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presumably arises from the notion that energy could
be radiated indefinitely as a consequence of the con-
tinued contraction of S. This would, however, involve
a continual increase of 0, so that to keep M positive—
which it must be according to (10.1)—Mo must also
continue to increase. In Newtonian terms, the work
done by the gravitational held to an ever growing
extent is limited to merely increasing the "mechanical"
energy of S. (Indeed, Birkhoff's theorem here says just
this: namely, that in a spherically symmetric process
without radiation, all the gravitational work done goes
towards increasing the mechanical energy of S.) It
should also be kept in mind that any radiation emitted
by S will suGer an ever-increasing "red-shift, " as seen
by 0, as the contraction proceeds. However, the simple
argument presented above avoids any difficulties which
might be encountered if one tried to answer the question
by considering the details of the mechanism of
contraction.
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APPENDIX I
Throughout this paper all formal developments are

carried out in a particular coordinate system, ~is., that
in which the metric takes the form

ds'= c'e "dt' e"dr' r'(—d8'+si—n'8dgP) (I.1)

in which ) and v are functions of r only. The energy-
momentum tensor is diagonal with T~' ——T2' ——T33= —p,

T4'=pe2, where p is the hydrostatic pressure and pc'
the energy density, which includes all forms of energy,
with the exception, of course, of gravitational energy.
p and p are scalar quantities and it is supposed that
neither can be negative. The field equations are then

S~kc 4r'P=e "(rr'+1) 1,—

S~ke 'r'p=e "(rX'—1)+1,
(I 2)

(I.3)

k is Newton's constant, and primes indicate di&er-
entiation with respect to r. The cosmical constant has
been taken as zero. If one adds (I.2) and (I.3) one has

e "(X'+r') =S7ikc 4r(pe'+p).

APPENDIX II

(I.5)

The spherical symmetry of a metric (which may be
nonstatic), i.e., its invariance under the group of spatial
rotations, requires that it be of the form

ds'= e"dt'+2qdrdt e"dr' r'—e"(d8'+—sin'8dqP), (II.1)

where X, p, v, and q are functions of r and t. Since one
has the freedom to replace r and t by new variables
which are functions of r and t one can always arrange p,

and q to be zero. Then of the resulting field equations
(see reference 12, p. 251), the only one explicitly
required here is that corresponding to (I.3), i.e.,

Smr'T 4=e "(rX'—1)+1, (II.2)

from which Eq. (10.1) of the text follows at once if one
takes into account that at r= a the metric must go over
into the Schwarzschild exterior solution.

P H YS I CAL REVI EW VOLUME 116, NUMBER 4 NOVE M B ER 15, 1959

Upper Bounds on Scattering Lengths for Static Potentials*

LARRY SPRUCH AND LEONARD ROSENBERG
Physics Department, Washington Sglare College, Eem Fork University, Rem Fork, Rem Fork

{Received June 22, 1959)

It is shown that in the zero-energy scattering of a particle by a center of force, where no bound state
exists, the Kohn variational principle provides an upper bound on the scattering length. A bound may also
be obtained from Hulthen's method, although with the same form of trial function the Kohn result will be
lower (and therefore better) than the one obtained from the Hulthen principle. The Rubinow formulation
need not provide a bound; for those calculations which have been performed in this form, the results may be
converted without any further calculations so that they correspond to the Kohn form, and therefore, under
the circumstances considered, do give a bound. Analogous results hold for states of nonzero orbital angular
momentum. Direct generalizations of the above results are valid for scattering by a compound system.

1. INTRODUCTION

ARIATIONAL methods have proved to be of
great value in the theoretical analysis of the

problem of the scattering of a particle by a center of
*The research reported in this article was done at the Institute

of Mathematical Sciences, New York University, under the
sponsorship of' both the Geophysics Research Directorate of the

force. However, the utility of variational techniques in
the more complicated problem of scattering by a com-
pound system is considerably impaired by the fact that
it is more dificult, in the many-body problem, to
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construct accurate trial functions, and a variational
calculation, using a poor trial function, will generally
lead to poor results. In fact, these calculations will only
be meaningful when accompanied by an affirmation of
validity, using some reliable criterion. It is our purpose
to present one such rigorous validity criterion for the
case of zero-energy scattering. The present discussion
will, for the sake of clarity of presentation, be confined
to the problem of scattering by a static potential; the
generalization to the more interesting problem in which
the scatterer is a compound system is given in a paper'
which will be referred to in the following as II.

The problem of obtaining rigorous bounds on the
error made in a variational calculation for the scattering
by a. center of force has been considered previously by
a number of authors"; perhaps the most satisfying
solution is that due to Kato. ' As a special case of the
Kato method, it has been shown4 that if no bound state
exists for the potential considered, then the Kohn
variational principle' provides an upper bound on the
scattering length. Since the scattering length is one of
the two parameters which completely characterize the
low-energy scattering in the shape independent approxi-
mation, its determination is of great importance. The
proof involves an application of a theorem proved by
Levinson. In Sec. 2, an alternate proof, entirely
independent of the Kato method, will be presented.
The advantage of this alternate proof, in addition to its
directness and simplicity, lies in the fact that its
generalization to the case of scattering by a compound
system is straightforward. On the other hand, using
the Kato approach, one encounters the difficulty that
a rigorous proof of the generalization of Levinson's
theorem to the many-body problem has not been given.
Indeed, in the case where there are identical particles
in the system, the statement of the theorem cannot be
taken as a direct extension of the one given by Levinson,
but rather requires some modification. (This problem
has been considered by Swan~ who presents a proof of a
theorem which takes into account the modification

required by the Pauli principle. However, the basic
equation studied by Swan is the one appropriate to the
static approximation and the general proof has not

r L. Spruch and L. Rosenberg, Phys. Rev. (to be published).
'W. Kohn, Revs. Modern Phys. 26, 292 (1954); T. Kikuta,

Progr. Theoret. Phys. (Kyoto) 12, 225 (1954); 12, 234 (1954);
J. Keller, Nuovo cimento 5, 1122 (1957); I. C. Percival, Proc.
Phys. Soc. (London) A70, 494 (1957).

s T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 295 (1950); 6, 394
(1951);Phys. Rev. 80, 475 (1950).For some extensions and reane-
ments of the method, see L. Spruch and M. Kelly, Phys. Rev. 109,
2144 (1958); and L. Spruch, Phys. Rev. 109, 2149 (1958).

4L. Spruch and L. Rosenberg, submitted for publication in
Phys. Rev.

~ W. Kohn, Phys. Rev. 74, 1763 (1948).
6The theorem states that for the zero energy, zero orbital

angular momentum scattering of a particle by a center of force,
the phase shift is nm, where n is the number of bound states of
zero orbital angular momentum. For the proof, see N. Levinson,
Kgl. Danske Videnskab, Selskab, Mat. -fys. Medd. 25, No. 9
(1949).

~ P. Swan, Proc. Roy. Soc. (London) A228, 10 (1955).

been given. ) Further, the generalization of the Kato
formalism itself to include the eGects of the Pauli
principle has not been made; there are certain difficulties
here which do not arise in the case of scattering by a
compound system with no identical particles (though it
appears that there exist some cases, at least, where these
difhculties could be circumvented).

Under the circumstances considered, namely zero-
energy scattering with no bound states, it is found that
the Hulthen variational principle, ' as well as the Kohn
principle, gives an upper bound on the scattering length.
The Born approximation also provides an upper bound,
since it may be derived from the Kohn principle. While
the Rubinow formulation' need not give a bound, for
those calculations that have been performed in the
Rubinow form, it is a trivial matter to convert the
results to the Kohn form, thereby obtaining a bound.
A numerical example, using a square well potential
with a repulsive core, is presented in Sec. 3 to illustrate
some of these points. The extension to the case of
higher angular momenta is presented in Sec. 4.

2. THE STATIC PROBLEM

The zero-energy scattering of a particle of mass m in
a static central potential, V(r), is described by a func-
tion, u;(r), the true partial wave of zero orbital angular
momentum, which satisfies the diGerential equation

W( )—= —(2m/k') V(r).

The subscript i will be used to distinguish between the
two standard types of assumed boundary conditions: '

u, (0)=0, i =1, 2,

ui(r) —& A r for r —+ ~,—
u, (r) —+ 1—r/A for r —+ ~.

Here A is the scattering length, which is related to the
zero-energy cross section, o (k=0), by

o (k=0) =4srA'.

The connection between the scattering length and the
zero angular momentum phase shift, p, at zero energy is

—A i= (k cotr))s s.

We now introduce two trial functions, u;& (i=1, 2),
satisfying the boundary conditions

u, ,(0)=0, i=1, 2,

ui, (r) —+ A, r for r —& ~, —
us, (r) —+ 1—r/A~ for r~ ~,

L. Hulthen, Kgl. Fysiograf Sallskapet. Lund Forh. 14, No. 21
(1944).' S. I. Ruhinow, Phys. Rev. 98, 183 (1955).
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where A&, the trial scattering length, is an arbitrary
constant which may in fact be chosen diBerently in
xi& and Nm&. It will always be assumed that I;&(r) is
continuous and has a continuous first derivative. With
w;(r) defined by

w, (r) =N, ,(r) —I;(r), i=1, 2,

To formally prove the inequality, Eq. (2.3), it is
first noted that if no bound state exists, 2 is a negative
definite operator on the space of quadratically inte-
grable functions (i.e., H is positive definite). Now wi(r)
approaches a constant value for large r and is therefore
not quadratically integrable. If, however, we define

the Kato identity for zero-energy scattering, taking the
alternate forms

we have

A =Ay —~ sig&Nie&+ wiZwidr (2.1) M (&)= w (r,X)Zw (r,X)dr(0, X)0.

A i S2iZQ2idr+ w2Ziw2lr (2.2)
To show that Mi(0) is not positive, it remains to show
that M&(X) is continuous at X=O. This is immediately
verified. Thus, we have

may be shown to hold. (All integrals will be understood
to have the limits zero and infinity. )

The above results will be rederived in Sec. 4 in a
form valid for partial waves of arbitrary angular mo-
mentum. If, in Eqs. (2.1) and (2.2), the second order
term, t'w;Zw, dr, is dropped, two diferent forms of the
variational principle for the scattering length are ob-
tained. Kato goes further: his method, which is appli-
cable to nonzero energies as well, is concerned with
obtaining bounds on the second order term, thereby
providing bounds on A (or k coty for kNO). While we
will use the Kato identity in its zero-energy form,
Eqs. (2.1) and (2.2), it is noted that the Kato method
for obtaining bounds on t'w;Zw;dr will not be used at
all in the present paper.

Rather, as will now be shown, in the particular case
where the potential cannot support a bound state, we
have the simple result that

Mi(X) —Mi(0) = wi(r)Le '""—17gwi(r)dr

f+~' J" wi'(r)e ' 'dr 2X I wi(r)w—i'(r)e '""dr.

A &A g
— Ng]Zuggdr, (2.4)

with

(2.5)

Each of the three terms may be seen to be arbitrarily
small, in absolute magnitude, for ) suKciently small;
explicit use is made of the fact that

~
wi(r)

~
is bounded

from above for all r, and that wi'(r) —&0 for large r.
The desired inequality has thus been established.

We therefore have the result that if no bound state
exists, the scattering length satisfies the relation

where H is the reduced Hamiltonian of the system.
(The case i=2 will be considered later. )

Before proceeding to the proof we wish to distinguish
between the two separate reasons for which the present
method is restricted to the case where no bound states
exist. Firstly, if a bound state is possible the competing
process of capture with the emission of a gamma ray is
possible and the e6ect of the center of force on the
incident beam of zero energy cannot be completely
characterized by a single real scattering length. This is
not the essential point, however, since the approxima-
tion of ignoring the radiative capture process is often
an extremely good one, and we have been able to
develop Inethods which, to the extent that this approxi-
mation is in fact valid, do provide rigorous upper
bounds on the scattering length. (A report of this work
has been submitted for publication. ) However, Eq. (2.3)
will rot be generally valid in these cases simply because
m~ might contain a sufhcient amount of the bound-state
wave function to make t wiZwidr positive.

where

BQ/BAi=0,

BQ/Ba„=0, m=1, 2, , iV,

Q=A —I,

(2 6)

The right-hand side of Eq. (2.4) corresponds to the
Kohn variational approximation to the scattering
length and, as we now see, always gives a value which
lies above the true scattering length under the specified
condition.

7Vhile any choice of the parameters in the trial func-
tion will lead to a bound on A, we now consider the two
particular alternative prescriptions which are widely
used in scattering problems for evaluating the varia-
tional parameters in a trial function. Assume that the
trial function contains %+1 variational parameters,
one of them being the trial scattering length, A &. If one
applies to Eq. (2.4) the method given by Kohn, the
X+1 equations are taken to be
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with

Nsz(0) =0,
Nsz(r) ~ 1—r/Az fol' r ~ oo.

(2.9)

It may be mentioned that if no bound state exists
and if A is positive, it is possible, on the basis of an
application of the Kato method, to say more about
Eq. (2.8), namely that it provides a lower bound
on A '; no bound need be obtained from Eq. (2.8)
if A is negative. "While this additional result can pre-
sumably be derived using the present method as well,
it is apparently much simpler to deduce it from the
Kato formalism where direct use can be made of the
Levinson theorem.

Although Eq. (2.8) need not provide a bound, it is
clear that the results of those calculations which have
been performed with this variational principle can be
converted into a form corresponding to the Kohn
principle so that a bound can be obtained. Thus, if
Ag ' and

In the method of Hulthen, we have

Ig=0,
(2.7)

BIi/Ba =0, rz= 1, 2, , Jt'/.

While in general one cannot know which of these two
methods will give better results, it is interesting to note
that in the type of problem under consideration, namely,
zero-energy scattering and no bound state, the Kohn
method is de6nitely superior. This follows from the fact
that since Q is bounded from below, for a given form of
the trial function the variational parameters evaluated
according to Kqs. (2.6) give the smallest value for Q,
which therefore provides the closest approximation to
the true scattering length. LIf the variational param-
eters do not appear linearly in the trial function, there
will in general be more than one solution to Eqs. (2.6).
That solution which gives the smallest value for Q
should be adopted; it provides the optimum set of
values for the parameters. ) Further, if a second trial
function is used which is more flexible than the erst, in
such a way that for certain values of the parameters
the second form reduces to the first, then an improved
result is guaranteed if the Kohn method is used; no
such statement can be made in general for the Hulthen
method.

We have thus far been considering the results which

follow from Eq. (2.1). Turning to Kq. (2.2), we find

that an attempt to show, in a similar way, that
t'wsZwsdr&0 fails; the proof that

have been evaluated, we have, if we choose N~&
——3&N2&,

+g I2= NygZNygdr)

and we may write
(2.10)A&Ag —Ag'I2.

If Az is positive and if ~AzIs~ is small compared to
unity, this conversion, in addition to providing a bound,
will also provide an imProwd approximation to the
true scattering length. " In any case this conversion
does not provide the best result obtainable from Kq.
(2.4) for a given form of the trial function since the
optimum method for determining the parameters in the
trial function, which is given by Eqs. (2.6), has not
been employed. We thus sacriice some accuracy in
order to be able to utilize, with a minimum of effort, cal-

ws(r)e ""gLws(r)e "')dr

is continuous at ) =0 does not go through. The reason
is that the asymptotic form of ws(r) is (Az '—A ')r,
which violates one of the conditions under which the
continuity was established in the Grst case. Indeed, the
class of functions to which ws(r) belongs includes the
function ws(r) =r, for which the integral t'wsZwsdr is

equal to fr'W (r)dr, which may be positive even though
no bound state exists. "Of course, the variational prin-
ciple is still valid. It may be written

"Kato has given a one-parameter family of variational prin-
ciples for arbitrary scattering energy. For zero orbital angular
momentum it takes the form

k cot(zz —0) =k cot(zzz —0) — zzzzZzzzzdr,

with
Nzz(0) =0,
zzzz(r) ~ sin(kr+zzz)/sin(zzz —e) for r ~ ~.

(This notation divers slightly from that used in the papers of
Kato, where a bar serves to distinguish between exact and trial
values. ) The normalization parameter, 8, satis6es the relation
0&0&~. For nonzero energies the Kohn form follows from the
choice 8 =zr/2. At zero energy, it is obtained for orzy nonvanishing
value of 8; Eq. (2.8) corresponds to the choice 8=0. According to
the Kato formalism, in order that the variational principle provide
a bound (i.e., in order that the Kato eigenvalue, pf), be ininite) it
is necessary that p be less than 8. From Levinson's theorem, p ~ 0
as k -+ 0 if no bound state exists. If zz ~ 0 from above (i.e., if
A &0), then normalization with 0=0 must be excluded if a bound
is to be obtained.

"See Sec. 3 of reference 4.

A '=Az '+ ~gszkzzszdr, (2 8)

' In general, if the asymptotic form of the true wave function is
d(A —r), and that of the trial function is dz(Az —r), then the
difference function has the asymptotic form (d dz)r+dzAz dA;— —
for d=dt, the variational principle provides a bound on A if no
bound state exists. This case is entirely equivalent to the one
discussed above, with i= 1.The result does not hold in general for
d~d].



L. SPRUCH AND L. ROSEN 8 ERG

where

ur((r) = A(y(r)+—A ( r, —

y(0) =1
y(r) -+0 for r~ ~,

(2.11)

(2.12)

with y(r) independent of A~. Equation (2.4) now takes
the form'4

where

A&Ay —2BAg —CA)',

A~= —)" IIr(r)rsdr,

(2.13)

8= 8'(r)r(y —1)dr, (2.14)

r rdy'i '
C= ' —

~~
—

(
+II'(.)(y—1)' dr;

A~ is the Born approximation to the scattering length.
If A, is determined variationally, Eq. (2.13) becomes

culations which have already been performed. Actually,
as we shall shortly see, it will often be possible to
choose the best value of one of the parameters, A~,
while readily utilizing other calculations.

Since a number of variational calculations have
appeared in which an inside wave function' " is em-

ployed, it is useful to re-express the preceding results in
a form which contains such a function explicitly. To do
this, we write the function nI& as

where A&, 8, and C are given by Eqs. (2.14). This is
just the zero-energy form of the variational principle
given by Rubinow. "For those calculations that have
been performed using the Rubinow principle, the results
may be reanalyzed by rearranging the known quantities
A~, 8, and C according to Eq. (2.15). A consistency
check on the calculation may be obtained by comparing
the two variational approximations to A; if the trial
function is an accurate one, the two results should
diGer by only a second order quantity. Further, if no
bound state exists, Eq. (2.15) will provide a bound on A
while Eq. (2.16) need not do so in general. An example
in which this conversion provides, in addition, an
improved approximation to the true scattering length,
for the case of m-D quartet scattering, is given in II.

It should be pointed out that we have presented two
methods for converting the results of calculations based
on Eq. (2.8) to those corresponding to the Kohn form,
Eq. (2.4). If the integrals Ag, 8, and C are known, the
conversion should be made with the aid of Eq. (2.15)
rather than with Eq. (2.10), since the former employs a
variationally determined value for the parameter A &

which, as we have already seen, represents the optimum
choice. Since the value of A~ used in Eq. (2.10) is
determined by nonoptimum considerations, the bound
obtained in this case would not be as good.

The question naturally arises as to how one would
know that no bound state exists. For the case of the
static potential, one can attack this problem theoreti-
cally; for example, it is known" that no bound state of
angular momentum J can exist if the condition

A &A g+8'/C. (2 15) (2m/A')
~
V(r)

~

«r & (2L+1)

Since C must be negative Lthe right-hand side of
Eq. (2.13) is bounded from below), the bound obtained
from Eq. (2.15) is an improvement over Az. This is an
example of the special property, mentioned previously,
which the Kohn principle assumes in the case of zero-

energy scattering with no bound state, namely, that a
more flexible trial function must lead to an improved
result.

If Eq. (2.8) is used, the trial function may be written

sos)(r) = y(r)+1 r/A, . — —

Here y(r) need not be identical to the y (r) which appears
in Eq. (2.11) but is chosen to satisfy the same boundary
conditions. The analog to Eq. (2.15) is then

A '=A~ '(1+8)s+C, (2.16)
"H. Feshbach and S. I. Rubinow, Phys. Rev. 88, 484 (1952).' Note that if y(r) contains linear variational parameters, then

by virtue of the appearance of A& as a factor in Eq. (2.11),
Kq. (2.13) is not a quadratic form in the linear parameters. In
this case the parameters cannot be determined by solving a set of
linear equations. One could remedy this of course by rede6ning
the linear parameters in Eq. (2.11) but one would not then obtain
the form, Eq. (2.15l, which we find useful to consider.

is satisied. Unfortunately, no such general condition is
known for the many-body problem. It is, however,
perfectly permissible, for both the one-body and the
many-body problem, to utilize the experimental infor-

mation, where available, that no bound state exists.

3. ILLUSTRATIVE EXAMPLE

As an example we consider the problem of zero-

energy neutron-proton scattering in the singlet state,

15 In a similar way, the general form of the Rubinow principle,
for k/0, may be derived from the Kato variational principle with
0=0 (see footnote 11). In fact, as Kato has already pointed out
(see the third paper mentioned in reference 3), many of the
variational principles which have appeared in recent years, e.g.,
those of Hulthen, Kohn, and Schwinger, may be derived from the
Kato variational principle with particular choices of the param-
eter 0 and of the form of the trial function. Of course, each of these
principles has its own particular properties which should be
separately investigated. But the ability to display one variational
principle containing other principles as special cases makes it
easier to compare their relative merits. Further, it appears that
if one wishes to generate new forms of the variational principle,
the Kato form presents an ideal starting point.' R. Jost and A. Pais, Phys. Rev. 82, 840 (1951);V. Bargmann,
Proc. Natl. Acad. Sci. U. S. 38, 961 (1952).
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Free parameters

One (a =0)
Two

I
Hulthbn

—19.46—23.670

II
Kahn

—19.49—23.671
—25.55—23.67

TABLE I. Variational results for the neutron-proton singlet
scattering length (expressed in units of 10 "cm) calculated with
the trial function given by Eq. (3.1). A square well potential
with an infinitely repulsive core was assumed, for which the exact
scattering length, A, is —23.75 X 10 "cm. The results in columns I
and II were obtained from the variational principle given by
Eq. (2.4); those in column III were obtained, with an appropri-
ately altered trial function, from Eq. (2.8). In agreement with the
discussion in the text, these results, for each row, satisfy the
relations I)II)A; III may lie above or below A.

scattering length. This is illustrated in the present
example where, with A~ ' set equal to zero, the varia-
tional estimate lies below the true scattering length.
While not a bound, it is actually better than the Kohn
and Hulthen results obtained with one free variational
parameter. If the scattering length is negative, it may
be expected, with a sufficiently accurate trial function,
that Eq. (2.8) will lead to lower estimates of A than
those obtained from Eq. (2.4). Since these estimates are
not bounds on A, no general statement can be made
concerning the relative accuracy of the two variational

principles, unlike the situation previously described for
positive scattering lengths (see Sec. 2).

ur, (r) =0, r(c,

assuming a schematic potential of the form

V(r) =+~, r&c,
= —V„ c&r&b+c,
=0, b+c&r,

with b=1.9 f and c=0.4 f (f= 10 " cm). The form of
the potential and the values of b and c are those chosen

by Gomes, Walecka, and Weisskopf. " The potential
strength, Vo, however, is not their value but is chosen
to give the experimental singlet scattering length,
A = —23.75 f; we obtain Web'—= (2u/A') Veb'=. 2.319.
With this potential, which does not have a bound
state, a calculation of the scattering length is performed
using the Kohn variational principle, Eq. (2.4). The
trial function is taken to be of the form d2

Zu(r) —= +lV(r)—
L(L+ 1)

u(r) =0;
r2

4. HIGHER ANGULAR MOMENTA

The discussion in Secs. 2 and 3 was confined to the
case of zero orbital angular momentum. Similar results

may be obtained for states of higher angular momenta.
In particular, if no bound state exists in a state with

orbital angular momentum quantum number I., then

the Kohn variational principle gives a bound on the
parameter which characterizes the asymptotic form of
the zero-energy partial wave of angular momentum L,
uz, (r). The proof, given below, is a direct generalization

of that presented in Sec. 2 for the case I=0.
The differential equation satisfied by uz, (r) at zero

energy is

= Q a„(r c)", —c&r&b+c,
the boundary conditions are taken to be

(3.1)
n=l

=A)—r, r&b+c

B(0)=0,
u(r) —& r+'+Arr z/—(2L+1) for r ~ ~. (4.1)

The free variational parameters in the trial function
were evaluated according to both the Kohn and
Hulthen methods, Eqs. (2.6) and (2.7), respectively;
the results are presented in Table I. While the superi-
ority of the Kohn method over that of Hulthen is
barely discernible in this simple one-body problem, its
recognition might very well provide a decided advantage
in more complicated many body problems. In fact, an
example in which the superiority of the Kohn form is
significant is presented in II, where previous variational
calculations for the rI;D quartet scattering problem are
considered.

If we renormalize the trial function by multiplying

through by A &

' it may be used to obtain results corre-

sponding to the variational principle given by Eq. (2.8).
Results appear in Table I. We have previously observed

(see Sec. 2) that the variational principle, Eq. (2.8),
need not in general provide an upper bound on the

Comes, Walecka, and Weisskopf, Ann. Phys. 3, 241 (1958).

Note that Al, has the dimensions of a length only for

L=O. We now introduce a trial function, u, (r), which

satisfies the boundary conditions

ug(0) =o,
u, (r) ~ r+'+Az, &r z/(2L+1) —for r —+ eo,

(4 2)

where A 1.& is an arbitrary parameter. The Kato identity
for this system will now be derived. We define

fE= (uZu, uZu)dr, —

and evaluate it in two ways. Since EN=0, we have

The subscript I. has been dropped, except on A~, A~&,

and the phase shift, gl, . The connection between Al,
and ql, is given by

Ar, = [1X3X' ' ' X (2L+1)7 (tantir, /k )y=o.
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immediately

On the other hand, integration by parts gives

where use has been made of Eqs. (4.1) and (4.2). If
these two forms for E are equated, and the function
=—m&

—I is introduced, the identity,

l

A I.=A r, ( )N(Z—N,dr+ w comdr,

A r, &A r, , )N, )ZN, dr, — (4.3)

therefore holds. Just as in the case for L= 0, the validity
of this result depends on the chosen asymptotic form
for the wave function. If, for example, we replace
Eqs. (4.1) by

N(0) =0,
u(r) ~ —(2L+1)Ar, 'r +'+r ~ for r-+ m,

with similar boundary conditions on e, (r), then the
difference function, m, increases as r +' for large r. It is
not true that Z is negative definite for functions of
this type, as may be seen by considering the particular
function m=r +', for all r. The variational principle

with

A I, '=A r, , '+,"N, Zu, dr,
—-

J

N, (0)=0,
Ng(r) -+ —(2L+1)Ar, , 'r~ +r for r —+ &x&

is valid nevertheless.

is obtained. With the assumed normalization, m has the
asymptotic form

w~ (Aq, , Ar,)r ~/—(2L+1) for r —& ~,
and is therefore quadratically integrable for L)0. It
then follows, without the necessity of performing any
limiting processes for L&0, that since no bound state
exists, J'mZwdr is negative; the inequality

5. SUMMARY

The results obtained apply to the problem of the
zero-energy scattering of a particle from a center of
force where no bound state exists. The following proper-
ties may then be attributed to various forms of the
variational principle.

(1) Upper bounds on the scattering length are pro-
vided by the Kohn principle, the Hulthen principle,
and the Born approximation.

(2) The prescription given by Kohn to evaluate the
variational parameters fEqs. (2.6)$ should be used
rather than that of Hulthen LEqs. (2.7)j since in the
former case the bound obtained lies closer to the true
scattering length. It has the further advantage, not
present in the Hulthen method, that the use of a more
Qexible trial function, which reduces to the original
trial function for certain values of the parameters,
guarantees an improved result.

(3) While the Rubinow formulation does not gener-
ally provide a bound under the circumstances con-
sidered, the various integrals which enter into the
variational expression for the scattering length may be
rearranged in such a way that a result corresponding
to the Kohn form is obtained. Consequently, calcula-
tions based on the Rubinow form which have already
been performed may be used to obtain a bound with
only a trivial amount of additional labor required.

(4) In the more special case where the scattering
length is positive and the trial function is suSciently
accurate, such that third order terms can be neglected,
the conversion from the Rubinow to the Kohn form,
in addition to providing an upper bound, may be
expected to give an improved approximation to the
true scattering length.

The extension of the present technique to the case of
scattering by a compound system has been developed
and has been applied to the problem of zero-energy m-D

quartet scattering. In particular, the prescription given
in Sec. 2 for converting from the Rubinow to the Kohn
form of the variational principle enables one, by means
of a reanalysis of the data of a previous calculation, to
deduce, in addition to a bound, a significantly improved
approximation to the true scattering length. '

The further extension to the cases where composite
bound states exist has been performed. "Applications
to zero-energy singlet e -H scattering and to doublet
m-D scattering have been completed and will be reported
on in the very near future.

' Rosenberg, Spruch, and O'MaIley, submitted for publication
to the Physical Review.


