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Energy Dependence of Fission Fragment Anisotropy*I
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The dependence on energy of the anisotropy of fission fragment emission is discussed in terms of the Bohr
model. It is shown that reasonable assumptions about the spectrum of excited states at the barrier lead to
results consistent with the currently available data for energies up to 10 Mev and for a variety of target
nuclides, except for the fact that the target spin appears to have a much smaller effect on the anisotropy
than might have been predicted. It is suggested that this anomaly may be understood in terms of the de-
formation of the target nucleus.

I. INTRODUCTION
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OME implications of Bohr's theory of fission
fragment anisotropy' are analyzed especially as

regards energy dependence. Section II summarizes some
of the ideas of Bohr and their application to anisotropy
in photo6ssion and neutron-induced fission, and outlines
the general qualitative features of the dependence of
anisotropy on energy.

It is shown that one must expect the anisotropy to
increase at the energy where each new (rs, xmas'f) process
becomes energetically possible and to decrease until
the next threshold is reached. The amplitude of such
increases will depend chief on the proportion of
(rs, xmas'f) processes relative to the total number of
fissions. The eR'ect on anisotropy of the staggering of
the diGerence between the fission threshold and the
neutron binding energy from even-even to even-odd
nuclides is discussed. In Sec. III, parameters inferred
from the anisotropy of Pu'" fission are shown to give
a satisfactory account of the anisotropy of U 3, U
and Th'". These estimates involve various approxi-
mations and are not to be considered precise. Still, they
establish the fact that reasonable assumptions about
the barrier spectrum are capable of yielding theoretical
anisotropies in agreement with the currently available
data. In Sec. IV, the results are discussed and the
conclusion drawn that the theory does give a reasonably
good description of the experimental facts, apart from
the expected, but unobserved, eR'ect of target spin.

II. FISSION AND THE EXCITATION SPECTRUM
AT THE BARRIER

Bohr' has discussed the anisotropy observed in
fission fragment emission in terms of the excitation
spectrum at the fission barrier. He points out that for
excitation energies E~ only slightly in excess of the
lowest fission barrier energy EI", the nucleus at the
barrier is "cold,"having expended most of its available
energy in potential energy of deformation in reaching

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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'A. Bohr, Proceedings of the International Conference on the
Peaceful Uses of Atomic Energy, Geneva, 1955 (United Nations,
New York, 1956), Vol. 2, p. 151.
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the barrier. Since a nucleus at the barrier is strongly
deformed, its spectrum should resemble those of stably
deformed nuclei at an excitation energy E, ,=E*—Ep.
The assumed "spectrum" at the barrier is at best
quasi-stationary, and, in fact, the notion of such a
spectrum is an accurate one only if the nucleus remains
at the barrier for a time long compared with the periods
of the excitations in question. However, Strutinskii
has shown that an expression of the same form as that
obtained by Bohr may be derived without the explicit
assumption that the spectrum is quasi-stationary.

Bohr assumes that the nucleus retains axial sym-
metry throughout the fission process, and that the
fragments are emitted in the direction of the nuclear
symmetry axis. The distribution of orientations of the
symmetry axis then gives the angular distribution of
the fragments. For a compound state of angular
momentum I, and Z component (along the beam) M,
which traverses the barrier in a state of intrinsic
excitation with component E of angular momentum
along the symmetry axis, the distribution is given
simply by the square of the symmetric top wave
function:

~(t))" ID:~r(e) ~s

1. Photofission of Even-Even Targets

(a) DiPole

The photofission of even-even nuclei (which have
spin zero) is an especially simple case to analyze in
these terms. If the photon is absorbed in the electric
dipole mode, the compound state has I=1, 3f=&1.
Moreover, in an even-even nucleus, low-lying states are
characterized by the pairing of nucleons to states with
E=O. More specifically, low-lying 1—states with E=O
have been observed in the spectra of deformed nuclei, '
and have been associated with a collective asymmetric
shape vibration. '' ' For photofission through such a

2 V. M. Strutinskii, J. Exptl. Theoret. Phys. (U.S.S.R.) 30,
606 (1956) Ltranslation: Soviet Phys. JETP 3, 638 (1956)7.

Stephens, Asaro, and Perlman, Phys. Rev. 96, 1568 (1954);
100, 1543 (1955).

4 V. M. Strutinskii, Atomnya Energy 4, 611 (1956) t
translation:

Soviet J. Atomic Energy 4, 150 (1956)).
5 D. R. Inglis, Phys. Rev. 108, 774 (1957).' L. Wilets and J. GriAin (to be published).
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energies (millions of volts in excess of the lowest,
fission barrier), one expects that various channels,
characterized by E=1 and E= 2 as well as E=O, will
be available to carry the nucleus to fission, so that the
angular distribution should become isotropic as
observed.

The fact that near threshold the magnitude of the
quadrupole component in the angular distribution can
supply information bearing upon the difference
between the lowest lying state of 1 character and the 2+

member of the first rotational band has implications
for the resonance fission of odd-2 targets by slow
neutrons. For U"' (—', ), a compound nucleus is formed
which has an excitation energy E* about 1.0 Mev
greater than the lowest fission barrier and spin and
parity either 3 or 4 (see Fig. 1). For resonances with
the 3 character, fission should occur predominantly
through the 3 member of the lowest rotational band.
On the assumption that 6 is small compared to 1 Mev,
one might expect" that such fissions should exhibit (a)
larger than average fission widths, because the excitation
energy is well above this 3 barrier; and (b) less than
average probabilities for symmetric fission, because the
lowest 3 state is supposed to be in a state of asym-
metric vibration characterized by a node at the sym-
metric shape.

The so-called "wheel" experiment of crowan and
associates" bears out suggestion (b) above, but a
careful study of 51 fission and absorption resonances by
Havens" does not offer any support for suggestion (a).

state at the barrier, the angular distribution would be

l)/ ((I) ee
I Der, o'

I

s oe sin'e (2)

In this way Bohr can explain the observed' emission of
fragments in the direction 90' from the beam.

(b) QNadrlpole

(0) ID+1, 0 ((I) I

' ~ »n'28, (3)

with a maximum at 45' to the beam. If the probability
of quadrupole absorption relative to dipole absorption
is q, and the energies of the 1 and 2+ states relative
to the lowest barrier are Ei- and E2+, then the proba-
bility of fission from quadrupole states relative to
dipole states is given by

P(E',„, E(2+)) —P(L~'„„, I'(2+))—
Q=q =v, (4)

P(E-.-E(1-)) P(E,. L'(2+) /-)-

For quadrupole absorption of the photon, the com-
pound state will have quantum numbers I= 2, M= ~1,
and the lowest corresponding excitation at the barrier
would be a 2+ state with E=O, the second member of
the even parity rotational band. If at the barrier, this
state lies suQiciently low compared with the 1 state,
then there might exist a range of photon energies over
which the smaller probability of quadrupole absorption
is counterbalanced by the smaller probability of fission
through the 1 state. The resulting angular distribution
of fission fragments would have a component of the form

where P (E) represents the probability of barrier
penetration at an energy E in excess of the barrier, and
6=E(1—)—E(2+).

A calculation of Hill and Wheeler' gives

P(E) (1+e 2wE/s~c) 1— —
70—

STATES OF STABLE NUCLEUS BARRIER STATES OF
FISSIONING NUCLEUS

PARTICLE EXGITATIONSI INCLUDING 0, I+ 2 3 4
'

ETG.

for energies near the maximum of a parabolic barrier.
The experiments of Stokes and Northrup" indicate that
l)to, is approximately 0.6 Mev. Then for E,„,=E(2+)
and q 10 ', 5 need only be about —,

' Mev to allow

quadrupole fission to compete successfully with dipole
fission. However, such competition will exist only over
an energy range of the order of 6, since the ratio Q
approaches q for values of E,„,&E»-. At energies in

excess of the fission barriers for both the 2+ and 1

states, the larger probability for dipole absorption of
the photon should guarantee the dominance of the
dipole distribution (2) in the anisotropy. At still higher

' Winhold, Demos, and Halpern, Phys. Rev. 87, 1139 (1952).
8Katz, Baerg, and Brown, Proceedings of the Second United

Nations International Conference on the Peaceful Uses of Atomic
Energy, Geneva, 1958 (United Nations, Geneva, 1959), Paper
No. P/200.' D. Hill and J. Wheeler, Phys. Rev. 89, 1102 (1953l.

' R. Stokes and J. Northrup, Proceedings of the Second United
Nations International Conference on the Peaceful Uses of Atomic
Energy, Geneva, 1958 (United Nations, Geneva, 1959), Paper
No. P/582.

6.0--
-THERMAL NEUTRON

RKSONANCES
IN U (7/2 ) Kq

5.0—

2.0— I "wc
' EX

ST

DEFORMATION ENKRGY OF LOWEST
INTERNAL STATE

I,O—

~4+

~pl

-LYING
LEGTIVE
ITAT IONS

P ( EQUI LI BRIUM )

P & 0KFORMATION

19 (SADDLE POINT)

FzG. 1. The structure of the fission barrier of an even-even
nucleus. The numerical scales are appropriate to U' . Also
indicated is the excitation energy of the nucleus after absorption
of a thermal neutron by U"'.

"See Jo» A. Wheeler, Proceedirtgs o/ the Irtterrtatiortat &on
ference on Nuclear Reactions, Amsterdam, 1956 (Nederlande
Natuurkundige Vereniging, Amsterdam, 1950); also Oak Ridge
National Laboratory Report ORNL-2309, 1956 (unpublished).
Wheeler suggests alternative explanations but none which is
subject to as immediate a test as that proposed here.

"G. A. Cowan, Bull. Am. Phys. Soc, 4, 31 (1959).
"W. Havens (private communication).
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These observations could be made consistent if the
separation, 6, between the lowest lying rotational states
and the lowest odd-parity states were not assumed small
(see Fig. 1) but instead were comparable to the energy
E~ required to excite particle states. Then the barrier
heights for the 3 and 4—states would be comparable,
leading to comparable average fission widths. However,
the state (3 ) corresponding to the excited asymmetric
vibration would still exhibit the stronger tendency
towards asymmetric fission.

The relevance of these resonance data to the photo-
fission of U"' is obvious. If 6 is large, the situation is
of the kind favorable to the appearance of a quadrupole
component in the photofission fragment angular distri-
bution at energies slightly above the lowest threshold
(about 5.5 Mev).

BfAM DIRECT!ON —=

z-

2. Photo6ssion of Odd-Even Targets

The anisotropy to be expected from photofission of
unoriented odd-even targets depends more specifically
on the details of the spectrum at the barrier. Basically,
it is the quantization of the Z component of angular
momentum (M=&1) of the photon which allows one
to form an anisotropic distribution of compound
nuclear angular momenta in photon absorption. Q'hen
the target has a nonzero spin, this spin must be added
to the photon angular momentum to obtain the
compound nuclear spin. Clearly, if the target spin is
greater than 1, the resulting distribution of compound
nuclear spins will not be very anisotropic, and the
maximum fragment anisotropy will be correspondingly
small.

For a target with spin —,', however, a measurable
fragment ansiotropy might result if the low-lying
spectrum at the barrier were favorable. In such a case,
dipole absorption of the photon would yield compound
states (I,M) = (~3, +2), (2, &—,'), (2, &-', ) in the propor-
tion 3, 1, 2. Then the anisotropy just above threshold
would depend on whether a E= ~ band or a E=-,' lies
lower; one calculates

W(0')/W(90') = 2.0

FIG. 2. The classical analog of the orientation of the nuclear
symmetry axis (parallel to E) when the total angular momentum
is I, the Z component is M, and the projection along the nuclear
symmetry axis is E. Classically, E precesses around I as shown
by the small circle, and I is distributed about the beam axis with
equal probability as shown by the large circle. The resulting
distribution of orientations for the symmetry axis is given by
Eq. (8).

3. Neutron-Induced Fission

In contrast with photons, neutrons of moderate
energy are capable of forming compound states with a
variety of spins due to the large orbital angular mo-
mentum which they can contribute in collisions with
the nucleus. Moreover, this orbital angular momentum
is perpendicular to the neutron beam so that only the
intrinsic spin of the projectile is available to modify the
Z component of angular momentum of the target.
Thus, for neutrons with kinetic energies of one or more
millions of volts incident on even-even targets, the
compound nuclei, considered classically, have their
angular momentum restricted to cones whose base is
perpendicular to the beam, as shown in Fig. 2. As they
pass over the barrier to fission through some channel
with a given value of E, the distribution of the sym-
metry axis is space is given by

for fission through the E=-,' band only, and Wx(e) = P G(I,M) ~D~xr(e) ~2, (6)

W(0')/W(90') =0.572

for fission through the E=-,' band only. If both E= ~

and E=-', states lie low (a not unlikely situation), the
anisotropy would be considerably less than either of
these maximal estimates. Moreover, the observation of
this anisotropy would require a rather precise definition
of the energy of the photon causing fission, since the
spacing between bands of diferent E just above
threshold is probably &4 Mev, in contrast to the
even-even case where one expects to find mostly E=0
states until sufhcient excitation (-1 Mev) is available
to break a pair.

where G(I,M) is the probability of forming a compound
nucleus of angular momentum I and Z component M
in the bombardment. When fission can occur through
a variety of channels of diferent E with a probability
F(E), the observed angular distribution will be of the
form

W(8) = Q F(E)Wx(8)

F(K)G(I,M)
~
D~Jr'(6) ~'. (7)

For large values of I, the square of a D function
describes, on the average, the distribution of a classical
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vector of length E which precesses at a constant rate
about the Axed vector I."The end point of the vector I,
in turn, is distributed about the beam axis with uniform
probability in the polar angle, as shown in Fig. 2.
Thus, if the process involves averages over several
values of I and E, one may substitute the classical
distribution":

E'+i)1'
DM& (8) I

sin'8—
I(I+1) I(I+1)

cosg . ((I)

F(E)G(I)
dEdI, (10)

„s (sin'8 —E'/Is) '
p

lmax p &max

W(8) =iV)
0 X(l si

where A is a normalization factor. " The sums have
been replaced by integrations, and the functions F and
G are now to be considered continuous functions of
their variables.

It should be noted that the limits of integration in
Eq. (10) are defined in a manner equivalent to the
restriction that F(E)=0 for E)I sing. O'ne is, there-
fore, free to discuss F(E) entirely in terms of the
spectrum at the barrier without reference to the I
values made available by any speci6c process of
forming the compound nucleus.

To specify the probability G(I) of forming a com-

pound state with angular momentum I, where I is
equal to the neutron angular momentum L, we assume
the classic@,l distribution for L. Then

G(I) ~ I, I&I. .
=0, I&L,;

5(I. , +-,') =Mt|A= (23M~)lE=Ai& 8, (11b).
where Me is the (classical) momentum of a neutron
with energy E„, and R is the nuclear radius. The
addition of —,'in (11b) represents a rough correction for
the fact that the neutron penetration factor T ~ does not
approach unity" until / exceeds k„R by approximately
that amount.

14 See E. P. Wigner, Group Theory and Its A pptication to Atomic
Spectra (Academic Press, Inc. , New York, 1958).

'~The distributions (8) and (9) apply only for angles where
they yield a real probability. The classical theory allows no
emission at angles for which (8) or (9) are imaginary.

' E is a function only of I . and I „and therefore cancels in
all calculations of the anisotropy 0"(0')/8'(90').

"See J. M. Blatt and V. F. Weisskopf, Theoretical unclear
.Physics (John Wiley and Sons, New York, 1952), p, 362.

If, furthermore, M is small compared to I and I is
much larger than 1, as in the case of fission by energetic
neutrons, one can set M=O to obtain the classical
approximation of Bohr:

IDerril'~ [si 'ng —(E'/I')g *, sing) E/I
=0, sing &E/I.

In this approximation, one has

I i I I

'
I I I
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FIG. 3. The number of particle states of a given E vs E. Each of
the three curves has the same X (average value of IC). The figure
shows that the three distributions are approximately equivalent
if K is chosen the same in each (see reference 19).

"See S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat, -fys.
Medd. 29, No. 16 (1955).

'9 Torlief Ericson, Nuclear Phys. 6, 62 (1958).

The accuracy of these appropriations is assessed in
Sec. IV.3 by comparison with detailed calculations
based on Eq. (7).

The function F(E) specifies the probability that the
6ssion- occurs through a state at the barrier with
projection E of total angular momentum along the
symmetry axis. It is, therefore, proportional to the
number of such states at the barrier which are energet-
ically available for fission, weighted with the barrier
penetration probability of each state. In the spirit of the
classical approximation, we assume that the penetration
probability is unity if E, ,&~EE and zero otherwise.
Then the form of F(E) is determined by the distribution
of states E at the barrier with energy below the excess
excitation energy E, ,

If the excitation energy in excess of the barrier is
small, the distribution in E for an odd-mass compound
will resemble that of single-particle states in a strongly
deformed nucleus. Curve (a) of Fig. 3 shows the number
of such states which arise from a given spherical
oscillator shell"" as a function of E.

For very large deformations, states from diGerent
major oscillator shells will be thoroughly intermingled;
thus, it is reasonable to assume that the distribution in
E is approximately of the form Lcurve (b) of Fig. 3j:

F(E) ~ E E, , E & E—,„(12)
=0, E&E,.

E,„here is expected to increase with increasing energy
above the barrier.

If the compound nucleus' excitation energy in
excess of the lowest barrier is large, then one can utilize
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E, ,=E+-e. (13)

Let p; &(E,K) be the density of internal states which
at an excitation energy E have a projection E of
angular momentum along the symmetry axis:

statistical considerations in discussing the probability
distribution of E at the barrier. The energy E,„,will

appear at the barrier (a) in the form of collective
kinetic energy, e, of the motion towards fission and (b)
in the form of internal excitation, E (including intrinsic,
rotational, and vibrational excitation). Then

2.0
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p;„,(E,K)=P(K,E)p(E), (14) 4.Q

where J's"P(K,E)dK=1 and 'p(E) is the total density
of internal states at excitation energy E. The density
of collective kinetic energy states is given by

podia(e)ice cr e 'de,

I.20

I.Q
Q.4 0.8 I.6

3.0

2.0
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2.0

ril/K (CURVE 4)
provided the path towards hssion is one-dimensional.
Then the tptal number pf states pf prpjectjpn K leading The analytical expression for W(0')/W(90') is given in Eqs. (20)
to fission is and (20a).

~ Eexc p &exc

IVx(E. ,) ~
Jp

de dE[P(K,E)p(E)e ~]
~o

XS(.—(E,,—E)),

where the 8 function introduces the constraint (13).
The probability of 6ssion through a state with projec-
tion E is therefore

F(K,E,„,)=
p &exc

«[P(K,E)p(E)(E...-E)-:&
4 p

p Eexc

dE[p(E) (E *. E) *'3 (17)—
Jp

For excitation energies far in excess of the barrier,
statistical theory" " predicts that P(K,E,„,) is a,

normal distribution [curve (c), Fig. 3j:
F(K) cr exp[ —(K'/s. K')), (19)

where E is the average value of E. Statistical theory
also predicts that K is proportional to (E*—Er)"'.
Neither this distribution nor this energy dependence
of X has been utilized in any of the calculations reported
here. Figure 3 indicates that the linear distribution
which was assumed should give essentially the same

20 t". Bloch) Phys. Rev. 93, 1094 {1954).

Since p(E) is a rapidly increasing funct:ion of E and
since (E,„, E) '* is large—at E=E, „one expects that
contributions to the integral in the numerator will
come chieQy from the neighborhood of E=E, , Then
the slowly varying factor P(K,E) can be evaluated at.
E=E, , to obtain approximately

F(K,E,„,) P (K,E,„,).

results as the normal distribution. " The assumed
energy dependence of E, which is most crucial in
determining the dependence of the anisotropy on
energy, is discussed below.

The expression (10) for the ratio W(0')/W(90')
which results from the assumed linear distribution in
E is integrable analytically, and depends only on the
ratio r=I/K The resu. lt is

W(0')/W(90') = (1—3r/4ir) '
r&~ 2 (20)

= (m/6) (-'s sin—'(2/r) —s [r—(r' —4) i]
+ (1/ 12r ) (r —4) 2

+ (1/3r') ln-,'[r+ (r' —4)'j)—'
r& 2. (20a)

This expression is displayed graphically in Fig. 4. For
an assumed energy dependence of K, Kqs. (11) and
Fig. 4 allow one to predict the energy dependence of
W(0')/ W (90') .

If the excitation energy exceeds the neutron binding
energy, competition from neutron evaporation must
be included. Of the compound nuclei of mass A+1
formed initially, a fraction pz+i=—I'r/(F +1'r) undergo
fission ("first-chance" fission), and the remaining
fraction 1—p~+~ emits neutrons to form nuclei of
mass A. If there is still sufficient excitation energy

2' The angular distributions based on Eqs. (12) and (19) di6er
somewhat. The former is 8'{8)~ 4xr' —3r sin8 for r (&2. It differs
from the latter l given by V. M. Strntinskii, Atomniya Energ. 2,
508 (1957) [translation Soviet J. Atomic Energy 2, 621 (1957)j},
in that it has a finite slope at 8=0 and yields lower emission
probabilities for intermediate angles, from say, 30' to 60'. The
first difference disappears when the neutron andjor target spin
is taken into account (see Fig. 11).As regards the second difference
the data of Blumberg et al. {reference 25) on Pu"' might be
interpreted as favoring the former distribution for values of Ji, , up
to 3 Mev.
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remaining for fission to occur, p~t 1—y~+il nuclei of
mass A will undergo fission ("second-chance" fission).
This process continues until the excitation energy is
less than the fission and neutron emission thresholds.
Subsequent decay is by gamma cascade, neglected here
when competition from fission and neutron emission is
energetically possible. The anisotropy is then a sum of
the anisotropies for the different fissioning species,
weighted by the number of fissions associated with
each species.

4. Low Energy

We first discuss the qualitative features of fission
anisotropy for neutrons of energy less than 12 Mev.
In this region, differences between even-even and odd-
mass targets may be attributed primarily to differences
in the fission thresholds. (The fission of odd-odd
nuclides is omitted to simplify the presentation. The
appropriate extensions to such cases should, however,
be obvious. )

Even-even targets have positive thresholds for 6ssion
of the order of 1 Mev. Since neutrons of this energy
form compound states with I=1.0, one expects in
general that not too far above threshold where E is
still small, significant forward peaking will be observed.
Also, as the energy increases above threshold, K will

increase more rapidly than I, leading to an anisotropy
decreasing with energy.

At that energy where 6ssion after neutron emission
becomes possible, the second-chance fissions occur
with energy barely in excess of the barrier and with a
relatively small value of X. The distribution of I, on
the other hand, is changed only to the extent that the
emitted neutrons carry off angular momentum. Since
the neutrons are emitted chiefly in S-wave states, this
is a small effect which can be neglected in a first
approximation. The second-chance fissions are, there-
fore, characterized by a large ratio, I/K, and increased
forward peaking is observed to set in with second-
chance fissions. With further increase in neutron energy,
the excitation increases, increasing the average com-
ponent of angular momentum along the symmetry
axis, and resulting in a dimunition of the tendency
towards forward peaking.

Exceptions to this picture may be expected where
strong deviations from the assumed distribution of E
occur. Such situations can arise in the neighborhood
of the fission threshold. Thus, when the fissioning
species is an odd-mass nuclide, the appropriate value
of E for fissions occurring predominantly through the
first rotational band is just the value of E=E& as-
sociated with that band. Moreover, fissions can occur
only from compound nuclei whose total angular mo-

mentum is consistent with those of the rotational states
energetically available: Ei, Ei+1, , I. Then fission

may occur only through a few states with E approxi-

mately equal to I. The fragments will be emitted in the

direction 90' to the beam, as has been observed" in
Th'". Wilets and Chase" have made a detailed analysis
of this case in terms of the Bohr model. The statistical
treatment discussed in this paper cannot include such
special cases. It applies only to circumstances where
one expects averages over many barrier states to
determine the situation. Such should be the case for
excitations greater than 1 Mev above the fission
threshold.

Odd-even targets are often thermally 6ssionable.
This implies that even for zero-energy neutrons, the
quantity E*—Ep is positive. As a result, the first-
chance peak in the anisotropy is inaccessible via
neutron bombardment, so that one observes at a given
energy a much lower anisotropy than the corresponding
even-even value.

Odd-even targets differ from even-even targets also
in that they have a finite spin which must be combined
with the neutron angular momentum to obtain the spin
of the compound nucleus. The effect of target spin on
anisotropy is discussed separately in Sec. IV.3. For
most of the estimates reported here, the target spin has
been assumed to be zero.

5. Higher Energy

For higher bombarding energies, the anisotropy is a
composite of anisotropies due to the various species of
the chain formed by successive neutron emissions. We
discuss next the qualitative features of the dependence
on anisotropy with energy in this region.

Since evaporated neutrons carry off only a small
angular momentum, the distribution of compound
nuclear angular momenta involved in the fission of
various species in the chain is approximately the same as
that in the initial compound system. In contrast, the
excitation energy of the fissioning nuclide decreases
significantly with each neutron emission. Therefore,
just above its threshold, last-chance 6ssion is charac-
terized by I at formation but by a low excitation energy
at the barrier (i.e. , a low E), a combination which
implies a large anisotropy. Thus, one expects a sudden
increase in the overall anisotropy as each new (x,xe'f)
process becomes energetically possible; namely, at
energy intervals of 6 Mev.

The over-all 6-Mev cycle will be influenced by other
effects which can be described within the present
classical-statistical description. Two such effects are
fissionability and odd-even alternation. These affect
the anisotropy chiefly by their influence on the number
of (g,xm'f) processes which occur. We discuss them
separately.

In a nucleus whose fission half-life is long compared
with neutron emission times, there will be approxi-
mately the same number of first-, second-, etc. , chance
fissions. Then considering this effect alone, one expects

"J.Brolley and R. Henkel, Phys, Rev. 103, 1292 (1956).
23 L. filets and D. Chase, Phys. Rev. 103, 1296 (1956).
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a pattern like the solid curve of Fig. 5, where the
number of fissions and the anisotropy associated with
eth-chance fission is assumed independent of e. In
the opposite extreme of short fission lifetime, all fissions
are first-chance fissions, and only the first peak would
be seen. Real nuclides are, of course, intermediate to
these extremes. Moreover, as neutrons are emitted,
Z'/2 increases, tending in general to increase the
proportion of eth-chance fission along the chain; also,
as fissions occur, the compound nucleus is depleted,
tending to decrease the proportion of nth-chance
fission. Finally, the spread of excitation energy in
fissioning nuclides left after several neutron emissions
tends to smear the sharp structure more and more as
the number of emitted neutrons increases.

Odd-even alternation manifests itself (a) in a lower
average value of X when the fissioning nucleus is
even-even and (b) in alternation of the sign of the
difference, Sp —E~, between the fission threshold and
the neutron binding energy from even-even to odd-mass
nuclei. Effect (a) would imply that at the same moderate
excitation, an even-even nucleus should show a stronger
tendency towards forward peaking than an odd-even
nucleus. This is especially true if the excitation is less
than the pairing energy so that the available fission
channels in the even-even tend to have If= 0. Effect (b)
allows even-even nuclides left with excitation energy
in the range Ep &E,„,&E~ to fission with competition
only from p emission. Under circumstances where a
significant fraction of the neutron decays from the
preceding member of the chain leave a nuclide with
excitation energy in this range, the proportion of
fissions following this emission to total fissions will be
anomalously high. '4 Both effects (a) and (b) tend to
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FIG. 5. Qualitative dependence of anisotropy on neutron energy.
The solid curve is a highly schematized representation in which
the anisotropy reaches its peak immediately above threshold
and becomes zero just before the next-chance fission sets in. The
dashed curve is a qualitative illustration which attempts to
illustrate various detailed effects discussed in the text.

'4 This effect has been discussed by Jackson in connection with
the tendency of the fission cross section to "overshoot" the
plateau associated with the fission of an even-even compound.
See J. D. Jackson, Proceedings of the Symposium on the Physics
of Fission, Chalk River, Canada, 1956 (unpublished).
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FIG. 6. The dependence of E on E*—Ey as obtained from the
anisotropy of Pu'"(n, f} and U23'(ri, n'fl. Also shown (dashed
curve) is the dependence implied by the continuum statistical
theory, which should be valid at high excitation energies. To
apply this figure to even-even nuclei, 1 Mev should be subtracted
from E*.

enhance the anisotropy for even-even nuclides relative
to odd-even nuclides.

In the solid curve of Fig. 5, it has been assumed that
the distribution becomes isotropic for excitations more
than 6 Mev in excess of the barrier. This, in fact, is
not the case. The dotted curve, though still qualitative,
is a more realistic representation which includes a
contribution to the anisotropy from earlier members of
the chain and attempts as well to indicate the smearing
of the sharp structure due to the spread in energy of
the emitted neutrons.

III. NUMERICAL ESTIMATES

Numerical estimates of the neutron-induced fission
fragment anisotropy have been made on the basis of
the model discussed above. Of the elements needed to
estimate the anisotropy, the most crucial is the de-
pendence of X on energy. Indeed, the utility of the
theory depends largely upon whether or not a single
curve of E vs energy can be found which gives a
satisfactory description of the anisotropy for a variety
of fissioning nuclides.

We have determined a function K(E*—E~) for
excitations between 1.6 and 5 Mev from the measure-
ments of Blumberg et aL" on Pu"'. These data have
considerably smaller statistical error than any pre-
viously published work. Since the spin of Pu"' is only
—,', one expects its effect to be small, even for neutron
energies of only 1 Mev. Above 5 Mev, X(E*—E~) was
extended linearly as shown in Fig. 6, and the implied
anisotropies were compared with the experimental
data as a test of the extrapolation. As will be discussed
below, probable errors in estimated thresholds and
ambiguity in the manner of treating even-even com-
pounds vis-a-vis odd-even compounds at very low
excitation energies introduce enough uncertainty into

'5 L. Blumberg et al. , Bull. Am. Phys. Soc. 4, 31 (1958).A more
complete report is to be published.
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TABLE I. Assumed thresholds.

Nuclide

Pu'"
U233
U238

Th'"

B(nj) (Mev)

—1.6—1.6
1.2
1.4

E(n,n' j) (Mev)

5.7
5.3
5.5
5.9

the numerical estimates to render fruitless any further
refinement of the assumed curve on the basis of present
data.

Also shown in Fig. 6 is the form of E(E* EJ)—
implied by continuum statistical theory. This curve
should become applicable at high excitation energies,
and presumably does so at excitation energies several
Mev greater than the highest considered here (13 Mev).
A curve qualitatively similar to the combination of our
low-energy curve and the statistical curve at higher
energies has been used in similar calculations by Halpern
and Strutinskii. "

Besides the dependence of X on E"' —E~, other
assumptions are required to reduce the theory to
numerical estimates. These concern the values of fission
barrier energies, the differences between even-even and
odd-even compounds at a given excitation, the spectrum
of evaporated neutrons, and the proportion of second
chance fissions. Since these can, in some cases, affect the
calculated anisotropy significantly, we have chosen
certain definite prescriptions for specifying each of
them. Later, the effects of tenable alternatives will be
discussed.

The prescriptions adopted are listed below.
Thresholds used are estimates of the energy at which
the penetration probability through the lowest barrier
state is equal to one-half Lsee Eq. (5)j; they are
summarized in Table I.

(1) For even-even compound nuclei, one Mev is
subtracted from the excitation energy in estimating

I.3—

I I I I

ANISOTROPY OF PP (n, f)
+ EXPERIMENTAL ( BLUMBERG

ANO LEACHMAN )- THEORETICAL

0o 0
Ol

y I.2—

(n, n'f)

'6 I. Halpern and V. Strutinskii, .Proceedings of the Second United
Nations Conference on the Peacefut Uses of Atomic Energy, Genef, a
1958 (United Nations, Geneva, 1959), Paper No. P/1513.
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Fz(". 7. Theoretical and experimental anisotropies for Pu' . The
theoretical curves (solid lines) assume ID=0. The asterisks at
the energy corresponding to the peak of the second-chance
anisotropy indicate the effect of changing the assumed (n,n'f)
threshold by &0.4 Mev.

I4." For very low excitations, a different dependence
of IC on E*—E~ is assumed for even-even nuclei from
that for odd-A nuclei (see Fig. 6).

(2) Thresholds and proportions of second-chance
fissions are estimated from measured cross section
data. ""In estimating the proportion of second-chance
fission, the value of the cross section on the first plateau
is assumed to determine the first-chance contribution.

(3) Fission is assumed to compete with energetically
allowed neutron emission only if the excitation energy
exceeds the fission barrier by 0.3 Mev.

(4) In estimating the excitation energy for second-
chance fissions, evaporated neutrons are assumed (a)
to carry no angular momentum and (b) to be mono-
energetic with kinetic energy equal to the average
kinetic energy of the neutrons which leave enough
energy for subsequent fission to occur. A Maxwell
distribution" with 7- ——0.75 3lev is used to evaluate
this average.
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Fn. 8. Theoretical and experimental anisotropies for U238. The
anisotropy calculated on the assumption that the (n,n'f) threshold
was 0.4 Mev greater than that in Table I would be 1.41, which
falls beyond the range of the figure.

1. First-Chance Fission Anisotropies

The low-energy dependence of E for odd-even com-
pound nuclei was determined by fitting the data on Pu'"
in the manner shown in Fig. 7. Neglecting the spin and
assuming the same fission threshold for U'33, one
calculates the same anisotropy for those two nuclides.

27 R. L. Henkel, Fast Neltron Physics (Interscience Publishers,
Inc. , New York, to be published).

"See reference 17, p. 368."R. Henkel, Los Alamos Scientific Laboratory Report LA-2122
(unpublished}."W. Dickinson and J. Brolley, Phys. Rev, 90, 388 (1953);
94, 640 (1954)."Brolley, Dickinson, and Henkel, Phys. Rev. 99, 159 (1955}.

3' R. Henkel and J. Brolley, Phys. Rev. 103, 1292 (1956).
"Simmons, Henkel, and Brolley, Bull. Am. Phvs. Soc. Ser. II,

2, 308 {1957).

IV. DISCUSSION OF NUMERICAL ESTIMATES

The numerical estimates of anisotropy vs energy are
given in Figs. 7, 8, 9, and 10, together with the relevant
data. ""—"We shall discuss the first- and second-
chance estimates separately.
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This agrees with the experimental results to within
a few percent as shown in Fig. 8, in contrast to the
expected effect of the spin, as will be discussed in
Sec. IV. 3.

The first-chance anisotropy calculated for the targets
Th"' and U"' from the same assumed X dependence
is shown in Figs. 9 and i0. One sees that the agreement
is moderately good. Also, it could be improved by
slight changes in the assumed values of the fission
threshold Ef which effect primarily a shift in energy
of the calculated anisotropy.

The dotted portions of the curves indicate regions
either where the estimated value of X was less than
one (so that reservations must be retained concerning
the hypothesized distribution) or where the energy
concerned is above the second-chance threshold.

~ 20-
O

y I,d

I'0 2 4

NO (fl, n'f)

ANISOTROPY OF U (Il, f)
& EXPERIMENTAL (HENKEL

AND SROLLEY)
THEORETICAL
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6 8 io i2 i4 is i8 20
En

FiG. 9. Theoretical and experimental anisotropies for U"'.

agreement with the data of Blumberg and I.eachman.
In this case, the estimated X is greater than one only
for bombarding energies greater than approximately
7.5 Mev. We have nonetheless included for its illus-

trative value the dotted portion of the curve based on
the extrapolation of the X dependence to lower values.
Actually, the results indicate that such an extrapolation
may provide a useful parametrization for the low-

excitation anisotropies, even though the statistical
assumptions on which they are based retain but little
claim to validity.

Since the proportion of second-chance fission is fixed

by the measured values of the cross section, as discussed
previously, modest changes in the assumed value of
Ef for the second-chance events can effect significant
modification of the calculated anisotropy. In Figs. 7

and 8, asterisks have been inserted to indicate the
calculated anisotropy at 7.5 Mev if Ef were changed

by &0.4 Mev.
In the case of even-even targets, second-chance

fission involves even-even compound nuclei. The
subtraction of 1 Mev and of the average energy carried

2. Second-Chance Fission Anisotropies

The estimated second-chance anisotropies for the
odd-even targets are seen to be in semiquantitative

I I I I I 1 1 I I
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FiG. 10. Theoretical and experimental anisotropies for Th"'.

"More complete measurements to be published by R. Henkel
and J. Simmons also agree fairly well with the curve of Fig. 9
(private communication from R. Henkel).

by the emitted neutrons leaves an excitation greater
than 1 Mev only when the bombarding energy is
greater than approximately 8.0 Mev. Thus, the statisti-
cal model used here is inadequate to describe the
interesting range between 5.5 and 8.0 Mev- unless
further assumptions are made concerning values of E
in even-even nuclides for excitations in the neighbor-
hood of i 3,&Iev.

The success of the extrapolation to low excitations
in the odd-mass targets encourages one to test such
assumptions in spite of the fact that the assumed
distribution of E cannot adequately describe the
situation where only a few barrier states are involved.
In assigning a value to X for even-even nuclei of low

excitation, one is therefore utilizing the statistical
theory merely as a vehicle for parametrizing the
anisotropies. Still the procedure is a useful one, since
one expects the structure of low-lying excited states in
deformed even-even nuclei to be qualitatively the same
for various nuclei. For this reason, a parametrization
which fits data obtained from one nucleus should also
describe others in at least a semiquantitative manner.
The measure of the utility of the method will be the
variety of fissioning nuclei for which it can be applied
successfully.

The low-energy extension of the curve of Fig. 6
marked "even-even" has been chosen to give a fair
reproduction of the available data" for U"'. It has then
been used to estimate the second-chance anisotropy
for Th'". As Fig. i0 illustrates, the agreement is quite
satisfactory.

The difference between the anisotropies calculated
for Th'" and U"' is due primarily to the difference in
the onset of the second-chance process, as interpreted
from measured fission cross sections. The very large
anisotropy observed in Th'" is due chiefly to the gap,
E~—Ef=0.4 Mev, between the neutron binding energy
and the fission threshold for Th'". Fission of compound
nuclei with excitation energy within this gap occurs with
especially low excitation energy and without compe-
tition from neutron emission.
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To estimate the effect of these low-energy fissions
on the anisotropy, we have assumed that the excess
in cross section over the value of the cross section
at energies ()10 Mev) where the second plateau is
approximately constant is to be attributed to fissions
in the gap. It is certainly true that this is incorrect
just above the threshold where a large fraction of the
second-chance fission is fission of nuclei whose exci-
tation lies within this gap, although the cross section
still lies below the plateau value. Thus, in particular,
the anisotropy estimated at 6.5 Mev is lower than the
measured value. This inaccuracy seems a reasonable
price to pay for the ability to tie the calculation uniquely
to the measured cross section. Alternatives involving
one or more parameters which cannot be specified
from currently available data seem far less attractive.

3. Effect of Target Spin on Fission Anisotropy

To determine the eGect of spin, detailed machine
calculations have been performed on the basis of Eq.
(7) for targets with nonzero spin. We consider a target
of spin Io and Z component 3f0. This spin combines with
the neutron spin to give channel spin states (j,m, ).
The channel spin, in turn, combines with the neutron
orbital angular momentum (L, mI, ——0) to form the
compound nuclear spin (I, M=m;). We denote the
probability that a compound state of spin I fissions
through a channel with projection E along the nuclear
symmetry axis by F&(E), and the probability that the
neutron is absorbed with orbital angular momentum
L by m(L). Then

Fl (E)
G(I,M,K) = e(L) iC, o

2(2Io+1) i, r

where C p~~ ~ is a Clebsch-Gordon coe%cient. The
probability I71(L) is of the form

Lma, x

e(L) = (2L+1)TI,(E„)/ p (2L+1)Tg,(E„),
L=O

where TL is the penetration coefficient for I;wave
neutrons of energy E„,chosen to resemble the assumed
classical distribution (11). To specify the probability
of fission through a channel E, we use the linear distri-
bution (12); then

LK ~K~ j, 1f E&K, and K&I
IK (I

=0, if E&E, or E)I.
The resulting expression for the angular distribution

has been evaluated numerically. The results for several
target spins and for a neutron energy of 1.5 Mev are
shown in Fig. 11.They show that the anisotropy should

/
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decrease with increasing spin, "provided the excitation
energy and the distribution of incoming orbital angular
momentum are not changed. In particular, for the
comparison of U"' (spin 2) and Pu'39 (spin ~), the
difference in anisotropy should be approximately 6%%uo

a,t 1.5 Mev and 5'%%uo at 5 Mev.
This is in contradiction to the data shown in Figs.

7 and 8, where the anisotropy of U"' is actually larger
than that of Pu'". Moreover, it would be inconsistent
with the measurements of Stokes and Northrup" to
suppose that the fission thresholds of these targets
differ sufFiciently to explain such a large deviation from
the calculations. Finally, any appeal to a fiuctuation
away from the expected average values of E seems to
be ruled out by the consistency of the data over the
range from 1.5 to 5 Mev.

One possible explanation for the high anisotropy of
U"' relative to Pu'" is that the process of neutron
absorption results in markedly different distributions
of compound-nuclear angular momentum for these two
nuclides. An eGect of this kind could arise from the
correlation of the spin direction and the nuclear de-
formation axis. In classical terminology, one can say
that an ellipsoidal target nucleus with a large spin Io
in a substate %0=0 presents its elliptical cross section
to the beam while a target with M =Io presents a
smaller circular cross section. There follows a preference
for absorption of neutrons into states with M=O when
the target spin is large, as well as a larger average
radius for targets in this substate. This effect would
increase the anisotropies over those shown in Fig. 11.

One can make a crude estimate to show that this
explanation may indeed be capable of canceling the
effect of spin indicated by the more naive calculations
leading to Fig. 11.Consider the nucleus to be a classical
spheroid with semimajor axis equal to B(1+6) and
semiminor axes equal to B(1—8/2) and oriented at an
angle with respect to the neutron beam given by

It =cos 'Mo/[Io(ID+1) jl. (21)

"As suggested by Bohr (reference 1).
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FiG. 11.Theoretical angular distributions of 6ssion fragments,
including the eBect of target spin. This situation corresponds
approximately to those of Pu" and U'" at 1.5 Mev of neutron
energy, but does not include corrections arising from considera-
tion of the nuclear deformation discussed in the text.
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Then the geometrical cross section in the plane perpen-
dicular to the beam is a function of 310 given by

o (Ms) =s R'(1+ -s'8 —-s, 8 cos'g) *',

correct to O(P). If we take the maximum orbital angular
momentum absorbed to be proportional to the greatest
extension of the nucleus in the plane perpendicular to
the beam, this too is a function of 3IIs (again correct
only to O(P)j:

L (Mv) =L„[1+6 ss8 c—os—'Pg, (22)

where L is the value which would be obtained from
Kq. (11b) for a sphere of radius B.

Assuming i'd=0. 25 and applying the weighting (21)
to the angular distributions arising from various values
of M in the calculations summarized in Fig. 11 and
estimating the enhancement in anisotropy which Eq.
(22) and Fig. 4 imply for the M =0 part, one finds that
the correction to the simpler calculation which results
from this eRect is +3% for a target spin of —', relative to
a spin of —,'. This is about one-half the magnitude of the
expected, but unobserved, suppression of anisotropy
for this target spin. The conclusion is that the net e6ect
of target spin will be small, so that in a 6rst approxi-
mation one can overlook it entirely. This has been done
in the calculations leading to Figs. 7, 8, 9, and 10.

It should be realized that the inclusion of the pre-
cession of the nuclear axis about the angular momentum
would reduce the difference between the extremes of
o(Ms) and L (Ms) somewhat, leading to a correction
smaller than the +3% estimated above. On the other
hand, a proper wave mechanical treatment of neutron
absorption by a deformed nucleus might yield results
more consistent with the correction required by the
measurements (+7%) than either the crude treatment
given here or various refined versions of it can predict.

These detailed calculations are also a useful indicator
of the errors involved in the estimates based on Eqs.
(10) and (11). The classical approximation to the D
functions appears accurate within 2% in the anisotropy
at this energy, while the use of the distribution (11) in
place of more realistic penetration coefficients may
introduce as much as 15% error. " However, by de-
termining the average value of E from observed
anisotropies, one certainly compensates for most of this
latter error.

4. Correlation Between Mass Asymmetry
and Antisotropy

It has been observed in fission by 22-Mev protons""
and in photofission" that fragments from the maxima

This statement is based on calculations utilizing the pene-
tration coe%cients for uranium given by R. Beyster et al. , Los
Ala'mos Scientilc Laboratory Report LA-2099, 1957 (un-
published), but retaining the curve X(E —Ef) of Fig. 6. It is
therefore more an indication of the nonuniqueness of the assumed
E values than of the accuracy of calculations based on a given set.

'r Cohen, Jones, McCormick, and Ferrell, Phys. Rev. 94, 625
(1954).

'8 Cohen, Ferrell-Bryan, Coombe, and Hullings, Phys. Rev. 98,
685 (1955).' Fairhall, Halpern, and Winhold, Phys. Rev. 94, 733 (1954).

of the mass yield curve tend to be more anisotropic
than fragments from the valley. In the present model,
this qualitative behavior would be expected, not as a
correlation between mass division and anisotropy for
nuclei 6ssioning at a single 6xed excitation energy, but
rather as a correlation between fission events at different
excitation energies which occur along the chain. In the
observation of fission from a chain of nuclides, selection
of a fragment mass which lies in the valley of the yield
curve is tantamount to selection of a fission event with a
larger than average excitation energy in excess of the
barrier, since this mass division is known to become
more probable with increasing excitation energy.
According to the present model, such an event will show
less fragment anisotropy than 6ssions of lower exci-
tation. Conversely, to choose fragments from the
maximum of the mass yield curve is to choose on the
average an event of lower average excitation and,
therefore, of higher anisotropy.

Data on the correlation between asymmetry and
anisotropy in the fission at a well-defined excitation
energy, but below the (I,n'f) threshold, would answer
the question of whether or not there is a correlatioii
between anisotropy and mass asymmetry in a fission
event at a single 6xed excitation energy. Such experi-
mental data would oGer evidence on the long-standing
question4~" of whether symmetric 6ssion arises from
traversal of a saddle point in deformation space which
is separate and independent of that leading to asym-
metric fission, or whether both symmetric and asym-
metric fission result from traversal of a single saddle
point. In the former case, one would expect di6erent
values of the excitation energy at the barrier, E, „for
symmetric and asymmetric fission and therefore
diGerent angular distributions. Observation of the same
angular distributions for various mass divisions would

support the original viewpoint of Bohr and Wheeler.

S. General

The success of the Bohr model in fitting anisotropies
in a variety of nuclides over a wide range of energies
need not be interpreted as evidence that the detailed
picture on which Bohr based his assumptions must be
accepted. In particular, the work of Strutinskii' shows
that elimination of the assumption that the barrier
spectrum is quasi-stationary does not preclude the
derivation of an anisotropy of the form (7). It is not
clear that a second element of the Bohr picture, the
assumption that E is a good quantum number at the
barrier, is valid at high excitation energies.

A cautious point of view on the use of E as a good
quantum number even when its validity is dubious
would be that it does provide a convenient para-
metrization of the behavior of the anisotropy, and one
which is expected to correspond to the physical situation

"A.Bohr and J. Wheeler, Phys. Rev. 56, 426 (1939).
' R. D. Present and J. K. Knipp, Phys. Rev. 57, 1188 (1940).

~ W. Swiatecki, Proceedings of the Second United Nations
International Conference on trze Peacefz&l Uses of Atomic Energy,
Geneva, 1958 (United Nations, Geneva, 1959), Paper No. P/651.
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at lower excitations. However, further investigation
might establish that in observing statistical averages
over many states, the probability distribution of E
is a relevant concept, even though the constancy of
E state-by-state may be in doubt, and that this
distribution will behave in accordance with the pre-
dictions of statistical theory.

ACKN0% iRDQMEÃTS

The author wishes to express his gratitude to his
colleagues, Dr. John Manley, Dr. Robert Leachman,
Dr. Richard Henkel, and Dr. Lawrence filets for their
stimulating interest in this work, and to Mrs. J. Powers,
Miss D. Cooper, and Mrs. S. Blumberg for their
assistance with the numerical computations.

P H YSI CAL REVI Eg VOLUME 116, NUMBER 1 OCTOBER 1, 1959

Tb"': A New Terbium Isotope

K. S. TOTH, S. BJIIylRNHOLM, M. J/RGENSEN, O. B. NIELSEN, AND O. SKILBRKID
Institute for Theoretical Physics, University of Copenhagen, Copenhagen, Denrnarh

(Received May 15, 1959)

A new isotope with a 3.1-hr half-life has been produced in a 60-Mev proton bombardment of natural
gadolinium. The isotope has been identified to be Tb'" by means of a mass separation performed on the
chemically purified terbium fraction. Gamma-ray spectra have revealed an intense 640-kev peak belonging
to Tb'50 decay. The y ray is probably the transition from the first-excited to the ground state in Gd'~.

A NEUTRON —DEFICIENT terbium isotope with
a 3.1-hr half-life has been identified to be Tb'".

The similarity of this nuclide s half-life to that of its
neighbor, Tb"', (4.1 hr), partially explains why Tb'"
has not been reported previously. The decay of the
isotope is followed by at least one characteristic p ray
whose energy is 640 kev. A strong annihilation peak
is also associated with its decay, indicating that the new

activity emits positrons.
Approximately 150 mg of natural gadolinium oxide

were bombarded for 4 hours with 60-Mev protons
accelerated in the Uppsala synchrocyclotron. Most of
the known neutron-deficient terbium nuclides were

produced and, in order to study each of them, indi-

vidually, a mass separation was performed. The isotope
separator used has been described earlier. ' A small

portion (1-2 mg) of the target was placed in the sepa-
rator immediately after the material had been delivered
(12 hours after the termination of the bombardment).
The larger portion was first chemically puri6ed, using
an ion-exchange technique. ' The terbium fraction was

then placed in the mass separator. The two mass 150
samples, "A" (chemically impure) and "II" (chemically
purified), were similar as far as could be determined

from their p-ray spectra and their decay curves. The
e6'ectiveness of the chemical separation in the case of

the "8"samples was demonstrated by the mass number

159 samples. "A" of mass 159 clearly contained a large

amount of the 18-hr Gd'", while "8"of the same mass

number showed that the relative amount of Gd'" had

decreased by a factor of 50.

' K. O. Nielsen and O. Skilbreid, Nuclear Instr. 2, 15 (1958).
~ Thompson, Harvey, Choppin, and Seaborg, J. Am. Chem. Soc.

76, 6229 (1954).

Figure 1 shows the &-ray spectra of the "A" samples
of Tb', Tb'5, and Tb'", all taken at the same energy
setting of the scintillation spectrometer. The detector of
the spectrometer is a 3-in. NaI(Tl) crystal and the
spectra are displayed on a 100-channel pulse-height
analyzer. A series of p spectra taken at a constant
energy setting facilitates the assignment of p rays to
the various isotopes. It is seen from Fig. 1 that the
mass numbers are not. quantitatively separated. Indeed,
Tb'" is present in both the 149 and 150 masses. All

masses were found to be present to some extent in their
neighbors (2—5%). The abundance of Tb'" in the Tb'4'

and Tb'" spectra is especially pronounced for two reasons.

(a) Tb'" was more abundantly produced than either
'I'b'" or Tb'". (b) The measurements were made about
15 hours after the bombardment was over and, while

the shorter lived Tb'" and Tb'" had decayed through
4 or 5 half-lives, Tb'" had only decreased to one-half
of its original amount. In the Tb'" spectrum, only the
510- and 640-kev peaks can be assigned to that particu-
lar isotope. The 180-, 250-, and 290-kev y rays are
known to belong to Tb'" from accurate conversion-
electron studies. ' This is also evident from the relative
a,bundance of the three p rays in the three p-ray spectra.
The 350-kev peak must be assigned to Tb'" on the
basis of the relative y-ray abundance a,nd, from some
recent work by Toth and Rasmussen, 4 it is known that
a 350-kev p ray follows the decay of Tb'".

Four decay curves were obtained counting the mass
150 samples "A" and "8" in a Bow-type proportional
counter and in a single channel scintillation spectrom-

' Mihelich, Harmatz, and Handley, Phys. Rev. 108, 989 (1957).
4 K. S. Toth and J. O. Rasmussen, University of California

Radiation Laboratory Report UCI&L-8375 PJ, Inorg. Nuclear
Chem. 10, 198 (1959)j.


