INVISIBILITY OF LORENTZ CONTRACTION

depending on its (unaccelerated) motion. Effectively,
then, the Lorentz contraction is invisible. Any hopes
of seeing the contraction in a rapidly moving space
vehicle or astronomical body must be discarded.
Although apparent distortion due to rapid motion
can be seen by means of steroscopic vision or photo-
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graphy, it is not of the same type as one might expect
from the Lorentz contraction.

None of the statements here should be construed as
casting any doubt on either the observability or the
reality of the Lorentz contraction, as all the results
given are derived from the special theory of relativity.
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Tolman states that . . .disordered radiation in the interior of a fluid sphere contributes roughly speaking
twice as much to the gravitational field of the sphere as the same amount of energy in the form of matter.”
The gravitational pull exerted by a system on a distant test particle might therefore at first sight be expected
to increase if within the system a pair of oppositely charged electrons annihilate to produce radiation. This
apparent paradox is analyzed here in the case where gravitational effects internal to the system are un-
important. It is shown that tensions in the wall of the container compensate the effect mentioned by Tolman
so that the net gravitational pull exerted by the system does not change.

I. INTRODUCTION

N Newtonian mechanics the equivalence of active

and passive gravitational mass, that is of mass as

a quantity which gives rise to, and as a quantity acted

upon by, gravitational fields, is made obvious in the

form of the familiar equation for the gravitational

potential ¢, namely V¢ =4mrp, where p is the density of
inertial mass.

However, in relativity theory where the field equa-
tions take the form R,,—3g.,R=T,,, the inference can
sometimes not be drawn so easily. Here not only does
the source term include stresses and momenta as well
as energy, but the equations are nonlinear. The question
presents itself, therefore, to what extent are the distant
gravitational fields as calculated by classical and
special relativity theory the same as those calculated
using general relativity?

The following statement by Tolman suggests that
there are important differences: “. . .disordered radi-
ation in the interior of a fluid sphere contributes
roughly speaking twice as much to the gravitational
field of the sphere as the same amount of energy in the
form of matter.”

Such a result would seem to lead to certain paradoxes.
Consider the conversion of a gamma ray, enclosed in a
box, into mass, say an electron-positron pair. This
transformation might be thought to halve the contri-
bution of the mass energy to distant gravitational fields.
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1R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Clarendon Press, Oxford, 1934), p. 272.

However, we shall show here that the active gravi-
tational mass of a system is made up of the energy of
the walls and other material plus the energy of radi-
ation, divided by ¢?, without the added factor of two,
provided that the gravitational fields internal to the
system are weak.

II. ENCLOSED RADIATION

Tolman’s argument is based upon an expression for
the distant gravitational field which involves only the
classical stress-energy tensor T',,. The reasoning applies
to a wide class of cases roughly describable as quasi-
static. Included in such cases are those in which the
matter is confined to some limited region. This region
is considered to be small as compared to the distance
at which its gravitational field is to be measured.
Moreover, within this region the behavior of the system
is not significantly influenced by its own gravitational
field. When these conditions are satisfied, and when
the distant metric field is expressed in a form, ‘

ds?= — (14-2m*/7) (dx*+dy*+dz2)+ (1—2m* /r)d2, (1)

which reveals the mass of the system, m= (c/G)m*, or
its energy E=mc=(c/G)m*, then Tolman’s argu-
ments? give for the energy of the system the value

me*= (¢4/G)ym*= f (TA—=T1'~T32—TH)(—g)dx. (2)

Since the electromagnetic stress-energy tensor has
zero trace, it follows that T'# equals — (T4 T 2?4 T5%).
Therefore according to (2), Tolman argues, the system

2 See Tolman, reference 1, p. 235, Eq. (92.3).
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exerts twice the long-distance gravitational pull that
would be expected if 74 alone contributed.

However, the terms 7114 75*4T5® describe the radi-
ation pressure. If this pressure is confined by non-
gravitational means, there must be walls under tension
to counterbalance the pressure. The integrated value of
these negative pressure terms or tensions will contribute
to (2) a term which just counterbalances the increased
gravitational effect of the confined radiation.

III. GENERAL CASE

Quite generally, if the conservation laws (8/9x”)
X (—g)#T,»=0 hold, (as they do in most cases except
for small gravitational effects which we have assumed
negligible) and if the system is quasi-static, we can
show that the integral of 7'+ 72+73® is always zero.
In physical terms, the pressure in the region where the
radiation is contained balances the tension in the region
of the walls. In mathematical terms, consider an %, a?
plane, @i, passing through the system. The rate of
change of momentum, 7'1* on either side of the plane is
given by =4/ T:i'(—g)¥da;. As the system is quasi-
static, the time average of this integral must be zero.
Consequently the time average of the integral
S T (—g)ld*x= fda' S T1(—g)*da, also vanishes.

Thus we can see that where conservation laws apply
to the electromagnetic stress-energy tensor in and by
itself, as they do when gravitational effects are neg-
ligible, then the above rule (2) from general relativity
leads to the same result for the distant gravitational
field as does the classical formula

met= f Ti4(—g)d. (3)

IV. COULOMB BINDING

In a concrete example let us see that Egs. (2) and
(3) give the same result. Consider the Coulomb binding
of, say, an electron in an atom. We cannot evaluate
integrals of the electromagnetic stress energy tensor
directly, because of the self-energy difficulty, but we
can evaluate changes in these integrals when the
electron loses energy and spirals in from one state of
motion to another. The virial theorem tells us that the
field energy, A, which is lost, and which describes the
change in potential energy of interaction of the particles,
goes half into changing the kinetic energy of the par-
ticles and half into energy radiated away.

Thus when the energy due to the fields /S (7's%)r
X (—g)¥d*x goes down by A, the energy due to the
particles, S (Té),(—g)¥d® goes up by 2A. Now as
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(T4-T24+ T3 p=— (T4 r, the integrated field pres-
sure term changes by +A. The integral of the corre-
sponding term for the particle, (T14T2+T5),,
equals —m?, and therefore changes by theamount A also.
For the total stress-energy tensor T,’= (T'.*) p+(T'*) p,
changes in the integral of (T\*+T?-+T15%) just cancel,
as required (Table I).

TasirE I. Changes in energy of particles and fields when
radiation escapes from the system.

Particles  Fields Total
T4 +31A —A  —%}A=change in inertial mass
Ti4T24+T§ —A +A 0
Total —%$A=change in active mass

V. THE QUASI-STATIC REQUIREMENT

Our results are based on Eq. (2) which holds, ac-
cording to Tolman, when the integral

1 s 0%
— | gof— )d%,
8 at 6g4°‘5

on the time average equals zero.?

It is apparent that when gravitation effects are not
important, then, if we write g*f=q,*f+q,*%, where
a.%f is the time-independent part and g.,%f is the small
time-dependent part, the integral, can be rewritten as
the sum of two terms, the term linear in ¢,*# giving
zero on the time average, and the term quadratic in
§:%® being negligible.

The relation (2), however, has a larger potential

applicability. If

3/ IR

gef— )=0 (4)
at 6g4°‘ﬁ

is introduced as a coordinate condition, then in these
special coordinates (2) may always be applied. How-
ever, care must be exercised in interpreting the result.
The boundary conditions on the distant field (1) are
compatible with (4) as a coordinate condition, and
therefore the integral (2) can be applied to determine
the constant »* in (1). However, it may be, and in
general will be the case that (4) will be incompatible
with (9/0x")[(—g)*T,*]=0, because in the odd new
system of coordinates gravitational forces will zof any
longer be negligible in comparison to the electromag-
netic stresses. In such instances it will no longer be true
that the integral S (T1+T24T3)(—g)id% equals
Z€r0.



