
THERMOLUMI NESCF NCE OF COLORED NaCl CRYSTALS

from the energies of the emitted light which are about
2.5—3.5 ev, while direct recombination of a free hole, for
example, with an electron in an Ii center should result
in the emission of about 6 ev.

Finally, mention should be made of the appearance
in pairs of the spectral bands in the thermolumi-

nescence. The three pairs: 0.354—0.37, 0.41—0.435, and
0.47—0.50 p, observed in the present work seem to have
a common energy difference of about 0.16ev within each

pairs. More accurate determination of these separations
is necessary before the existence of such a doublet is
confirmed. It is of interest to note that a doublet of
about 0.15-ev separation has been observed" in the
exciton-band of NaCl.

The investigation is now extended in our laboratory
to include other alkali-halides with the hope that it will

lead to better understanding of the effects described.
'~ P. I . Hartman, Phys. Rev. 105) 123 (1957}.
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Orbach's integral equation which leads to the value of the ground-state energy of an anisotropic antiferro-
magnetic linear chain of spins, S=~„has been solved. The result is then expanded in powers of the anisotropy
parameter. In this form it corresponds to the result of a perturbation calculation, the transverse part of
the Hamiltonian being the perturbation. The rapid convergence of the energy series even for the isotropic
case and the adequate convergence of that for the short range order, suggests that the result given by
perturbation theory for the sublattice magnetization may also be satisfactory.

~ RBACH' has recently considered the antiferro-
magnetic linear chain with an Ising type of anisot-

ropy. The Hamiltonian of the system is taken to be, for
a chain of Ã spins with S=-'„

&=2J Q (S;*S;+i*+p(S,'S~i*+Sps;+is))

=2J 2 (S'*S'+i'+(p/2) (S'+S'+i +S.=S~l+)),

1&i&X.

If E is the ground-state energy and a quantity e is
defined by

e= —(1/2J) (E——,'JE),
Orbach shows that

p2m'

(1—P cosk)A (k)dk,
2~p

We define X by the relation p= sech', with 'A) 0, in-
troduce an angle f related to k by the equation

and replace A (k) by B(P), where

BQ ) (e'&—e") (e'& —e ")=A (k).

The integral equation (3) becomes

B(~) = Lir (e'&—e") (e'&—e—"))—'

esx e
—sx ps+ esigB(y~)@~

(e A+if' ex+if)—(e %~i' ex+if')—

and has a solution in the form of a series of powers of
e'&. The expression for B(P) is

1 2 +oo

B(4)= ——
a e"—e—"— cosh~m+1~P

where A (k) is a solution of the integral equation

)2w
A (k) =——, igk'

2' p

or
1 cosiit —cosh'+~ e' &

A(~)=-
2s sinh)I, —~ cosh'(1—p cosk')A (k')

X (3)
1—P (cosk+ cosk')+P' cosL(k+ k')/2 j When this form is introduced into (2) the ground-state

This equation he solved numerically. By a suitable energy is found to be give»y
change of variables (3) may be solved by a Fourier
expansion. Z=m —;-tanh)

) 1+P
' R. Orbach, Phys. Rev. 112, 309 (1958). i e'""+1)
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For the isotropic case, X=O, p=1, this reduces to the
well-known value found by Hulthen. It is interesting to
note that according to (4) p cannot exceed unity, since
E considered as a function of P has a pole in every in-
terval, however small, of the open segments,

I p I
)1.

It is instructive to consider the expansion of Eq. (4)
in powers of p, since this corresponds to a perturbation
calculation of the energy in which the transverse part
of the Hamiltonian is the perturbation. ' The expansion
is given by - (»'-
E/&~=l (1—p')—2 I

—
I~ (2j

(2m) ~ (2m )
&& I I+4K I

~=i (m+p)

where p„ is the difference between the number of odd
and of even divisors of p. The first few terms are

E/1VJ= —i —iP'+ iP' —(1/128)Po —(1/256) P'o

—(1/1024)P"+ (1/4096) P"+ . (5)

This series represents E excellently even at P=1, pre-
sumably in an asymptotic sense. The convergence rests
upon the factor of —,

' which precedes the transverse terms.
The series, however, is markedly "noisy"; no obvious
regularity being apparent in the signs, for example.
This can be attributed to fluctuations in the summation
over the relatively small number of processes contribu-
ting to a given order in perturbation theory. Equation
(5) has been checked by a direct perturbation calcula-

' Such perturbation calculations have been made to estimate
the ground-state sublattice magnetization of MnF2. See V. Jac-
carino and L. R. Walker (to be published).

tion up to and including sixth order terms. The asso-
ciated series for the short range order is found to be

—(4/») (2' 5''*5''~-i')

= 1—P'+ —'P4 —(14/128)P' —(l8/256) P"
—(22/1024)P" + (26/4096)P'4 . (6)

This has poorer convergence than (5), but gives an
adequate representation at P = 1.The latter fact suggests
that perturbation theory may give a good value for the
sublattice magnetization, P; 5,'. It is diflicult to obtain
any such measure of long range order from Orbach's
exact solution. Up to the sixth order one finds

(2/N) (Q, 5,')= 1—P' —-',P' ——,',P'+

If the higher order terms fell oG in roughly the same
way as those of (6) it would appear that the long range
order vanishes when P' is more than about 0.8. The
exact ground-state wave function would lead to a van-
ishing value, since it must be impartial between the
up and down orientations of the sublattices. However,
it was pointed out by Anderson' that the system will
take a very long time (perhaps years) to migrate from
a configuration with one preferred orientation of the
sublattices to one in which they are inverted. It seems
probable that the sublattice magnetization calculated
from perturbation theory will correspond to what might
be measured experimentally.
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