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Wave Function for the Free Electron. I. The Coulomb Potential*
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The wave function for a free electron in the presence of an atom is considered for the case of the Coulomb
potential, a potential which ignores both the effects of electron exchange and core polarization. A sample
calculation involving the neutral oxygen atom is carried through. From the single-determinant wave
function for the V' ground state of this atom the Coulomb potential is developed, and the important parts
of the potential for the s- and d-wave portions of the free-electron wave function are considered. The relevant
Schrodinger equations are solved by means of an IBM 704 program which is written so as to be readily
adaptable to electrons in the presence of other atoms or ions. having electrons through 2P. In our oxygen
example the wave function calculations were carried out for values of the free-electron linear momentum
ranging from 0.01 through 0.80 atomic unit.

I. INTRODUCTION
' 'N two previous papers' we have described the
~ - programs developed for the computation of analytic
atomic wave functions; these programs were written
primarily with an eye toward their subsequent utiliza-
tion in free-electron wave function calculation. It is our
purpose in this and succeeding papers to describe the
manner in which we may use the wave functions
obtainable from these programs in order to determine
the wave function for the free electron in the presence
of the atom described by the wave function. In this
paper we shall consider the free electron under the
influence of a Coulomb potential. In two subsequent
papers we shall consider the effect of the introduction
of exchange and polarization. Throughout the calcu-
lations and considerations we shall be referring specifi-
cally to a free electron in the presence of oxygen, but.
bear in mind that this is merely being used as a con-
venient and interesting example and that the calcula-
tions could equally well be carried out for electrons in
the presence of other atoms or ions having electrons
through 2p. The same statement applies to somewhat
more complex atoms, but here the potentials will
contain certain additional terms.

Our general procedure has been about as follows:
We obtain a potential for the electron by utilizing a
single-determinant wave function for the 'P ground
configuration of the unperturbed neutral oxygen atom.
This potential is obt.ained under the assumption of a
Coulomb potential which infers the neglect of (1)
exchange forces and (2) forces due to atomic polariza-
tion by the free electron. An expansion in terms of
Legendre polynomials is assumed for the free-electron
wave function, and this is substituted into the Schrod-
inger equation which contains our computed potential.
Two coupled equations for the s- and d-waves in this
Legendre expansion for the electron are obtained.
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Investigation shows this coupling to be of no real
importance, so that the two equations may simply be
solved independently. The equations are solved numeri-
cally and fitted to the familiar asymptotic solutions.
A general program for the calculation has been written
for the IBM 704 electronic data processing machine,
and, using this program, the wave functions for several
values of the electronic translational energy have been
computed.

The program in question is easily adaptable to the
computation of the p-wave functions, for example, and
has, on occasion, been so adapted. However, it will be
rather obvious from what is to follow that waves of
higher order than s correspond so closely to Born
approximation as to be practically indistinguishable
therefrom.
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In Eq. (1), the first term on t;he right represents the
nuclear portion of the potential while the second term
is accounted for by the orbital electrons in our oxygen
atom. The 'P wave function which appears under the
integral sign is our eighth order determinant, the
orbitals of which were obtained from our simple vari-

' We shall detail our treatment of these effects in later papers.
For an interesting recent treatment of (2) see A. Temkin, Phys.
Rev. 107, 1004 (1957).

II. SCHRODINGER EQUATION FOR THE s AND d
WAVES OF THE FREE ELECTRON

A 6rst step in setting up the Schrodinger equation for
the free electron is, of course, the determination of the
potential field in which the free electron exists, Let us
erst outline our procedure in obtaining this potential.

We suppose our potential due only to the Coulombic
forces of the nucleus and orbital electrons. Quite
obviously then, we are neglecting (1) exchange effects
and (2) atomic polarization effects. ' Under these
conditions our potential function will be of the general
form:
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angle to obtain the following: TABLE II. The s and fg wave functions for a free electron in
the presence of an oxygen atom for the case k=0.01 atomic
unit.

f t'
d& P2PLVp ~pl J

dr PBPp. (6b)

Since our potential Vo is equivalent in form to a
sum of the first and second Legendre polynomials, it is
apparent that the only term existing in the Eq. (6a)
are those terms having l=0 and l=2. The situation is
somewhat different in Eq. (6b), but it can be shown
that the terms in the sum in this equation making the
most appreciable contribution are those having l=0
a,nd l=2. This means that we now have two equations
in our two functions yo and X2, the two equations being
coupled by the angular terms in the potential.

Actual calculation has shown that the terms in these
equations arising from the angular portions of the
potential have a negligible effect, which is more or less
apparent from inspection. Therefore, we have dropped
the terms from both equations. Now our equations to
be solved are

d Xo
+Lk'+2Vo(r) jxp ——0,

dr2
(Ia)

d'xo—+k'xp
dr'

I' t—2P] ~ dr PpP~Vp [gg dr PpPp=O, (6a)
& qJ ) J

d'g2 6
+ k' ——x.

r'

r
{atoInic
units) xo(r) x (r)

r
(RtOIIliC
units) Xo(r)

0.002 0.1927 0.7 X10 "
0006 0 5642 0 2X10 "
0.010 0.9178 0.8X10 "
0.030 2.4319 0.2 X 10 "
0.050 3.5699 0.9X10 "
0-080 4.6794 0.4X 10 '
0.100 5.0891 0.7X10 '
0.120 5.2822 0.1X10 '
0.140 5.2927 0.2 X10 '
0.160 5.1503 0.3X10 s

0.180 4.8811 0.4X 10 '
0.200 4.5079 0.5 X 10 '
0.240 3.5266 0.8X10 '
0.300 1.6938 0.2 X10 7

0.340 0.3627 0.2X10
0.400 —1.6464 0.4X 10 '
0-600 —7.3429 0-1X10 '
0.800 —10.9181 0.2X10 '
1.000 —12.9218 0.5X10
1.200 —14.0259 0.8X10
1.400 —14.6643 0.1X10 ~

1.600 —15.0727 0.2 X10 ~

1.800 —15.3701 0.2X 10 5

2.000 —15.6146 0.3X10 5

2.200 —15.8341 0.5X10 ~

2.400 —16.0417 0.6X10
2.600 —16.2439 0.7 X10 '

2.800
3.000
3.200
3.400
3.600
3.800
4.000
4.200
4,400
4.600
4.800
5.000
5.200
5.400
5.600
5.800
6.000
6.200
6.400
6.600
6.800
7.000
7.200
7.400
7.600
7.800
8.000

—16.4434—16.6417—16.8393—17.0366—17.2337—17.4307—17.6277—17.8245—18.0212—18.2179—18.4145—18.6111—18.8075—19.0039—19.2002—19.3964—19.5926—19.7887—19.9847—20.1806—20.3764—20.5722—20.7678—20.9634—21.1590—21.3544—21.5497

the equation becomes

d'X2 6
+ k' ——xp

——0,
dr

which we reca, ll has the familiar solution:
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0.1X10 4
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0.2X10 4

0.2X10 4

0.3X10 4
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0.4X10 4

0.5X10 4

0.5X10 '
0.6X10-'
0.7X10 '
o.7X10 4

0.8X10 4

0.9X10 4

0.0001
0.0001
0.0001
0.0001
0.0001
0.0002
0.0002
0.0002
0.0002
0.0002
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III. CALCULATIONS OF THE WAVE
FUNCTIONS AND RESULTS

A numerical solution to these two equations has been
programmed for the IBM 704 and carried out in the
regions 0&ran&8 for the s wave and d wave for values
of the free-electron translational energy ranging from
0.01 through 0.80 atomic unit.

We have joined the numerical solution of the s wave
at the outer end of its range to the familiar asymptotic
solution:

x((r) =—sin(kr ——,'in+6().
k

Since the numerical solution for the d wave remains
dependent on the centrifugal potential, it was necessary
to connect the numerical solution to an asymptotic
solution by some other method.

At the point where our potential is essentially zero,

We know that the asymptotic solution of Eq. (9) is
of the form Eq. (8), so we may modify Eq. (10a) to
the form:

(3 1q
x,= I

——
I

sin(kr ~+~,)—
k)

cos(kr —~+Sp) . (10b)

Equation (10b) may be solved for the phase shift:

tanbp ——f —X[D sin(krp —m)+F cos(krp —~)j
+X'(8 sin(krp —m) —C cos(krp vr) j)/—
(XLD cos(krp —s) —F sin(krp —pr)]
—X'I 8 cos(krp —pr)+C cos(krp —m) j}, (11a)

wherein X and X' are the values of the numerical
solution and its derivative, respectively, at the radial
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(atomic
units) Xo (") X2 (r)

r
(atomic
units) Xo(r) X2(r)

TAsI,K III. The s and d wave functions for the free electron
in the presence of oxygen for the case k=0.80 atomic unit.

An alternate method of obtaining the phase shift
under the assumption that it is small is provided by
the following equation:

0.002
0.006
0.010
0.030
0.050
0.080
0.100
0.120
0.140
0.160
0.180
0.200
0.220
0.240
0.300
0.340
0.400
0.600
0.800
1.000
1.200
1.400
1.600
1.800
2.000
2.200
2.400
2.600

0.0177
0.0519
0.0844
0.2237
0.3283
0.4301
0.4675
0.4849
0.4854
0.4717
0.4463
0.4113
0.3686
0.3196
0.1488
0.0250—0.1612—0.6816—0.9879—1.1269—1.1585—1.1219—1.0390—0.9217—0.7778—0.6126—0.4314—0.2390

0.9X10 "
0.2X10 '
0.1X10 '
0.2X10 6

0.1X10 '
0.4X10 '
0.9X10 '
0.1X10 4

0.2X10 4

0.3X10-
0.5X10 4

0.6X10 4

0.8X10 4

0.0001
0.0002
0.0003
0.0005
0.0014
0.0030
0.0056
0.0092
0.0139
0.0199
0.0272
0.0358
0.0456
0.0565
0.0682

2.800
3.000
3.200
3.400
3.600
3.800
4.000
4.200
4.400
4.600
4.800
5.000
5.200
5.400
5.600
5.800
6.000
6.200
6.400
6.600
6.800
7.000
7.200
7.400
7.600
7.800
8.000

separation in question and

8=3/k'r' —1/k,

C= 3/ksr, —
D =3/kr —6/k'r',

F=6/k'r' —1.

—0.0404
0.1592
0.3547
0.5412
0.7138
0.8682
1.0004
1.1071
1.1854
1.2335
1.2501
1.2347
1.1878
1.1105
1.0049
0.8736
0.7199
0.5479
0.3619
0.1666—0.0329—0.2316—0.4244—0.6063—0.7727—0.9194—1.0426

0.0807
0.0935
0.1064
0.1191
0.1313
0.1425
0.1524
0.1607
0.1671
0.1712
0.1730
0.1721
0.1684
0.1620
0.1527
0.1408
0.1262
0.1092
0.0901
0.0693
0.0470
0.0238
0.0002—0.0235—0.0467—0.0689—0.0896

(11h)

(11c)

(118)

(11e)

5s=
J Vo(r)LJ, (kr)fsrdr.

These. phase shifts obtained by either method of
calculation are quite small in accordance with the antici-
pated behavior of the higher order phase shifts as the
free-electron velocity approaches zero.

The s-wave phase shifts are displayed as Table I.
We have compared them with Robinson's4 and Klein
and Brueckner's results.

In Fig. 1 we have plotted the s wave functions for
the k values 0.01, 0.08, 0.10, 0.30, and 0.80 atomic unit.
For comparison the Born approximation is also plotted.
Since the d wave so closely corresponds to the Born
case, we have not shown it. In Tables II and III we
have tabulated the computed s and d wave functions
for k values 0.01 and 0.80 atomic unit.
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