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found. in the present experiment fall into a region in
which the Weizsacker-Williams picture is not valid.

Furthermore, the present results are not necessarily
in disagreement with those electron experiments in
which the measured cross section has appeared to be
larger than that predicted by the theory. The theory
takes into account only the type of interaction repre-
sented by the Feynman diagram of Fig. 4(A); the
process portrayed by the diagram of Fig. 4(B) is
neglected. Process 8 is certainly of negligible importance
for incident particles as heavy as muons, but may
make a considerable contribution to the probability of
direct pair production by electrons. For completeness,
it should also be noted that no direct pair theory has

yet included the effect of exchange on the electron
cross section, which would probably reduce the theo-
retical value.
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In Part I of this paper certain well known results concerning the Schwarzschild interior solution are
generalized to more general static fiuid spheres in the form of inequalities comparing the boundary value of
g44 with certain expressions involving only the mass concentration and the ratio of the central energy density
to the central pressure. A minimal theorem appropriate to the relativistic domain is derived for the central
pressure, corresponding to a well-known classical result. Inequalities involving the proper energy and the
potential energy are also considered, as is the introduction of the physical radius in place of the coordinate
radius. A singularity-free elementary algebraic solution of the field equations is presented and exact values
obtained from it compared with the limits prescribed by some of the inequalities. In Part II an answer is
given to the question whether the total amount of radiation emitted during the symmetrical gravitational
contraction of an amount of matter whose initial energy, at complete dispersion, is W'0 can ever exceed 8'0.

PART I

1. Introduction

V ARIOUS questions concerning Quid spheres in
static (thermodynamic) equilibrium in the con-

text of the general relativity theory are treated not
infrequently on the basis of special models, i.e., of
special explicit solutions of the field equations, the best
known of these probably being the so-called Schwarz-
schild interior solution. In particular, it is known for
this solution that —in terms of the usual coordinate
system (see Appendix I)—the ratio of the total mass
M to the (coordinate) radius R of the sphere cannot
have a value greater than 4/9, or 5/18 if the trace of the
energy-momentum tensor is postulated to be non-
negative. In other words, although the quantity

6= 1—2M/E

certainly must not be negative, this particular solution
does not allow 6 to approach zero but prescribes the
minimum value —,. This limitation arises essentially

*On leave from the Physics Department, University of Tas-
mania, Hobart, Tasmania, Australia.

' R. C. Tolman, Phys. Rev. SS, 364 (1939l,

from the condition that g44 must not be negative
anywhere. It should be noted that the result M(4R/9
depends upon the coordinates used. However, one may
replace R by the physical radius R* of the sphere, and
then in this case one has &&0.3404'~, which repre-
sents an ieeuriamt limitation upon the mass of the
sphere (invariantly defined in terms of the motion of a
test particle "at infinity") if its radius be prescribed.
Again, one may calculate quantities such as g44 at the
center of that Schwarzschild sphere whose central
pressure is just one third of the central energy density,
an.d this turns out to be 4, which shows clearly the
strongly non-Galilean character of the metric; and so on.

Now, instead of having results of this kind available
for a few special models it seems desirable to establish
analogous general results for arbitrary static Quid

spheres in the form of inequalities, the distributions
being subject only to some limitations of a general kind.
The present paper accordingly makes a simple attack
on this problem. In Secs. 3 and 8 of Part I certain
limitations on 6 are established, it being supposed
alternatively that the density does not increase or does
not decrease outwards; and the possibility is taken into
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account of an u priori restriction upon the pressure to
density ratio, such as that which arises from the
postulate that the trace of the energy-momentum
tensor be non-negative. Section 4 generalizes the result
concerning the central value of g44 stated above for the
Schwarzschild sphere to more general distributions. In
Sec. 5, a minimal theorem is established for the central
pressure, corresponding to a well-known classical result,
while Sec. 6 deals with inequalities involving proper or
potential energies. An explicit, entirely elementary
algebraic, solution of the field equations, free from
singularities, is dealt with in Sec. 7, and the exact
numerical values computed from it compared with the
limits given by some of the general inequalities, by way
of example.

Part II deals with a problem of a rather different
kind. It answers the question whether in the sym-
metrical gravitational contraction of matter which is
originally in a state of complete dispersion —in which
state its energy is H/'0 —the total amount of energy
radiated can ever exceed 8"0.

(2 1)

p(r) =3p(r)/4irr' (2.2)

These quantities correspond, respectively, to the mass
and mean density interior to r as commonly used in
astrophysics. It must, however, be understood that in
the present context they are mere formal definitions
which have no invariant significance. (The true mean
density would be defined as fo" r'e"~'pdr/fp r'e"I'dr. )
With this in mind their classical names will nevertheless
be retained. To avoid the continual recurrence of certain
symbols one may also introduce the quantities

2. Auxiliary Equations

(a) It is convenient to introduce a number of aux-
iliary quantities in terms of which various equations
take on an easily surveyable form. Berne

(2.12) takes the form

dx/y,J,
(2.13)

« g(. ~)-f-=0, (2.14)

where g($) stands for ~~w, expressed as a function of p.
(b) If one (invariantly) imposes the condition that

p does not increase outwards, then it follows that

m'&0. (2.15)

If subscripts c and b refer to the center and the boundary
of the sphere, respectively, then one has for the "mass
concentration" 8,

Note that2
8=wi, /w, &1.

wg=M/R',

y
2

(2.16)

(2.17)

(2.18)

(2.18) follows from the continuity of ei at r =R. Further,
if it be known that the ratio pc'/3p is not less than a
certain value P ', then

entiation with respect to x, while (I.4) becomes

P,,= —(P+r7o'+3io) f,,/P. (2.10)

,/i , may be eliminated between (2.9) and (2.10),
glvlng

P'= —ry '(P+7o)(P+no'+3w). (2.11)

Alternatively one may eliminate I, in which case one
has

(1—2xu) f,„—(ne, ,+w) f',,——,'w, @=0. (2.12)

It will be seen that the last equation is linear in f if io,
that is p, be prescribed, and that it is also linear in m

if f be prescribed. It is therefore a very convenient
starting point for ending solutions of the field equations
in terms of known functions. For instance, it is not
difficult to choose w in such a way that (2.12) becomes
of the form of the hypergeometric equation of Gauss
or one of its concomitants (see for example Sec. 7). If
one introduces a new variable

P= (4n-k/c4) p,

w = (kn-k/3c') p.

(2.3)

(2 4)

rw'+3w&3P 'P,

and therefore, because of (2.15),

r2=X )

e v/2

y = (1—2r'io) &.

(2.5)

(2.6)

(2 7)

(I.2) then becomes
e—X y2 (2 8)

P= 2y'f, ,/i w, —(2 9)

where the subscript following a comma denotes differ-

Equation (I.3) of Appendix I now shows at once that
if e~ has no singularity at the origin then

p& pm.

3. Limitations on A When u'&0

(2.19)

(a) In this and the following three sections it will be
supposed that the density does not increase outwards.
This assumption is physically reasonable in the present
context, for a physical realization of such a Quid sphere
under highly relativistic conditions will essentially
involve nuclear matter, and it is diS.cult to visualize

~Where convenient the constants k and c will hereafter be
taken as unity. They are easily restored by inspection whenever
necessary.
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any circumstances under which this matter would
undergo a modiQcation (in the sense of phase change)
such that the total energy density might increase with
decreasing pressure. (Furthermore, a Quid sphere with

p increasing outwards would presumably be highly
unstable. ) In view of (2.15), Eq. (2.14) now yields the
inequality

(3.1)
whence

particular that any regular sphere with eon n-egative T
has

S&~(1+S)2. (3.11)

For P -+ 0 the inequality (3.10) is virtually empty for
one is then dealing with a classical distribution for which
5 —+ 1 in any case.

(c) A somewhat different inequality will appear
later )see Sec. 6(b)j as an incidental result. It is

Now
0,~).&f,~& (f.~) .

Q, s) g,
='y bf v'/2R =M/2R'= ,'w ~,

-
(3.2)

(3 3)
with

(3.12)

i'*= (1+0/3)/(1+0) (3 13)

in view of the continuity of f and 1' at r=R, keeping
in mind that the Schwarzschild exterior solution gives
f = (1—23'/r)' for r& R. (3.2) may be integrated from
r=0 to r=R, so that 1&8)~ (P+1)'. (3.14)

(3.12) is very weak when 8 is sufficiently small (see,
however, Sec. 6(b)). On the other hand, it is stronger
than (3.10) whenever

In view of (2.15), w)wq and therefore

y'& 1—2mex.
Hence

~'-f..&-', (1-y )=-:(1-~')
Since one must have f',&0 it then follows that

(3 4)

(3 5)

(3.6)

Incidentally it is not dificult to see that equality holds
only if p is constant and $,=0 The va. lie 9 is therefore
aN absolute lower limit for alt static fiuid spheres whose
deesi ty does rot increase oltmurds.

(b) An improved inequality may be obtained if it is
assumed that the restriction (2.19) is valid for some
value of P. With (3.3) the outer members of (3.2) give

while (3.5) yields
(f ~)&2w6,

f,(-,'(3Z'*—1).

(3.7)

(3.8)

1t 28 y'
6&—

] 1+
9 4 P+1)

(3.10)

In future the term "regular sphere" will designate a
sphere whose central density is finite, and whose density
does not increase outwards. It is generally held that the
trace T of the energy-momentum tensor cannot be
negative. ' In the present notation this means that the
value unity is to be assigned to P. Then (3.10) shows in

' E.g., L. Landau and E.Lifshitz, The Classical Theory of Fields
(Addison Wesley Press, Cambridge, 1951), Chap. 4, p. 89.

Applying (2.9) and (2.19) at the center, together with
(3./) and (3.8), one obtains

(P+1)w.&P.+w.=2(yf, ~/f'). &2(3h& 1) 'w&, (3.—9)

and. therefore

and. therefore
(P+1)w, f',=2 (f,,),&w„

f..& 1/(ted+ 1).

If the conditions at the center of the sphere are such
that P= 1 (suKciently nearly) they will be called
"radiation-like. " Then one has the result that any
regular sphere whose central condition is radiation-like
has

(g«).&4 ~ (43)
It follows that with any such sphere one must neces-

4. Impossibility of Certain Classical Distributions"

The basic equations of Newtonian gravitational
theory arise from Einstein s equations in erst approxi-
mation; and it is characteristic of this approximation
that the pressure does not enter into Poisson's equation
for the gravitational potential. When contemplating
distributions in which p becomes comparable with p
at the center, one might nevertheless be tempted into
believing that one could perhaps deal with the problem
by means of some set of equations, similar to the
classical equations (but supplemented by terms in-
volving the pressure), for instance when the mass of
the sphere is sufficiently small. In this section it will be
shown that this is not possible.

Equation (2.12) may be written

(yf.).*/(yf .*), = l*f/y'f *=, */(f'. + ),, (4.1)

because of (2.9). For a regular sphere, since E&0 and
zv, &0,

w,./(P+w) & w, ,/w,

whence it follows that yf', ,/w is an increasing function
of x. Hence, comparing its central with its boundary
value, one has

(f,*).&kw' (4 2)

Now if it be given that p, =3ipp, c', i.e., p,=pw„jt
follows from (2.9) and (4.2) that
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sarily operate with the field equations in the highly
nonlinear domain, and the equation cann. ot resemble
those of Newton's theory. Incidentally the condition
that ut, be finite is not necessary for the validity of (4.3).

5. Minimal Theorem for Pressure

A well-known theorem4 of classical astrophysics
states that the central pressure of a regularsphere
satisfies the inequality

6. Proper Energy and Potential Energy

(a) M, that is to say the field-producing mass of the
sphere as measured in terms of the motion of a test
particle at infinity, is at the same time the total energy
of the sphere including the gravitational field energy, '
i.e.,

M = (T4' T,' —T22 —Tp)—( —g) &d ~'is. (6.1)

p, & 3kM/Sv R'.

Equation (3.9) shows that

(5.1) The proper energy Mp on the other hand is defined as
the integral of the energy density p over the elements
of proper volume. Thus

P,& (M/R') [2/(3d l—1)—1/5]. (5.2)

When 8= 1, (5.2) indeed goes over into (5.1) as
M/R —& 0. However, for any given 6 there are values
of h for which (5.2) becomes empty. It is clearly
desirable to have an equality which does not exhibit
this feature. For this purpose consider the quantity

a=y '"(P+~-)l(P+~) (5.3)

.&(. ~), (~+—&)&(~ ~), 4 —~~&3(~ ~)—
Adopting equality in each case

n= 2i(4—38)', ~t= 2w, (1+n), $=2w, (1—n). (5.5)

With these values of the parameters involved, 1t is then
a nonincreasing function of r. Accordingly, comparison
of its central and boundary values then gives the
required result:

P,&3wt, (1—6")/2[(1+n)A"—(1—n)]. (5.6)

This is an appropriate generalization of (5.1), and when
M/R —+ 0, (5.6) reduces to (5.1), i.e.,

Then, using (2.11), one has

y'(P+k) (P+~)4'/4= (~ 8—) (P+—~) (P+r~'+3~)
+2n(ru)'+2w) (P+g) (P+q). (5.4)

The right-hand member of (5.4) will not be positive for
any value of r if the factors multiplying the various
powers of I' are separately nonpositive. Taking into
account that w'&0, and rw'+3w&0, this requires

~B ~R
M= dp(r), M, =

~l y
—'dt (r).

4p 0

(6.2)

The negative gravitational potential energy 0 is then

n=3f, —M&0. (6.3)

A peculiar difficulty enters into any attempt at esti-
mating maximum values of Mo on the basis of (6.2)
which arises from the fact that, for some r, y may be-

an &Icreasieg function of r. In other words, although
according to what has already been proved, y&&-,', it
is by no means known that y(r) & 3 for all r. Indeed, if
one considers for instance a sphere whose boundary
density is zero, then, as one goes inward from the
boundary, y(r) will decrease as long as p&-,'p. It is
diKcult to see whether regions in which y(r) &y& will
profoundly affect the value of the integral for 3SIp when
6 is of the order of magnitude 9. The following analysis
yields the best limitation upon 3fp I have been able to
develop, despite a persistent effort to improve upon it.
(See also Sec. 9.)

(b) The constants $ and it in (5.3) turned out to be
proportional to m„ the constants of proportionality
depending on 5. This suggests the replacement of $ and
it by the functions $w and ilaw, respectively, where $ and
rt are positive numerical factors, it&$. Proceeding as
before one soon finds that there do not exist any values
of $, it, and n such that one can conclude P' to be
certainly not positive for any r, unless some a priori
restrictions on the form of m are imposed. Consider
therefore now the function

P &3M2/2R4, (5.7) 0=~'y '"(P+4~)/(P+n~), (6.4)

independently of the value of 8 (5.6), like (4..3), has
invariant significance, for 6= (g44)i„and g44 behaves
as a scalar under transformations of the space co-
ordinates alone.

(5.6) incidentally implies yet another inequality
governing the minimum value of 6, but this does not
seem to be of any further interest.

4 A. S. Eddington, The Interval Constitution of.the Stars t,'Cam-
bridge University Press, Cambridge, 1926), Chap. 4, p. 91.

where $, rt, s, and n are all positive numbers, it& $. By
inspection of the factors multiplying the various powers
of P in the derivative of P, keeping in mind the regu-
larity of the sphere, one then Ands in the manner of
Sec. 5 that f'&0 provided

& (. ~)!(~+~), —
«(~-r)/(~+&), :n&~&. —

5 See reference 2, Chap. 11, p. 323.
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Again adopting equality in each case, there comes

s=m=-'„&=1, g=-3.

P is then a nonincreasing function of r; thus

(6.5)

one may apply (6.10), vis. ,

or

p
T

M, & —a~R+(R/2r) L(1+P)1+(1+9)-1jdh,
00

P,+w, P+w w' 1 wp&

zv,:) — —)—--
J',+3w, E+3w y 3 6'

(6.6)

w= const= u, (r& r,);
w= const= b, (ri&r&R),

(6.7)

where r&((R, and a))b. Then one would certainly
expect the limiting value of ~ to be close to j, yet b can
be made arbitrarily small. Now actually it follows from
(6.6) that

6&jwby'/w, (all r)

Hence in place of (3.12) one may write

(6.8)

(6.9)

In certain cases y'/w will have a maximum at r&0
rather than at r=0; and in the case (6.7), for instance,
one can indeed show that this maximum will have a
value arbitrarily close to 1/wb if a is suKciently large
compared with b and ri suKciently small. f

The first two members of (6.6) now yield, for all r,

y'/w& j/w„
whence

with

y& (1+r'r'/R') ',

r'= 2M/j bR,

(6.10)

(6.11)

so that a de6nite lower limit for y is thereby established.
(c) As a next step the integral (6.2) for Mo will be

given another form which will in any case be needed
later on. One has

p R

M = (r'w'+3r'w)y 'dr0 J

(y+ r'w/y) dr,

The outer members of (6.6) immediately give the
inequality (3.12). LThe following remarks concerning
the latter may be of some interest. In the case of certain
distributions the weakness of (3.12) seems very sur-
prising. Consider for example the sphere which has

Mo/R& 6'—+x[(1+r')'*+3 ar sinhr/rj. (6.13)

For the uniform sphere, in fact, Q=3M'/5R, in con-
formity with (6.14). If one considers Emden polytropes
as examples of nonuniform distributions, (6.14) is
somewhat weak'; a purely numerical crude approxi-
mation of 0 of the form

Q =—,'(1+1/58„') (M'/R)

for a polytrope of index e will, in fact, have s only of
the order of —,'.

7. Explicit Example

It may be of interest to compare some of the general
results obtained with exact data relating to an explicit
solution of the field equations. As a matter of con-
venience one may aim at a solution which is expressible
entirely in terms of elementary algebraic functions and
which is free from singularities at the origin. Now it is
easily confirmed that with the choice

2w= a/(1+ex), (a, c=const) 0), (7.1)

for example, Eq. (2.12) becomes a hypergeometric
equation:

~(i 1)f+—lf, '[&/(, ~—-c)jf'= —o, (7.2)

with &=(a—c)(1+ex)/a. By considering its general
solution one may then choose the ratio u/c to be such
that one or other or both of the independent solutions
of (7.2) become elementary functions. One such value
is 3~, and this will now be adopted. Then it turns out
that, with cx= $,

This, then, is the best upper limit for 3f0 which I have
been able to devise. An upper limit for the potential
energy is, of course, implied. It may be of interest to
examine its classical limit. In that case one may put
P=O, j 1=, while M/R is very small compared with
unity. Disregarding the case in which 8 is small enough
to cause v, nevertheless, not to be small compared with
unity, (6.13) gives asymptotically

Q&-', (1+1/5P) (M'/R)+0(M'/R') (6.14)

f =~ (1+&)'+2l(5+20) (2—«) '*.

on integrating by parts, and this may be written in the
c =y& it o ows irecty rom j7.1j that

required form,

(7.3)

R

Mo= —a'R+-', )" (y+y ')dr-
0

The integrand of the integral on the right is a mono-
tonically decreasing function of y when y&1. Therefore

One sees incidentally that certainly 6) 11/27 for any
such physically admissible solution. From (2.9) and

' See reference 3, Chap. 4, p. 89.
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TAaLE I. Comparison of parameters of special solution with general limits.

3
1
0.3~0

1.2826
1.0000
0.6335
0.3059

-(8/9)/1

0.1574
0.2500
0.4183
0.6496

~1—4p

0.1111
0.1736
0.2888
0.5271

1—(68/27)P

0.4381
0.5000
0.6122
0.7658-1—(8/9)P

0
0.1768
0.4302
0.7573~i —p

0
0.2500
0.5000
0.7629
~1—p

(7.3),

1-~=(9/4) (1+~)-L~(1-n(1+~):
-~(1+2~)(2-~)'3 (75)

The right-hand member of (7.5) must vanish at $= $~,
and the ratio A/8 is thus known in terms of j~. The
requirement (2.19) then implies

approximate Wyman's solution closely within the
mantle. Accordingly one may expect 6 to be less than
9 in suitable cases, and this feature will not be the
result of the existence of a singularity at the origin.

It turns out, however, that one can still derive for
spheres having w') 0 a result analogous to (3.6).
Equation (I.5) gives at once

(3—P)A &+2(5P+3)B. (7.6) (1/x)'&o, (8.1)

Inserting here the known ratio A/8, there comes

8P(2P+3)-(19P+6P+27)~.
6(3P'+—P+ )(('—kF)&o ( )

The largest and smallest numerical values respectively
of g~ and 6 as computed from (7.4) and (7.7) are given
in the second and third columns of Table I for a few
selected values of P. 6* is the value of the right-hand
member of (3.10), calculated with the values of 5 given
in the fifth column of the table, which are those of the
exact solutions. Actually, owing to the fact that ve

involves only a single parameter one may in this
instance express in (3.10) 6 in terms of 6 t see Eq.
(7.4)j, and so obtain an inequality which may be
applied without any reference to the exact solution.
The results are, of course, somewhat worse, e.g. , when
p= 1, 6* turns out to be 0.2500. Finally, in the last two
columns of Table I, the actual value of f, is compared
with 1/(P+1), (see Sec. 4).

8. Positive Density Gradient

(a) The spheres hitherto considered have all been
subject to the condition zv'&0. The question arises as
to what eRects the relaxation of this condition might
have. As mentioned in Sec. 3(a), spheres which have
m' not restricted to be nonpositive are not likely to be
of physical importance. Accordingly I shall content
myself with a brief discussion —analogous to that of
Sec. 3—of spheres which have m'&0 throughout. To
begin with, one would expect the restriction 6&—,'to
be no longer necessarily valid. Thus Wyman~ has given
a detailed discussion of the VolkoR sphere, in which
the density is constant but a singularity of e~ is allowed
at the origin. Such spheres can certainly have 6&—', .
Now the solution of the problem in which one has a
small core of constant density surrounded by a large
mantle of suKciently large constant density will

~ M. Wyman, Phys. Rev. 75, 1930 (1949).

which on taking boundary values into account gives

(8.2)

Equation (2.12) therefore gives rise to

(yf.*),.= 'w;fl-y & lw
Accordingly yf,'w&

, (—yf—)g ', w, b
—0,-——

(8.3)

(8.4)

by (3.3). Now, by hypothesis, w&w, everywhere, so
that

y'& 1—2r'z „
and therefore, in view of (8.4),

[1+-,' (1—2r'w, )-'*]'&0.

Comparing central and boundary values, this gives

6-'*+-,'(1—2E'w )-:&1 +-'&-'

which may be written

~'& 2(1—L1—(1—~)/~3} '.

Solving this inequality for 6, one finally obtains a lower
bound for 6 in the form

6& (43—1)
—'. (8.6)

(b) When &= ~ as a consequence of w. being zero,
(8.6) gives only &&0, which is empty. This defect is
the result of the weakness of the inequality which leads
from (8.4) to (8.5). Returning to (8.4) therefore one has

rwy 'dr, (8.7)

and the integral on the right is certainly positive.
However, it is scarcely worthwhile to pursue the some-
what unphysical situations of this section any further,
except for the remark that since 1'&0 (if only I'+w
is not negative), 2 )0 always unless t =0 throughout
the sphere; but such a solution is physically
meaningless.
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dr/y
~0

(9.1)

Under the conditions of Sec. 3, using (3.4), one easily
finds

(9.2)ATE&0.34048*,

which indeed represents an imariaet limitation upon
the mass of any static Quid sphere with m'&0 of given
(physical) radius. Now if one agrees to deal with R"
in place of E, then various invariant results can be
established in an almost trivial manner. Thus from
0&e "&1 it follows that

(9 3)

giving an upper bound for M invariantly for my kind
of Quid sphere (if only w&0). Again, upper bounds of
Mo or 0 were considered in Sec. 6 under the assumption
that m'&0. Since only the crudest inequalities are now
contemplated one may write, from (6.12),

9. The Physical Radius

(a) A result such as M&4R/9 )derived from (3.6)j
does not possess invariant character of any sort, as
has already been pointed out. To give it invariant
significance one may introduce in place of R the physical
radius E~,

Ãm=S"0, say?" Though elementary, it nevertheless
deserves a definitive answer since doubts evidently
exist whether the latter might not perhaps turn out to
be in the afhrmative.

One may first inquire as to the way in which 0
might, in principle, measure the amount of radiation
received from S. For this purpose he would surround
8 by an opaque spherical shell A which would act as
an absorber. (One may take A to be a perfect absorber,
for to suppose otherwise would only introduce quite
irrelevant complications, and a similar remark applies
to the assumption which will now be made, namely,
that the initial mass of A is zero. Also it is convenient
to take the inner radius of A to be just b, while its
outer radius will be denoted by a.) Then at any arbi-
trary time, t, 0 measures the energy Ms& Lsee Kq.
(6.2)) of A, and he will understand this to be the energy
he has received from S up to time t. Now in virtue of
Birkhoff's theorem, "the total mass M (defined as usual
in terms of the motion of a test particle "at infinity")
of the whole system, consisting of S, A and any radi-
ation between them, is constant in time. (There is no
radiation outside A: all sources of the gravitational
field were, by hypothesis, absorbed by A.) Therefore
M=Ws, M/b having been supposed negligible. In
terms of a metric of the usual type (see Appendix II),

~R
Ms& dr/y, (9.4)

M =4s- T4'r'dr.
0

(10.1)

since y+1/y&2/y when y&1. But the integral on the
right of (9.4) is just R*. Consequently the proper energy
and the (negative) potential energy of rsey static fluid
sphere are finite and less than the physical radius.

PART II

10. Energy Radiated by Contracting Spheres

This 6nal section deals with a certain question which
has sometimes been asked, ' although its character lies
somewhat outside the framework of the rest of the
paper. The problem may be stated in the following
idealized form. An amount of gas consisting of Ã
particles each of mass m is initially completely dis-
persed. It subsequently contracts symmetrically to
form a star, i.e., a Quid sphere, and in the course of the
contraction radiation is emitted. "8' is the total amount
of emitted radiation received by an observer 0 located
outside B. Then the question is: can S' ever exceed

E. E. Salpeter (private discussion).' The particles may be taken as initially at rest. Furthermore
the gas will be imagnined initially to be con6ned uniformly to a
sufBciently large but Gnite spherical region 8 of radius 6: the term
"complete dispersion" is therefore to be interpreted as meaning
that the initial density is to be smaller than any preassigned
positive limit.

'OAny kind of radiation, electromagnetic, material, etc. , is
contemplated. Even energy transfer through gravitational waves
is not excluded in principle.

Within A, again using (II.2),

rr
1)e x1 —Ss.r—' I Ts4r'dr& 1—2M/b

keeping (10.1) in mind. Since M/b is negligible it
follows that e~ is effectively unity within A. Therefore

Consequently

3fOg =4x T44r'dr.
4~

~b
~o~ = ~'o —4m T44r'dr.

~o
(10.2)

Since the integral on the right cannot be negative, it
follows that the total radiatioe received by the observer 0
from the star $ cae eever exceed the totaL energy which its
constituent matter possessed whee ie a state of comp/ete
dispersioe. It will be seen that this result has been
arrived at in an entirely elementary manner, and no
use has had to be made of any differential conservation
theorems.

Finally it may be remarked that any expectation of
an afhrmative answer to the question treated above

» Units are so chosen that k= c= 1.
I R.. C. Tolman, Relativity, Thermodynamics, and Cosmology

(Oxford University Press, Oxford, 1934), Chap. 7, p. 252.
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presumably arises from the notion that energy could
be radiated indefinitely as a consequence of the con-
tinued contraction of S. This would, however, involve
a continual increase of 0, so that to keep M positive—
which it must be according to (10.1)—Mo must also
continue to increase. In Newtonian terms, the work
done by the gravitational held to an ever growing
extent is limited to merely increasing the "mechanical"
energy of S. (Indeed, Birkhoff's theorem here says just
this: namely, that in a spherically symmetric process
without radiation, all the gravitational work done goes
towards increasing the mechanical energy of S.) It
should also be kept in mind that any radiation emitted
by S will suGer an ever-increasing "red-shift, " as seen
by 0, as the contraction proceeds. However, the simple
argument presented above avoids any difficulties which
might be encountered if one tried to answer the question
by considering the details of the mechanism of
contraction.
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APPENDIX I
Throughout this paper all formal developments are

carried out in a particular coordinate system, ~is., that
in which the metric takes the form

ds'= c'e "dt' e"dr' r'(—d8'+si—n'8dgP) (I.1)

in which ) and v are functions of r only. The energy-
momentum tensor is diagonal with T~' ——T2' ——T33= —p,

T4'=pe2, where p is the hydrostatic pressure and pc'
the energy density, which includes all forms of energy,
with the exception, of course, of gravitational energy.
p and p are scalar quantities and it is supposed that
neither can be negative. The field equations are then

S~kc 4r'P=e "(rr'+1) 1,—

S~ke 'r'p=e "(rX'—1)+1,
(I 2)

(I.3)

k is Newton's constant, and primes indicate di&er-
entiation with respect to r. The cosmical constant has
been taken as zero. If one adds (I.2) and (I.3) one has

e "(X'+r') =S7ikc 4r(pe'+p).

APPENDIX II

(I.5)

The spherical symmetry of a metric (which may be
nonstatic), i.e., its invariance under the group of spatial
rotations, requires that it be of the form

ds'= e"dt'+2qdrdt e"dr' r'—e"(d8'+—sin'8dqP), (II.1)

where X, p, v, and q are functions of r and t. Since one
has the freedom to replace r and t by new variables
which are functions of r and t one can always arrange p,

and q to be zero. Then of the resulting field equations
(see reference 12, p. 251), the only one explicitly
required here is that corresponding to (I.3), i.e.,

Smr'T 4=e "(rX'—1)+1, (II.2)

from which Eq. (10.1) of the text follows at once if one
takes into account that at r= a the metric must go over
into the Schwarzschild exterior solution.
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Upper Bounds on Scattering Lengths for Static Potentials*
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It is shown that in the zero-energy scattering of a particle by a center of force, where no bound state
exists, the Kohn variational principle provides an upper bound on the scattering length. A bound may also
be obtained from Hulthen's method, although with the same form of trial function the Kohn result will be
lower (and therefore better) than the one obtained from the Hulthen principle. The Rubinow formulation
need not provide a bound; for those calculations which have been performed in this form, the results may be
converted without any further calculations so that they correspond to the Kohn form, and therefore, under
the circumstances considered, do give a bound. Analogous results hold for states of nonzero orbital angular
momentum. Direct generalizations of the above results are valid for scattering by a compound system.

1. INTRODUCTION

ARIATIONAL methods have proved to be of
great value in the theoretical analysis of the

problem of the scattering of a particle by a center of
*The research reported in this article was done at the Institute

of Mathematical Sciences, New York University, under the
sponsorship of' both the Geophysics Research Directorate of the

force. However, the utility of variational techniques in
the more complicated problem of scattering by a com-
pound system is considerably impaired by the fact that
it is more dificult, in the many-body problem, to

Air I&'orce Cambridge Research Center, Air Research and Develop-
ment Command, and the 0%ce of Ordnance Research, V. S.Army.


