
This paper will consider the motion of the dislocation

2 F. R. N. Nabarro, Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd., London, 1952), Vol. 1, p. 335.

3J. Friedel, Les Dislocations (Gauthier-Villars, Paris, 1956),

pp. 20-23.
4F. C. Frank and W. T. Read, Phys. Rev. 79, 722 (1950).
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only in its slip plane, and when it is necessary to be
more specific, the observed slip planes in the face-
centered cubic and body-centered cubic crystals will
be used.

Let the x~y plane be the slip plane and the Burgers
vector be along the x axis. With no external stress, the
dislocation segment lies along the line

y=u« tanfo.
The equilibrium shape of the segment when there is a
constant applied stress may be taken as the curve
a=x(u), y=y(u), ™
where # is a parameter which increases in the positive
sense of the dislocation. The curve must pass through
the pinning points
X (’l/t1) = 0,
x(us) =1 cosbo,

y (Ml) = O:
v (ug) =1 sinfy. ®

See Fig. 2. The problem is to find the functions referred
to in (7).

In order to derive the differential equation which
the curve x versus y, (7), must satisfy, a slight modifica-
tion of the methods of the variational calculus will be
used. Consider that the dislocation moves from

a=x(u), y=y(u), ©)
x=wx(u)+ox(u), y=y(u)+oy(u),
where 6x and &y are small, and

0 (u1) =8y (u1) =0, dx(us) =05y (u2)=0.

to

Otherwise 6x and &y are arbitrary. If F is the force per
unit length due to the external stress, it will do work

W p= f [Fp5x+F0y]ds(u),
u1

where ds is the element of length, and F, and F, are
components of F. In order for (7) to represent the
equilibrium position of the dislocation, Wr must be

x=x(u)
/y-y(u)

u=up

b

u=y,

FiG. 2. An illustration of the quantities
used in the equilibrium problem.
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balanced by the change in the self-energy

2
aws=af Lds(u), (10)
ul .

where E is given by (1), and the change in the functional
J Eds is evaluated according to the usual variational

procedures. Thus
SWr—o6W s=0. (11)

In order to evaluate 6Wp it is necessary to know
the force acting on a dislocation due to an applied stress.
From Peach and Koehler,5 this is given by

F=—vX(a'b), (12)

where F is the force per unit length of dislocation, v is
the unit vector tangent to the dislocation in the positive
sense of the dislocation, ¢ is the stress dyadic, and b is
the Burgers vector of the dislocation. According to (7),
the dislocation is confined to the x-y plane, its slip
plane, and thus it would be inconsistent to consider a
force which would tend to cause climb (motion per-
pendicular to the slip plane). Examination of (12)
shows that only ¢.. causes a force in the x-y plane.
Thus, in what follows only o, is considered, and the
results are valid whenever ¢, and ¢,, vanish or when-
ever climb is difficult. If Eq. (9) is used to evaluate v
and ds, W r becomes

u2
5WF=Gzzbf [—9y'0x+'6y ]du, (13)
u1

where
¥ =dx/du, y'=dy/du.

In order to evaluate 6Wg it is necessary to note that
E is a function of . Since 8 is completely defined by
(see Fig. 2)

sing=y'/[ (+")*+ ()" ]}, (14)
cost=x'/L (&'} + (/)12

Ve

Pb: A{Il} SUP PLANE, A (110> BURGERS VECTOR
Xty g-g 02 [1128- 0374cos26- 0020c0848
e -0.003 Cos68-0.006Cos 80] X 10" T
Yy
mox Cu: A{i} SLIP PLANE, A CI10> BURGERS VECTOR
2
X4, €% ik [5.93-160 cos 26-0.08 Cos 46
. ~0.02 Cos 66+0.01 Cos 86] X 10"
7
Ymax Isotropy wv=l/jg
[
s—In -
) bt
v/
Ymax NaCl: A {I10} SLIP PLANE, A<II0) BURGERS VECTOR
2, R ; ev
E=goIn 4-{0:454-0.061 Cos 26] Tromic~
_69— x/v"‘“ ar "[ ]dls!ouwé;l
[hom Huntington, Dickey,

and Thomsom (1955) ]
YA
Ymax Isotropy V=2
“ 2 (not physically possible)
g ‘V X g0 f [2""‘0“28]

Fi16. 3. X versus ¥ for specific examples of 2,0 as, cos2n6.
5 M. Peach and J. S. Koehler, Phys. Rev. 80, 436 (1950).
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for the purposes of (10), E can be taken as
E=E@0)=E®@y').

In (14), the fractional exponent indicates the positive
square root of the quantity in parentheses. By the
standard methods of variational calculus, W g becomes,
using the above

oW 5= f " Gl [T dF o du ]+ oy TLdF /),

where
F=[E(,y") (=) (¥')2]}

15
Fo=0F/dx', F,=0F/dy. (15)

If the equilibrium condition (11) is to be satisfied for
arbitrary éx and 8y, then from (13) and (15), the
following must be true:

dF y/du—0c,:by'=0, dFy,/du+to..02'=0. (16)
Under equilibrium, the segment of the dislocation
between the two pinning points must follow a curve
which satisfies the differential equations (16). However,
there may be other curves, or other parts of one curve
which satisfy (16) but do not represent the shape of
the dislocation. Therefore, in the following, the general
solution of the differential equation is examined first.
Then the part of the solution which represents the
bowed out dislocation is determined.

C. General Solution of the Differential
Equation of Equilibrium

Equations (16) can immediately be integrated to
yield
Fp—0.0(y—C1)=0, F,+0,.0(x—Cy)=0.

By using (14), it is‘easy to verify that the following
satisfies the above equations

Ci+Y=y=C1+(0:.0)"

S {[cost [ E(0) ]~ [sind ][dE/d6 T},
CotX=5=Co— (0:0)"

X{[sin6JCE@B) 1+ [cosdI[dE/d6]}.

It should be noted that a change in the magnitude of
the applied stress o, has no effect on the curve X
versus ¥ other than a change of scale. A change in the
sign of ¢,, reflects the curve through the origin.

It will be recalled that in order to derive the differ-
ential equation and its solution, (17), it was not neces-
sary to assign any properties to the self-energy per unit
length E, other than that it was a function of § which
could be differentiated. The curve cannot be plotted, of
course, until more is said about the properties of this
function E(6). _

In Fig. 3, X versus Y is plotted using the relations
for E found previously for Pb and Cu. The isotropic
case is also plotted in Fig. 3, using »=% and »=2%. The
latter is physically unrealizable since » has an upper
bound of 3. The calculations of Huntington, Dickey,

an
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E+d®E/d6°>0 —

E+d’E/d8<0 —

NP7
F16. 4. (a) Feature which will occur on curve X versus ¥ when

E+-d?E/d#*<0 over some range of 6. (b) X versus ¥ for a {110}
plane in Li with Burgers vector along a [111] direction.

X (b

and Thomson® show that for NaCl also, the energy E
can be represented by a cosine series. Their results have
been used to obtain the curve of X versus ¥ shown in
Fig. 3. In Fig. 4, the curve is plotted using the function
E(6) calculated for Li.

It is possible to obtain information about the curve
X versus ¥ even if all the characteristics of the function
E(f) are not known. This can be done by determining
where X and Y, as given by (17), and dX/d6 and d¥V/db,
as given below, are positive, negative, and zero.

dX /do= — (cosb) (bo ) L (E+d2E/dB?),
dY /do= — (sinf) (bo..) (E+d*E/dp?).
Table IT lists the properties of X versus ¥ which result
if certain properties are assigned to E(f). For disloca-
tions in the observed slip systems of face-centered cubic

crystals (a {111} slip plane and a (110) Burgers vector),
E is given by

(18)

E=Y" a3, cos2nb,

according to (5). In this case the curve X versus ¥ will
be symmetric with respect to the X and ¥ axes, and
thus will have the general characteristics of the first
four curves in Fig. 3, provided that

E+@E/d>>0, (19)
_for all 4. For dislocations in the observed slip systems
of the body-centered cubic crystals (a {110} slip plane
and a (111) Burgers vector), E is given by

E=3" (as, cos2n0+ Bz, sin2uf),

TasiE II. Dependence of X versus ¥ on the function E(8).

Property of E(68)

E(6+27)=E(6)
E(6+m)=E®)

E(nm—0)=E(6)
7 an integer

E+d?E/de*>0
for all 6

Resulting property of X versus ¥

Closed curve

Curve symmetric with respect
to origin

Curve symmetric with respect
to X and Y axes

Curve has no cusps and does
not cross itself

(1;£;1ntington, Dickey, and Thomson, Phys. Rev. 100, 1117
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according to (6). In this case the curve X versus ¥ will
not be symmetric with respect to the X and ¥ axes, but
will be symmetric with respect to the origin. If (19) is
not satisfied, i.e., if

E+dE/dg*<0, (20)

for some range of 6, then the curve will have a “handle”
as shown in the last curve in Fig. 3 and in Fig. 4.

D. Shape of Dislocation

The curve X versus ¥ is the solution to the differential
equations of equilibrium derived previously. What
must still be done is to determine what part of this
curve represents the bowed out dislocation. To do this,
the constants of integration must be determined so
that the curve passes through the fixed points of the
dislocation given by (8). It is not in general possible to
obtain explicit expressions for these constants, but many
of the properties of the bowed out dislocations can be
found. It will also be useful to inquire about the direc-
tion of increase of the parameter #, since this determines
the positive sense of the dislocation.

The discussion will first be confined to those cases
for which

E+d@E/d®?>0 for all 6.

The illustrations will be drawn using a solution of the
type found for the face-centered cubic crystals, but the
reader should have no difficulty in applying the remarks
to other cases.

The direction in which the dislocation will tend to
bow out is determined by the direction of the force as
given in (12). Figure 5 shows that there are two portions
of the curve X versus ¥ which might represent the dis-
location, and compares them as ¢,,— 0, for the case
that ¢,.>0. The positive sense of the dislocation is

y
=7 X _) X

y
<. 7z
- x

AOZ2—-pmMuOMmMO

Xz

«<

Fic. 5. Comparison of two possible dislocation shapes as oz; — 0.
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Small o,

Critical o,

F16. 6. Effect of increasing ..

away from the x-y origin. From (17), it is seen that the
curve X versus ¥ does not change in shape, but only in
scale. As o,,— 0, the curve X versus ¥ becomes larger
and larger. The case shown on the left in Fig. 5, i.e., the
case where the dislocation is represented by the smaller
portion of the closed curve, reduces to the original
straight line segment as o,.— 0. The other case ap-
proaches a bowed out dislocation of infinite extent.
Another way to express this is that the case where the
dislocation is represented by the smaller portion of
the closed curve gives the shape which the dislocation
would assume if o,, is gradually increased from zero.
Only this case is considered in what follows.

The shape of the bowed out dislocation can now be
examined as a function of ¢, the length / of the original
segment, and the angle 6, between the original segment
and the Burgers vector. In doing this, only ¢,,>0 will
be considered.

As o, increases, the curve X versus Y becomes
smaller, as shown in Fig. 6. In the last illustration in
Fig. 6 the line which represents the original dislocation
passes through the center of the curve X versus ¥, and
thus the two cases shown in Fig. 5 would coincide. It is
easy to see that if o,, were increased any more, and
thus if the curve X versus ¥ became any smaller, it
would not be possible for the curve to pass through
the two fixed points of the dislocation. Thus this value
of o4., which will be referred to as the critical stress, is
the largest for which there will be an equilibrium posi-
tion for the bowed out dislocation.

The critical stress depends, of course, on the length /
of the original dislocations segment and the angle 6,
between it and the Burgers vector. Figure 7 shows
several dislocation segments with the same I, but
different 6o, each under critical stress. The fact that the
intercepts of the closed curve with the X and ¥V axes
are inversely proportional to ., [see (17)] gives some
idea of the dependence of the critical stress on 6q.

It is also interesting to examine how the shape of the
dislocation varies when 6y changes, but ¢,, and / are
constant. This is shown in Fig. 8.

pEWIT AND J. S.

KOEHLER

Consideration will next be given to the case where
(20) is satisfied for some range of 6. The solution to the
differential equation, X wersus ¥V, will thus have a
handle as shown in the last part of Fig. 3 and in Fig. 4.

The first comment which should be made concerning
this case is that the curve X versus Y is of a much more
complex character than those previously considered.
There is some doubt as to the validity of the results in
this case, since (1) may not represent the self-energy
accurately enough.

Some care must be used in drawing the curve repre-
senting the dislocation when E-4d?E/d6? goes negative.
To see what happens substitute from (14) for sinf and
cosf in (18). Both equations become:

= — (boze) (E+E/d6?) (d6/du)[ ()4 (y')* 1.

Since the positive square root is required, this equation
can only be satisfied if:

(b0 22) " (E+d*E/d6?)db/du<0.

Hence the sign of df/du is determined once the signs of
oz and (E+d2E/df?) are given.

Figure 9(a) shows the direction of increase of # near
a handle. It will be noted that if 6, is outside the range
where (20) is satisfied, then there is nothing particu-
larly unusual about the shape of the bowed out dis-
location. This is shown in Fig. 9(b). If 6, is in the range
where (20) is satisfied, there are three possibilities for
the shape of the dislocation which preserve the positive
sense of the dislocation, as shown in Fig. 9(c). Each
of these possibilities has some unusual aspects. The two
possibilities shown to the left of Fig. 9(c) show the dis-
location bowing out against the applied force instead
of in the direction of the applied force. The two possi-
bilities shown on the right of Fig. 9(c) would reduce
to a bent line segment instead of a straight line segment
as g, — 0.

The next consideration is whether this case ever
occurs in real crystals, and if so, when does it occur.

y
H\ .
Ib\i/x * //b ?‘ / X

Distance beétween pinning
points is constant

6, varies
X ond Y intercepts y
Y proportional to —‘;I;-E Y

/ /
/
/\ «
/
/ % :
/ b .

F1c. 7. Several dislocations subject to critical stress.

X

5/
X

b

-
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F1c. 8. Effect of changing angle between initial dislocation
segment and Burgers vector for constant o5, and /.

For the isotropic form of E(6), [see (2)], the relation
given in (20) can be satisfied only if »>%. This is
ordinarily not considered possible, since a sample of
such a material would expand under pressure.? It might
be expected that there would be some corresponding
limit for anisotropic crystals. For Cu and Pb, the rela-
tion in (20) evidently is not satisfied since there are no
handles on the curves shown in Fig. 3. However, Li has
a handle at 78°K, as shown in Fig. 4.

IV. FINAL REMARKS
A. Summary

Before proceeding further, the results obtained for
the problem of the equilibrium of a pinned dislocation
subject to an applied stress will be reviewed.

A simpler treatment of this problem is often given
which assumes a constant self-energy per unit length.
The results thus obtained is that the dislocation assumes
the shape of a segment of a circle. It is easily seen from
(17) that the solution to the differential equation of
equilibrium obtained in this paper (X versus V) reduces
to a circle if dE/d6=0. However, Fig. 3 shows that
even the simple isotropic case (with »=%) yields a curve
significantly different than a circle.

When E takes the form > as, cos2u, the curve X
versus ¥ has the same symmetry as for the isotropic
case. However, for Pb and Cu there is a greater relative
difference between the X and Y intercepts, and so it
might be said that these crystals have a “less circular”
solution. But for NaCl, Fig. 3 shows that the X and ¥V
intercepts are more nearly equal than in the isotropic
case. It is interesting to note that the anisotropy factor,
2C s/ (C11—Chr2), is greater than unity for Pb and Cu
and less than unity for NaCl. This factor is greater than
unity for metals and usually less than unity for alkali
halides.

The body-centered cubic case has different symmetry

7A. E. H. Love, A Treatise on the Mathematical Theory of
Elasticity (Dover Publications, New York, 1944), fourth edition,
04.

p. 104
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properties and so is not only quantitatively but also
qualitatively different from the isotropic case, and is
also quite different from the case E=constant.

It has been shown that the critical stress and the
shape of the bowed out dislocation are functions of 6y,
the angle between the Burgers vector and the original
dislocation segment (see Figs. 7 and 8).

B. A Look Ahead

In this section, a possible generalization of the results -
of this paper will be presented, for the case that
E+-d?E/d6? is negative for some range of 6. Then a sug-
gestion will be made about what physical phenomena
may be associated with the peculiar aspects of the solu-
tion in this case.

First, the following general ideas are suggested by
the specific results of this paper:

If A>>1, where

A =anisotropy factor=2Cy/(C11—C1s),

then E+d?E/d* approaches zero or becomes negative
for some values of 6.

If E+d?E/d?<0, then the dislocation segment will
be bent lines even for zero applied stress.

Each of the above possibilities will be discussed
below.

The real crystals considered in this paper are, in
order of increasing A: NaCl, Cu, Pb, and Li. If the
approximate numerical expressions for E(6) for these
crystals are examined [see (4) and Figs. 1 and 3], it is
found that, for the first three examples, E+d2E/d6?
near 6=w/2 is closer to zero for the crystals with
higher A. For Li there is a region where E+4d?E/d6? is
negative. Thus, at least for these ‘specific examples,

) ~
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{b) Bowed-out Dlslocahon Whan[mde/dejs 8,70
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(¢) Possible Shape of Bowed- Out Dislocation
When  [€ +d'E/dgg <O

T1G. 9. Some aspects of the solution when E-+-d?E/d6? changes sign.
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E4-d?E/d@* is positive unless 4, the anisotropy factor,
is large.

The shape of the bowed out dislocation when
E4-d?E/d6*<0 is shown in Fig. 9(c). If the two possi-
bilities to the left are ruled out because the dislocation
has not moved in the direction of the applied force, then
the remaining solution has a cusp. As the applied stress
approaches zero, the solution becomes a bent line
segment instead of a straight line segment. If (1) is
used to evaluate the energy of this bent line segment,
it is less than the energy of the straight line joining the
two pinning points. Thus, it is possible that, when
E+d*E/d?<0, a straight dislocation segment will be
unstable and will assume the shape of a bent line
segment.

Second, what physical phenomena are associated with
the anomalous shapes? We would like to suggest that
diffusionless phase changes are associated with situations
in which anomalous shapes can be produced by chang-
ing some physical parameter such as the temperature
or pressure. Consider the following experimental
findings:

Nash and Smith® and Quimby and Siegel® measured
the elastic constants of lithium and of sodium, respec-
tively. Their results are shown in Table III. If the
generalizations presented in the preceding paragraphs
are valid, then from the dislocation calculations one
would predict the onset of instability as T is decreased.
Moreover, one would expect instability at a higher
temperature in lithium than in sodium.

Barrett® has observed a phase transformation in

8H. C. Nash and C. S. Smith, J. Phys. Chem. Solids (to be
published).

9S. L. Quimby and S. Siegel, Phys. Rev. 54, 293 (1938).

1 C. S. Barrett, Phase Transformations in Solids (John Wiley &
Sons, Inc., New York, 1951), p. 343.
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Tasre III. Elastic constants of sodium and lithium

A =2C44/(C11 —~C12)

T Li Na
78°K 9.24 8.20
150°K 7.98
155°K 8.98
195°K 8.85
200°K 7.60

lithium when this material is cooled below 70°K. The
body-centered cubic crystal changes to a very imperfect
hexagonal or face-centered cubic crystal. Barrett also
found that the transformation occurs at higher tem-
peratures in plastically deformed specimens. This seems
reasonable if dislocations are involved. Barrett!! has
recently observed a similar behavior in sodium, how-
ever, the transformation temperature is 36°K or lower.
This is in accordance with the lower anisotropy of
sodium.

Cobalt zirconium and thallium® show similar trans-
formations going from hexagonal close packed at room
temperature to face-centered cubic at high temperature.
At present not enough elastic constant data are avail-
able; nor has a dislocation calculation been carried
through for hexagonal crystals.

Gold cadmium alloys® with about 509, cadium are
body-centered cubic at high temperature and undergo
a phase transformation near room temperature. Again
the elastic anisotropy is about ten and increases as the
temperature decreases.’*3 brass shows similar behavior.!s

A final theoretical suggestion might be made con-
cerning a possible dislocation arrangement for a solid
in which (E+d2E/d6?) is negative over a portion of the
values of §. It is possible that the following arrangement
is adopted (see Fig. 10). This has the advantage that
none of the portion having (E4d2E/d6%) negative is
used. The arrangement is unusual in that it extends
over a large distance, but perhaps that is a useful
property if one is concerned with phase changes.

11 C, S. Barrett, J. Inst. Metals 84, 43 (1955).

2 C. S. Barrett, Structure of Metals (McGraw-Hill Book
Company, New York, 1952), second edition, p. 557.

B L. C. Chang and T. A. Read, J. Metals 3, 47 (1951); L. C.
Chang and T. A. Read, Acta Cryst. 4, 320 (1951); L. C. Chang
and T. A. Read, J. Appl. Phys. 22, 525 (1951).

14 A, Zirinsky, Acta Met. 4, 164 (1956).

15 See D. Lazarus [Phys. Rev. 76, 545 (1949)] for elastic con-
stants. A. B. Greninger and V. G. Mooradian, Trans. Am. Inst.
Mining Met. Engrs. 128, 337 (1938), have observed a transforma-
tion in a 62.5%, zinc alloy.



