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The hydrogen molecule ground state has been studied for a long time by valence theorists. Comparison
with experiment has been limited to the energy, bond distance, vibration frequency, and the electric and
magnetic polarizabilities. Recent radio-frequency experiments on hydrogen have yielded new quantities, the
nuclear magnetic shielding constant, the spin-spin coupling constant, and the electric field gradient at the
nucleus. In this paper, variation methods are described for the calculation of the new types of polarizability.
These methods can be applied to more complex molecules and appear to open new possibilities for the
semiquantitative interpretation of the results of high-resolution nuclear magnetic resonance. An extensive
comparison is made between the experimental quantities and theoretical values using various wave functions.
The most important factor affecting the accuracy of the charge density is the use of an effective nuclear

charge.

VAST literature exists on the ground state of the
hydrogen molecule. Since the definitive work of

James and Coolidge! appeared, the chief task has been
to develop reasonably accurate but more convenient
wave functions and to extract physical meaning from
the more complicated ones. Inasmuch as the true wave
function is not known, it has been customary to test
approximations by comparison of the experimental and
calculated bond energies. The experiments on molecular
hydrogen beams in recent years by Ramsey? and his
collaborators have made it possible to adopt a new
viewpoint. In this paper, the quality of various wave
functions is treated by considering the interactions
which arise from external fields and from the nuclear
multipole moments.

We have neglected the effects of molecular vibrations
and rotations. Vibrational motion would lead to cor-
rections to the quantities calculated in this paper.
Rotational motion produces other physically measurable
quantities such as a rotational magnetic moment of the
molecule and a magnetic field at each of the nuclei.
These? are simply related to the paramagnetic parts of
the susceptibility and nuclear magnetic shielding con-
stants, respectively.

A general Hamiltonian® for a rigid molecule in the
presence of static external magnetic and electric fields

* Financial support for this work was given by the U. S. Atomic
Energy Commission and the National Science Foundation.
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and electric field gradients is given in Eq. (1):

k A k. 2 2 ZNZN'62
5C=Z[p +(e/c) (r)]+z Ly Dt

k 2m k<K ¥Ri N<N' Ry

VA N62

-2

k N 7Nk

—‘Z BRNZN' Sext“‘z: gNﬁnucIN'va(RN)
N N

+Qmol' Vgext+z ery: &ixe
k

+§ Qn* (VE) int at N_Zk 288k vXA(ry), (1)

where
uv XTIy
A= Aext+z Anuc(N) = %erk"*_z E——
N N

7EN°

Let 3Cy be the Hamiltonian in which all nuclear mo-
ments and external fields have been dropped. The
energies associated with 3J€—3C, will be negligible in
magnitude because of the small size of external fields
compared to internal fields (8ag®/e 107%), because of
the small size of the nucleus compared to the atom
(Q/ai?*~107%) and because of the smallness of the fine
structure constant (a=e*/hc=1/137).

We shall try to see how this feeble part of the
Hamiltonian can be used to elucidate the charge distri-
bution associated with the ground-state eigenfunction
W, of 3Co. Some of the feeble interactions contribute in
the first order, i.e., their experimental magnitudes are
expectation values of various functions of the electron
and nuclear coordinates. These expectation values will
be compared for the different trial wave functions. Some
interactions contribute only in the second order. The
effects of polarizing the various zero-order wave func-
tions will be compared.

I. VARIATION TREATMENT OF POLARIZATIONS
A. General Description of the Method

In every case of polarization, one has the following
situation. There is a Hamiltonian of the form

5C=5'C0+8‘331(€)+V'G€1(V), (2)
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where £ and v are small vectors (one of which may, in
fact, be zero). The wave function and the energy are
developed in power series of the small vector com-
ponents:

‘I’=‘I’o+€'l[{1(£)+\“1¥!1(1/), (3)

33
E=E+ 3 X {Ea(eaertEn(er)ery
k=1 A=l
+Ea(@rvan}. (4)

Note that the first-order terms in the energy are zero.
The notation 11(e) means that 1 is a vector function as
well as the part of an eigenvector W' produced in the
first order by a perturbation associated with the vector
e. The terms En(¢), Ea(v), and Ea(ev) are (aside from
numerical factors) just the polarizability tensors. These
include the electrical polarizability tensor a.., the
paramagnetic part of the magnetic susceptibility tensor
X, [tensor of the form E,.(€)7], and also the paramag-
netic part of the magnetic shielding tensor at nucleus /,
7a?, and the spin-spin interaction tensor Ja*Y be-
tween nuclei % and I [tensor of the form Ea(ev)]. By
substitution of the power series developments into the
Schrodinger equation, one obtains an equation for
lbl(e)v

(3Co— Eo) 41 (€) = —3C1(e) ¥o. ®)
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The usual solution to this equation is the familiar
expression

Yi(e)= 2o Ca(¥,, (6)
n=0
where the ¥, are the eigenfunctions of 3Co. The result for
the energy, and thus for the polarizability tensors, is
22 (W[ 3Co | W)W [F0rr [ o)
3 n0

3
E=E+ Y T ee . (D
k=1 A=1 EO—En

This is the usual result* which is excellent for physical
understanding but almost useless for numerical com-
putation inasmuch as the excited functions ¥, and
excited levels E, are unknown.

There are at least two other ways to solve Eq. (5) and
obtain an expansion for the energy. One is to solve,
directly, the inhomogeneous differential equation by
numerical methods. This is ideal in atomic problems
where Eq. (5) often reduces to a differential equation in
the radial coordinate alone.® This does not happen in the
molecular case and one is left with the possibility of
using a variational wave function. The total energy in
the general two-vector case which is to be minimized can
be obtained from its definition

E_(‘I’o+e- U1()+v-U1(v) [5ote-3e1(e)+v-3e1(») [ Vot e du()+v-du(»)

. (8)

(Wot-e- (&) + v 41(v) [ Wote di(e)+v- (7))

which reduces (if one assumes that 3Co¥, is orthogonal to
¥1 and neglects higher than quadratic terms) to

E=FE¢+2(¥o|e-3C1(e) | e 1(e))
(e d(e) [3Co— Eo &~ da(e))+2(¥o | v-3s(v) [ v du(v))
+ (v (») [3Co— Eo| v- () +2(To | e-Fei(e) [ v+ ()
+2(%o|v-3¢1(») |- dn(e))
+2(e- 41(e) |3Co— Eo| v+ 1a(»)).  (9)

On allowing the functions {1 (€) and 1:(») to be varied
by the addition of small arbitrary vectors d1;(e) and
d41(»), one sees that the variation 8E in E is

SE=2(e-8¢1(e)+Fv 5 (»)
X | {e-3C1(€)¥o+ (3Co— Eo)e- U1(e) }

+{v-3¢,(») T4 (3Co— Eo)v- a1 (»)}).  (10)

To hold the entire second-order energy stationary, it
is necessary and sufficient that the contents of the curly
brackets vanish, i.e., that the first-order Schrodinger
equations be satisfied. There are two approaches by
which one could simplify the calculation. If one is
interested in the energy terms of orders €® and ev, it is

sufficient to vary the terms of order ¢? alone® with respect
{o variations in :i(e¢). On the other hand, if one is
interested only in energy terms of the order ev, then one
may minimize energy terms of this order alone. To
prove the first statement, suppose that Eq. (5) for ()
is satisfied. The energy then becomes

L= Ey (o] e-3¢1(e) | - () +2(Fo | v-361(») | v+ 11 (#))
A+ (v- 1 (v) [3Co— Eo| v- 1 (v))

+2(¥o|v-3:(») | e- 4u(e)). (11)

The part of the energy of order »* is not stationary but
the parts of the energy of order ¢ and ev depend only on
{1(e) and are therefore stationary.

Besides showing that the second-order energy is
stationary when the first-order Schrodinger equation is
satisfied, it is instructive to show that the energy is
minimized. The second-order variation in the second-
order energy using Eq. (9) due to changes d4:(e) and

4 The results on the non-nuclear polarizations are in J. H. Van
Vleck, Electric and Magnetic Susceptibilities (Oxford University
Press, Oxford, 1932), pp. 189, 275, and on the nuclear polariza-
tionsin reference 2, pp. 163, 207.

§ R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
(1956).

6 T. P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956); T. P.
Das and T. Ghose, J. Chem. Phys. 31, 42 (1959).
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61&1(1/) is
2E={(2-01(e)+v-801(») |3Co— Eo| e+ 311 (e)
+v-34u(»))20, (12)

whereas substituting the first-order Schrédinger equa-
tion in Eq. (9), one finds

E—Ey= ‘—<9' \Q1(€)+V' 1&1(1’) lﬁco—Eol e \h(é)
+v () <0, (13)

The total second-order energy is negative but its second
variation is positive showing that the approximate
second-order energy is always greater than its value
obtained by correctly solving the first-order Schrédinger
equation. The inequalities of Egs. (12) and (13) are
valid if ¥, is only an approximation to the eigenfunction
corresponding to the lowest eigenvalue. (They would
fail only in the absurd circumstance that ¥, or 6¥; were
a better approximation than ¥, to the lowest eigen-
function.)

B. Representation of ¥ as a Multiple of ¥,

Particularly simple expressions and moreover rapidly
convergent energies result from using a wave function
of the form

¥=[14¢-P(e)+v-P(») J¥,.

Sternheimer has shown in several papers, e.g.,reference
5, that for many polarization problems involving
hydrogenic wave functions, the exact first-order pertur-
bation function involves a very simple P function. The
essential discovery is that the P function can be fairly
simple and yet provide satisfactory energies. The
polarization phenomena can then be related to expecta-
tion values of the coordinate operators over the ground
state Wo. More specifically, by partial integrations, the
energy assumes the form

(14)

E=EO+LZ i e,‘ex{(‘I'[)[Sclx(e)Px(e)-i-P,‘*(e)GCu(e)I‘I’t))

k=1 A=l
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(15)

Moreover for functions y1(e) and ¢1(») which satisfy
equations of the form (5), the energy further simplifies
to

EeEot > ;31 Cecer(Wo| 3e1e(€) Pr() | W0)

x=1 A=

+ ea(¥o|3C1c(€) Pr () +P*()3Cun (¥) | o)
+V‘V)\<\I’0]5C1‘(V)P)\(V) [‘I’o>] (16)

-+»? terms.
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In this way, the feeble polarization terms in the
Hamiltonian are made to serve their avowed purpose
more directly, that is, to give information about the
charge density itself. With a molecule containing more
than two electrons, different functions P(e) would have
to be used for the different electron states and the
procedure would have to be generalized.$

II. EXPECTATION VALUES OVER THE GROUND-STATE
CHARGE DISTRIBUTION

To test the various approximate wave functions, a
mathematical experiment is performed. This consists in
computing with each wave function or using literature
values for (1) the second moments of the electron dis-
tribution, (2) the expectation values of inverse functions
of the electron nuclear separation, and (3) the expecta-
tion values of functions of the coordinates of two
electrons.

A. Wave Functions Used for Comparison

The wave functions used in the “experiment” were a
set of nine valence bond and molecular orbital functions.
In each of the tables to follow the first five functions are
of the valence bond type and the next four of the
molecular orbital type. Naturally, the more refined
members of each type resemble each other. The
Hirschfelder-Linnett” function has the form

¥/N=a(1)b(2)[1+aZ*{xa(Dxp(2)+y4(1)ys(2)}
+82%4(1)35(2) 1+a(2)b(1)
X[1+aZ*{xa(2)xs(1)+y4(2)ys(1)}
+82%34(2)zp(1) J+v[a(1)a(2)+b(1)0(2)],

where ¢ and b are 1s functions with effective nuclear
charge Z, centered on nuclei 4 and B, respectively. If
one sets a=vy=0, a function resembling the Rosen? func-
tion results; if one sets a=B3=0, the Weinbaum® func-
tion is obtained. If a=B=vy=0, one has the Wang!’
function. The latter becomes the original Heitler-
London! function if Z=1. In each case, Z and the
normalization constant N have different numerical
values. The Wallis?? function has the form

/N =a4(1)b3(2)+b5(1)a*(2)+b4(1)a(2)+a(1)b4(2)
+ALa4(1)aP(2)+b4(1)bE(2)
+a?(1)at(2)+7(1)64(2) ],

where ¢4 and a® are 1s functions with effective nuclear
charge Z 4 and Zp centered on nucleus a. If the parame-
ter A is unity, the resulting function is called the Wallis
open shell function (equivalent to configuration inter-
action, C.I.); if A is chosen to minimize the bind-
ing energy, it is called the Wallis limited ionic open

7 J. Hirschfelder and W. Linnett, J. Chem. Phys. 18, 130 (1950).
8 N. Rosen, Phys. Rev. 38, 2099 (1931).

9 S. Weinbaum, J. Chem. Phys. 1, 593 (1933).

10'S. Wang, Phys. Rev. 31, 579 (1928).

'Y, Sugiura, Z. Physik 45, 484 (1927).

2 R. F. Wallis, J. Chem. Phys. 23, 1256 (1955).
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TaBLE I. Expectation values of quadratic functions of the
coordinates for R=1.40a, (units of a?).
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Tasre II. Expectation values of inverse functions of the
coordinates at R=1.4a, (in units of ay). :

Binding
energy
. (xc) (3@z2—r)) =—o)
Wave function =(yc?) {3c2) ={(gc2—xc2) —27.06ev
Heitler-London 1.0371 1.385 0.348 3.14
Wang 0.767 1131 0.364 3.76
Weinbaum 0.738 1.082 0.344 4.00
Rosen 0.742 0964 0.222 4.02
Hirschfelder-Linnett 0.744 1070 0.326 4.25
Coulson (unshielded) 1.044 1367 0.323 2.68
Coulson (shielded) 0.742  1.073 0.332 347
Wallis (C.L) 0816 1.147 0.331 3.57
Wallis (limited ionic)  0.761  1.108  0.347 4.08
Nordsieck 0.745 1.009 0.264 4.03
James-Coolidge 5-term 0.269(0.278)  4.51
Newell 0.731  1.002 0.271 4.53
Ramsey (exp.) 0.7663 1.0604 0.2941 4.74

shell function. Letting A=1 and Z4=Zz produces the
shielded molecular orbital function of Coulson®; and if
A=Zs=Zgp=1, one has the Coulson unshielded
function.

B. Second Moments of the Electron Distribution

Table I contains expectation values of quadratic
functions of the coordinates obtained at the equilibrium
internuclear distance R=1.4a¢, where @, is the Bohr
radius. To compare with experiment an average of each
quantity should be taken over the ground vibrational
state of the molecule. This has not been done to save
labor, but the vibrational correction is usually®* small
compared to the difference between the calculated and
experimental values. The task of evaluating the second
moments of the various Hs wave functions was begun by
James and Coolidge'® and its utility was pointed out by
Karplus.*

For H, we are in the unique position at present of
having accurate experimental? values of (x2) and (z:2).
Table I shows that to obtain reasonably accurate (5-
109, error) second moments of the charge distribution,
one only needs to have a wave function with a scale
factor Z. The only poor expectation values are those for
which Z=1. As soon as Z~ 1.2, the charge distribution
is sufficiently contracted to give the right “size”.** The
Rosen function is an exception insofar as (z.%) is con-
cerned. This is because in the process of hybridization,
the density in the internuclear region is increased too
much at the expense of the density at the ends of the
molecule. The lateral spread of the charge distribution
is not much disturbed.

The quadrupole moment is a more sensitive quantity
which is not given really well until the Nordsieck'
approach is used. He replaces the simple exponential

e Zra=g—(Z[2) (TA+7'B)3—(Z/2)(7'A~7‘B)’

18 C. A. Coulson, Trans. Faraday Soc. 33, 1479 (1937).

4 M. Karplus, J. Chem. Phys. 25, 605 (1956).

16 H, James and A. S. Coolidge, Astrophys. J. 87, 447 (1938).
16 A. Nordsieck, Phys. Rev. 58, 310 (1940).

Function (1/r) (2/73) {(322—72)/75) (5(v)) ((322—r2)/73)
Heitler-London 0.798 0.159 0.1224 0.145 0.217
Wang 0.895 0.202 0.1634 0.224  0.252
Weinbaum 0.908 0.215 0.1724 0.231 0.257
Rosen 0915 0.245 0.1694 0.216 0.242
Hirschfelder- 0926 0225 0.1714 0.230 0.247

Linnett
Coulson 0.797 0.153 0.1227 0.126 0.203
(unshielded)
Coulson (shielded) 0.932 0.219 0.1744  0.199 0.255
Wallis (C.1.) 0.920 0.208 0.1788 0.241 0.255
Wallis )(limited 0917 0.263 0.1768  0.206 0.325
ionic
Best theoretical 0.915% 0.255 0.1782= 0.220%
value

( a Vaﬁue computed by G. F. Newell [Phys. Rev. 78, 711 (1950); 80, 476
1950) 1.

by a generalized function in which the Z’s in the two
exponentials are different. In effect, the parameter Z is
no longer isotropic and the scale factors for the lateral
and longitudinal charge distributions become at least
partially decoupled. The value in parentheses after the
James-Coolidge five-term function is that obtained by
averaging over the ground vibrational state. The last
three values of the quadrupole moment are thus closer
to experiment than might appear. In conclusion then,
judging from its second moments, the charge density in
the outer regions of the molecule is adequately repre-
sented by almost all one-parameter wave functions and
is well represented by Nordsieck’s. two-parameter
function.

C. Expectation Values of Inverse Functions of the
Electron-Nuclear Separation

We consider first the expectation values of the po-
tential, electric field, and electric field gradient produced
by an electron at one of the nuclei. The potential seen
by a nucleus is just the potential due to the other nucleus
e/R plus the potential due to the two electrons
—e/r1—e/rs. The figures in the first column of Table IT
show that (1/7) is given to about 2-3%, accuracy with
any function possessing an effective nuclear charge.

In contrast to 1/7, of all the operators considered here,
the disagreement between observed and calculated ex-
pectation values is worst for /7%, errors of 15-259, being
common. The electric field seen by a nucleus when it is
at equilibrium must, by definition, be zero so that the
electric field from each of the two electrons is just —%
the field originating from the other nucleus, i.e,
—3e/R*=(—¢)(0.255)as2. The deviation of the num-
bers in the second column of Table IT from 0.235 is a
measure of the electric field seen by the nucleus. A
desirable physical requirement is that the energy mini-
mum with respect to R be self-consistent, i.e., that the
electric field be zero at the nucleus for equilibrium value
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TasLE III. Expectation values of two-electron operators for R=1.4a, (units of ay).

(2c(1)24(2))

Wave function

(xe(Dxe(2))

(6(ra(1))s(xa(2)))

(1/712) @)oY GCa)N6(es@)))

Heitler-London —0.313 0
Wang —0.333 0
Weinbaum —0.203 0
Rosen —0.177 0
Hirschfelder-Linnett —0.225

Coulson (unshielded) -0 0
Coulson (shielded) 0 0
Wallis (C.I.) 0 0
Wallis (limited ionic) —0.209 0

Newell
James-Coolidge

0.529 0.0364 0.719
0.593 0.0932 0.861
0.617 0.0840 0.569
0.649 0.0960 1.057
0.622 0.0779 0.473
0.566 0.0158 0.000
0.656 0.0527 0.000
0.702 0.0522 —0.101
0.652 0.1145 0.399
0.611 0.0561 0.158
.. 0.0600 0.206

a Approximate because approximate value of density was used.

of R. This is the Hellman-Feynman theorem,!” equiva-
lent to the condition /" (3¢/dR)3CYdridro=0 which is,
however, difficult to apply in practice.'®

The derivative of the electric field at a nucleus con-
sists of two parts, one coming from the other nucleus
(+e)(2/R%) = (+¢)(0.7289)as* and the other coming
from the two electrons. The field gradient from each
electron is, in fact, about one-fourth of the field gradient
from the other nucleus and of opposite sign. In contrast
to the electric field, it is easily possible to obtain a wave
function which glves a value of the field gradient accu-
rate to 5%,.

The charge density in the neighborhood of the nucleus
would appear to be in error as far as the electric field is
concerned, but not with respect to the potential or field
gradient. This paradox is resolved by considering
(8(1)), that is, one half the charge density at the nucleus.
This quantity is given as accurately as the field gradient.
A geometrical picture will show in what way the charge
density is in error. Imagine that a small sphere of radius
§ is constructed around each nucleus. At each small
distance, or (|dr| <8) to the right of nucleus B (and to
the left of nucleus 4) some charge is removed and
placed at the point —ér. This imaginary operation alters
neither the charge density at the nucleus nor the ex-
pectation values of even functions of x, v, or 2. However,
(z/7%) would increase by a term of order 62 whereas (z.2)
would decrease by a term of order &°. A substantial in-
crease in the electric field with an accompanying very
small decrease in (z) would be perfectly in accord with
experiment. Analytically, this operation corresponds to
a hybridization in which the p function has an inde-
pendent and quite large effective nuclear charge. These
considerations suggest that an excellent charge distribu-
tion and presumably a fair energy would be obtained by
using a wave function with three variation parameters:
two effective nuclear charges for the s, p functions and
the ratio of the amplitudes of the s and p functions.

17R P. Feynman, Phys. Rev. 56, 340 (1939).

18 Another desirable physical requxrement the virial theorem
(Vy=—2(T), is automatically satisfied by incorporating an
effective nuclear charge in the trial wave function.

The values for the field gradient at the nucleus due to
the electrons vary remarkably little among the different
wave functions. The better functions do tend to concen-
trate the electrons along the bond axis so that there is a
slight tendency for the electronic contribution to the
field gradient to rise as the binding energy increases. The
field gradient when calculated from the James-Coolidge
function might well be a few percent higher than
Newell’s value; the calculated deuteron quadrupole
moment would then increase because the fofal calculated
field gradient would decrease. '

The quantity ((322—72)/r%), which is proportional to
the anisotropy of the magnetic shielding of the proton,
is tabulated for use in the future when this anisotropy
can be measured. Its values over the different wave
functions are almost as steady as (1/7).

D. Expectation Values of Two Electron Operators

In Secs. B and C of part II, the one-electron density
p(ry) associated with various trial wave functions for H,
has been inferred from expectation values of one-
electron operators. In this section we infer some
properties of the pair distribution function p(r,rs) from
the expectation values of two-electron operators.

Table IIT presents four different indices of electron
correlation. The interelectron interaction energy (r;s)
is in a different class from the quantities (z,(1)z.(2)),
(x(1)x(2)), and (3(ra(1))o(r5(2) ) — (3(ra(1)))(3(r5(2))).
The latter quantities are only different from zero if
allowance is made for electron correlation in the wave
function. The energy (ris%) is, on the other hand,
relatively little affected by rather strenuous efforts at
introducing electron correlation, variations of the order
of 109, being typical.

Variation in {(z.(1)z.(2)) is much more drastic. Some-
thing more than merely an effective nuclear charge is
needed in the wave function and the more complex
wave functions do show better values for the end to end
correlation. Full discussion of (z.(1)z,(2)) and also
(xc(1)x:(2)) should be postponed until they have been
obtained for the Newell and James-Coolidge functions.
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The quantity
0 (ra(1))3(rs(2)))

Ga)NGs(2))

called the “nuclear correlation,” is suggested by the
spin-spin coupling constant and proves to have inter-
esting variations. In general, the valence bond functions
greatly overemphasize the nuclear correlation; the
James-Coolidge function shows that there is relatively
little of such correlation in the actual molecule. The
nuclear correlation is of interest also because it could be
easily imposed as an auxiliary condition which a new
trial wave function would have to satisfy as well as
minimizing the energy.

In conclusion, the electron correlation built into a
wave function affects the expectation values of some
two-electron operators much more than others.!® In
particular, the molecular energy is much less sensitive
than an operator suggestive of the spin-spin coupling
constant.

)

III. APPLICATIONS TO SPECIFIC
POLARIZABILITIES

In the second part of this paper, expectation values of
certain functions of the coordinates were listed together
with experimental or accurate theoretical results. In
this way, the various ground-state wave functions, ¥,
are compared. In this third section, the polarizabilities
are determined as expectation values of various func-
tions of the coordinates. Comparison of the theoretical
polarizabilities with the experimental results raises the
following question. Are the errors in the polarizability a
result of the errors in ¥ or in the assumed form of the
first-order variation functions? These two sources of
error can sometimes be separated if the variational
procedure leads to expectation values which are known
from experiment.

All of the polarizability tensors have been calculated
by a variation method and indeed more accurately by
Ishiguro®22 and co-workers. Our point of view is a little
different from theirs. Our interest is to see how far one
can go with a very simple variation function, ¥,, pro-
portional to ¥, and to compare the results for a number
of the well-known wave functions.

A. Electrical Polarizability

In the case of an electric field the polarizability tensor
ax is defined by the equation

X

(17)

[)

3
E=E0~% Z Ol,‘)\g,(g)\,
k=1 A=l

19 Barnett, Birss, and Coulson, J. Molecular Phys. 1, 44 (1958),
have recently treated the two-electron operator problem from a
slightly different point of view.

2 E, Ishiguro and S. Koide, Phys. Rev, 94, 350 (1954).

2 Tshiguro, Arai, Mizushima, and Kotani, Proc. Phys. Soc.
(London) A65, 178 (1952).

22 5. Ishiguro, Phys. Rev. 111, 203 (1958).
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where &, and &, are components of the electric field.
The polarizing Hamiltonian is just

Zk ery+& or 301(8)=Zkerk. (18)

For the perturbation function P(&) in H,, we use
simply
P(8)=aer(2),

where the @, are variational parameters and r(i) is a
vector extending from a chosen origin in the molecule to
electron 7. (For H, it is convenient to use the midpoint
of the internuclear line as an origin.) The energy of the
electron will be

3 3
E=Et+3] 3 86\ aueX Yo7 | V)

k=1 A=l

FareX(¥o| 37| ¥o)
h? e

+axa)\—*—<\//0i5,)\l‘1/[)> . (19)
2 m

Throughout this paper, the symbol =22 will mean that
the equation is true only for a specific choice of varia-
tional function. Letting dE/day=0, one finds

2m
a\=— —h?(102<7’)\2>,

(20)

where ( ) means the dimensionless expectation value of
a coordinate operator of a single electron over the
ground-state wave function expressed in units of the
Bohr radius, go. Substituting the value of e, back into
Eq. (18) for the energy, one has

3
E—_—Eo—% Z Z 8:8)\(4(103)

XA{ran) ((r)+(n2)) — <"K2><">\2>5K>\} .

For a molecule in a = state, the coefficients of the §,8»
vanish for k#X so that on comparison of Eqs. (17) and
(21), one has

(21)

&zz= dyy= &1g40’03 <<x62>)27

&zz= &1 154003 (<Z62>)27

(22)

¢ referring to the origin from which #, v, and z are
measured. & is the polarizability tensor per electron.
The total polarizability tensor has components twice
these values plus a correction for the correlation of the
two electrons:

a,=8ad*{(w)+(w.(D)x.(2)}2,
an§8(los{<zu2>+ <ZC(1)ZC(2)>}2'

Just these equations were derived long ago by
Hirschfelder.® They are rederived here as part of the

(23)

# J. 0. Hirschfelder, J. Chem. Phys. 3, 555 (1935).
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TaBLE IV. External field polarizabilities of Hy (R=1.4ay).
Electric dipole polariza. Diamagnetic susceptibility
bility in units of ao? in units of a%ae?

Wave function ay afy ~x1? =X x1? -X
Heitler-London 9.02 12.62 1.211 1.037 0.0978 1.088
Wang 4.72 5.12 0.949 0.767 0.0703 0.841
Weinbaum 4.36 6.18 0.910 0.738 0.0650 0.848
Rosen 4.40 5.04 0.853 0.742 0.0290 0.797
Hirschfelder-Linnett 3.95 5.71 0.907 0.744 0.0585 0.814
Coulson (unshielded) 9.77 16.57 1.206 1.044 0.0438 1.123
Coulson (shielded) 4.35 9.15 0.908 0.742 0.0608 0.841
Wallis (C.1.) 5.32 5.01 0.982 0.816 0.0558 0.889
Wallis (limited ionic) 4.64 6.39 0.935 0.761 0.0645 0.834
Nordsieck 0.877 0.745 0.0200 0.820

0.0224 0.818
Newell 0.867 0.731 0.0210 0.808
0.0238 0.806
Ramsey (exp.) 0.0267
Ishiguro ef al. (same as exp.) 4.443 6.107
Wills and Hector? (exp.) 0.829

a A, P. Wills and L. G. Hector, Phys. Rev. 23, 209 (1924).

general program of the computation of polarizability
tensors; Table IV compares the molecular polariza-
bilities produced by this equation when applied to vari-
ous wave functions. The polarizability values of
Ishiguro, Arai, Mizushima, and Kotani were obtained
by a variation method starting from the eleven-term
James-Coolidge function and are in complete agreement
with experiment. One can, however, obtain polariza-
bilities good to within 59, using very simple wave
functions.

The most striking improvement in polarizability
comes from the use of an effective Z>1 in the exponent
of the atomic wave functions. The charge distribution is
compressed longitudinally and laterally so that both a;
and a;; are sharply reduced. At this stage a, is accurate
but a;, is off owing to the electron correlation term
(2.(1)2:(2)). In general, the simple molecular orbital
(MO) treatments ignore this negative term and give too
high a value for a;; and the simple valence bond (VB)
treatments exaggerate it so that «; is too small. Im-
provement of the VB function by adding ionic terms and
of the MO function by adding configuration interaction
and ionic character gives excellent results.

The Rosen function in which the charge distribution
is longitudinally compressed by s— p hybridization gives
too small a value of a;;. Although they yield about the
same dissociation energy (4.0 ev), the charge density of
the Weinbaum function is distinctly better than that of
the Rosen function.

B. Diamagnetic Susceptibility

In the case of a magnetic field, the susceptibility
tensor X, is defined by the equation

<

E=FE\—%

LS

(24)

3
Z Xx)\HxH)\,
1 A=l

where H, and H) are components of the magnetic field.

The Hamiltonian consists of two parts, a static Hamil-
tonian and a polarizing Hamiltonian :

1 ¢

- Z Z [rk25x)\"r>\ (k)rx(k)JHxH)\

8 mc? kA &

+~€— > LHD (25)

2me k&

The first term comes from the square of the external
vector potential
Aext(rk)z%erk, (26)

and the second term from the cross products between
the moments and the external vector potential2! A
change in gauge will shift the relative weights of the two
terms in (25) but not their sum.

Comparing (25) and (24), we obtain the static
molecular susceptibilities:

X:cxd:nyd:XLd: _%a2003<y02+262>,
xzzd=XIId= _%a2003<xc2+yc2>'

27

The perturbation function P(H) for H, is chosen to be

P (H)=aiyz.,
P,(H)=aixz,,

P.=0,
(28)

where @ is a variation parameter. The form of P(H) is
explained as follows. The magnetic field induces a
magnetic dipole in the molecule which is equivalent to a
current so that the real ¥y must be perturbed by a
complex part which must transform like an axial vector.
On the other hand, if the magnetic field is parallel to the
internuclear axis, it cannot perturb the molecule because
the polarizing Hamiltonian then commutes with 3C,.
From Eq. (13), one finds that the polarization energy

2¢ The origin of 7 and 7, is the center of the molecule.
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per electron is

M

3 e :
PR HKHA{———(‘I’ollex(H)+Px*(H)ZX|‘I’0>
A=l 2mc : !

1

Il

X

h? ‘

+—(Wo| VP *(H)-VP\(H) | Vo) |, (29)
2m

Inserting the components of P, one sees that the only
nonvanishing coefficients of HH) are those for k=A=w
and k=A=1y which are equal. Again setting dE/da equal
to zero and solving for e, one has from Eq. (11)

a=%(a/e)(z2—x2)/ (22422,

Xza?= nypg%a2a03<‘°cg_ x02>2/<zc2+xc2>5

(30)
(1)

x being the susceptibility per electron.

Again, we observe that the total susceptibility is given
by twice the susceptibility per electron plus a correction
for electron correlation. The latter correction vanishes
in this particular case so that we have

(32)

Xzo? =X, P =X "alac¥ (22— 222/ (s 2+ x2).

The form of (32) has the following physical explana-
tion. If Larmor’s theorem were valid, all the electrons
would be rotating about H with an angular velocity
w=eH/2mc. The extra kinetic energy of rotation would
then be directly identified with the diamagnetic energy.
When the forces acting on the electrons are not central,
i.e., when there is more than one nucleus, some of the
charge will not rotate about the field, but will remain
attached to the nuclei. There will then be a reduction of
the total kinetic energy and hence, a reduction in the
total diamagnetic susceptibility, i.e., a paramagnetic
part. The latter only exists in virtue of the torques
exerted on the electron by the nuclei. If the distribution
of electrons were spherical, i.e., if (z2—x,2)=0, then the
electrons could rotate independently of the nuclei. For
the H, molecule, there is a great deal of slippage, i.e., the
electrons contribute only a small fraction of their share
to the moment of inertia of the rotating molecule. This
quasi-decoupling of the nuclear and electronic motion is
only possible because the electron distribution is not far
from spherical.

Equation (32) for the paramagnctic part of the
susceptibility was first derived by Tillieu and Guy,?
and is included here for completeness. Although varia-
tion calculations of electrical polarizabilities were nu-
merous in the years 1930-1935, it was not until 1954
that the variation method was applied to magnetic
polarization. Unaware of the work of Tillieu and Guy,
Espe? at the suggestion of A. Bohr applied the identical
variation method to determine the moment of inertia of
the. electrons in a rotating H, molecule. In view of
Larmor’s theorem, this moment of inertia is simply re-

2 J. Tillieu and G. Guy, Compt. rend. 239, 1203 (1954); 240,

1402 (1955).
26 1. Espe, Phys. Rev. 103, 1254 (1956).
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lated to the paramagnetic part of
susceptibility.

_ Table IV contains the calculated diamagnetic sus-
ceptibilities. The paramagnetic part contributed only
about 3%, of the total mean susceptibility but this may
well be a special feature of molecules with nearly
spherical charge distributions. The static part of the
susceptibility ‘which depends on sums like {z2-+x2) is
obtained within an error of 59 or so by most of the wave
functions. The paramagnetic part of the susceptibility is
quadratic in the difference {z.2—x.2), which is sensitive
to the choice of W,. The calculated values for x? illus-
trate the point that the calculated x can be either larger
or smaller than the true x. Two values of the paramag-
netic susceptibility are quoted for the Nordsieck and
Newell functions. The first is for a one-term variational
function of the form of Eq. (28); the second is for a
four-term variational function,

P (H)=1izy{ciFcy’+ciz2+cyt).

Espe has shown that the convergence of the varia-
tional procedure is fair; the difference between the one-
term and four-term result is about ten percent. This is a
little disappointing in view of future applications. How-
ever, variations in the small paramagnetic term have a
negligible effect on the general good agreement of the
theoretical and observed mean susceptibility.

the diamagnetic

C. Nuclear Magnetic Shielding

The nuclear magnetic shielding is a measure of the
magnetic polarizability of a molecule. When a molecule
is exposed to a magnetic field, currents proportional to
the external field are induced ; these currents are meas-
ured by measuring their energy of interaction with a
magnetic field. This can be the same external field in
which case we are measuring the diamagnetic energy
—3H-xH, or it can be one of the nuclear dipole fields
within the molecule in which case we are measuring the
energy of magnetic shielding of nucleus &, —u@ . ¢H.
For quantum mechanical purposes, we need the same
function P (H) and in measuring the paramagnetic parts
of x or o, we are merely measuring different expectation
values involving P.

‘The nuclear magnetic shielding tensor at nucleus .V,
ca®, is defined by the equation

3 3
LE=Iy—3 3> (3= Toa™)u N H,,

k=1 A=l

(33)

where u ™ is a component of the magnetic moment
vector of nucleus V. The Hamiltonian for the nucleus &/
again consists of two parts, a static Hamiltonian and a
polarizing Hamiltonian :

1 e [rida—ra(R)rc(k)]

S OV H,
2 me® ke k 73
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where the superscript N may now be dropped. The first
term comes from the cross products of the nuclear dipole
and the external vector potentials; the second term
comes from the cross products between the moments
and the nuclear dipole vector potentials. A change in
gauge will again shift the relative weight of the two
terms but not their sum.

We are interested in the simultaneous polarization of
the molecule by the terms

(N)

e e

2mc 2mc k N 7k
A minor difficulty arises because the angular momentum
operators 1; in the two terms are not defined with re-
spect to the same origin in general. In the first term, the
angular momenta are defined about the center of the
molecule because Eq. (26), i.e., A=3HXr.(k), has been
used for the vector potential. On the other hand, the
angular momenta in the nuclear term are most naturally
defined with the given nucleus as origin.

In calculatlng the diamagnetic susceptibility of Ho,
the natural origin is the center of the molecule. ' With
respect to that origin, we have determined the wave
function of the molecule to first order in the magnetic
field, viz.:

v=[14H -P(H)]¥.. (36)

Suppose that we wish to change the origin of the ex-
ternal vector potential and hence the origin of -the
angular momenta in Eq. (35a). It is #of necessary to
repeat the variation calculation because the change of
origin corresponds only to a change in gauge of the
vector potential, i.e.,

A'=1HX (r4+R)=A+VA,

' @37
vVXA'=vXA=H,
where Risan arbitrary constant vectorand A=%r- HXR.
Now because a gauge transformation obviously alters
the Hamiltonian, the wave function itself must trans-
form in order to leave the Schrédinger equation co-
variant.?” The wave function defined with respect to an
origin at R with respect to the center of the molecule® is

V=¥ exp[ (—ie/kc)A]

=W exp[ (—ie/2kc)r- HXR]. (38)

Inserting Eq. (36) for the wave function ¥ defined with
respect to the old gauge, we have

V= {(1+H-[P(H)— (ie/2c)RXT]}¥,  (39)

where only terms linear in H have been retained. To
calculate the chemical shift it is obviously convenient to
use an origin at one of the nuclei so that effectively

27W. Pauli, Die Allgemeinem Prinzipien der Wellenmechanik
(Edwards Brothers, Inc., Ann Arbor, 1947), p. 111.
28 R will be 3Rk for the two nuclei of Ho.

905

TABLE V. Nuclear magnetic shielding constants® for various wave
functions of Hy (R=1.4ay)." .

Function a4 and oLP

g
Heitler-London 3.03 245 —0.59 0.0021 2.44
Wang 2.73 3.40 —0.75 0.0157 2.46
Weinbaum 2.77 3.46 —0.80 0.0117 247
Rosen 2.82 3.46 —0.91 0.0350 2.45
leschfelder—Lmnett 2.85 3.51 —0.84 0.0325 2.53
Coulson (unshielded) 2.47 3.01 —0.57 0.0030 2.27
Coulson (shielded) . 2.85 3.54 —0.82 0.0251 2.55
Wallis (C.1.) 2.81 3.49 —0.78 0.0162 2.53
‘Wallis (limited ionic)  2.68 3.55 —0.98 0.0214 2.33
Exp. —-095 - 2.62
=%(20142017+0119)
a All shielding constants have been multiplied by 105.

P(H) becomes

UP(H) =P (H)TF (ieR/4hc) (xj—yi). (40)

The paramagnetic part of the nuclear magnetic
shielding tensor ow? can now be extracted at once by
comparing Egs. (16) and (33):

e
gaP= <‘I’0 ——[l (k)P)\(H)"l—P)\
mc k Tk

For H,, only the terms k=A=ux or y are nonvanishing

so that we have
< (H) . 22— &2
>~—-—a< > (42)
7’3

I

Multiplying by two to obtain the final results?® for the
molecule, we have

D) ool
i)
HED A w

Table V presents the chemical shift calculated from
Eq. (43) for various wave functions. One is at first
surprised by the fact that the experimental value of the
paramagnetic part of the shielding ¢? is about one-third
of the total mean ¢. In contrast, the “high-frequency’ or
paramagnetic part, x ?, of the diamagnetic susceptibility
is only about 3%, of the total mean x. The explanation is
that very little of the experimental ¢? is really of high-
frequency origin. In calculating ¢? we used as an ex-

(43)

2 These results were first given in T. P. Das and R. Bersohn,
Phys. Rev. 104, 849 (1956) The reader will note that between l/r
and what follows the printer omitted a plus sign. The term 1/7
should have been replaced by (x2+42?)/r3.
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ternal vector potential $HXr. To be counsistent, in
calculating o?, we had to do the same thing which
introduced the large correction term, —a?(R/2){(z/7%. If
in computing ¢¢ we had used the vector potential
1HX r,, the results would have been

_%R + 2 g 2+ 2
=<_L~Z_> :< y >, )

7’ rs

and no correction term would appear in ¢”.

The correction term itself can be evaluated using the
principle that the average electric field acting on the
electron is zero. That is,

—1a?R(z/r%) = —a?/4R=—0.951X10~5,  (46)

which is almost within experimental error of the ob-
served ¢?. We therefore infer that the remaining terms
in Eq. (44) will be negligibly small. The fourth column
of figures in Table V shows that these terms are highly
variable between the different wave functions but
always very small. Ramsey® anticipates that the quan-
tity (22— %) /r*) may become available and at that time
these terms may be separately confronted with ex-
periment.

D. Spin-Spin Interaction

1. Choice of the Fermi Hyperfine Interaction as the
Perturbing Hamiltonian

The nuclear spins of a molecule can interact either
directly, by a one-electron mechanism, or by a two-
electron mechanism.® The direct mechanism is the
dipole-dipole interaction between the two nuclei:

varus 3(ua-Rap)(us-Ran)
Rag® Rap® '

(47)

This interaction, while inherently of order o2 compared
to the electron-coupled terms, effectively vanishes in the
liquid state because of the random and rapid molecular
reorientations.

The one-electron mechanism results from the cross
products of the nuclear dipole vector potentials:

e?

(48a)

AD (ra(k))- AP (rp(k))

2mc?

and the simultaneous action of the polarizing terms

(e/me)pi- A (ra(k))
(e/me)pi- AP (rp(k)).

Term (48a) involves expectation values of the form
(ra(k)-rp(k)ra—2(k)rp~2(k)). Such terms are inherently
small because they come from the region of overlap of

and (48b)

# See reference 2, p. 166.
31 N. F. Ramsey, Phys. Rev. 91, 303 (1953).
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the wave functions centered on atoms A4 and B. More-
over, in Hs, the scalar product will change sign in the
rather appreciable region of overlap. For HD, Stephen®
has shown that this term is ~2 cycles. The polarizing
terms, (48b), are also inherently small. They involve
products of off-diagonal matrix elements of the orbital
angular momentum operator and the wave function of
H, is predominantly of s character. They are small for
the same reason that the paramagnetic part of the
chemical shift is so small.

The two-electron mechanism results from the simul-
taneous action of two hyperfine interaction energies,

waXr4(y)
BSJ-' VX (“'—‘—
; r0) )

488,V (@i%:k—))

Ramsey?® has also shown that a two-electron mechanism
analogous to (48b) can produce a spin-spin coupling but
this is inherently small for the reasons stated above.
Stephen showed that the total of all such terms was
0.6-0.7 cycle.

The hyperfine interaction of nucleus 4 and electron j
can be written as the sum of two terms,

and

(16/3)mBhy 4la- S5 (ra (), (49)
and -
287 (308 14 (N T La £4() T ()
=S;-Lira=3(5)}. (50)

A considerable simplification will result if we can drop
the angle-dependent terms leaving only the é-function
interaction. The justification for this omission is as
follows. There are three types of cross products between
the two hyperfine interaction terms—those involving
cross products of two é-function terms, those involving
cross products of a é-function term and an angle-
dependent term, and those involving cross products of
two angle-dependent terms. In Appendix A it is shown
that the cross-terms of the second type are negligible so
we are justified in dropping the third type of term.

The preceding paragraphs have been preliminary to
the main task which is to obtain the spin-spin coupling
constant from products of the é-function hyperfine
interaction. The é-function interaction contributes very
nearly all of the spin-spin coupling constant because it
is effective where the electronic wave functions are
largest and because it does not contain an angular factor
which could vary in sign.

2. Methods of Calculating the Spin-Spin
Coupling Constant

The spin-spin coupling constant is the coefficient
(when averaged over all orientations of the molecule) of

8 M. J. Stephen, Proc. Roy. Soc. (London) 243, 274 (1957).
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L I5 in the electronic energy. If the nuclei 4, B are in
chemically inequivalent positions, - this part of the
energy can be calculated in three different ways. One
method, used by Stephen, is to minimize directly the
spin-spin coupling energy which is of order vyyg. This
requires that one determine the perturbation of the
ground-state wave function by the magnetic moments
of both nucleus 4 and of nucleus B.

The method which we have used is to minimize the
part of the electronic energy proportional to 4% in
order to determine the wave function of the molecule to
first order in the magnetic moment of nucleus 4. The
spin-spin coupling energy is then determined by com-
puting the hyperfine structure of nucleus B in the state
of the molecule perturbed by nucleus 4. A method,
equivalent in principle, involves the determination of
the wave function to first order in yg. The part of the
electronic energy which depends on the nuclear mo-
ments can be written as

Y

and the three methods described correspond to mini-
mizing separately each of the three terms. These
procedures would be equivalent if the true ¥, had been
used to begin the calculation; if not, one has no criterion
for preference. It will be interesting, for example, in the
molecule HI' to compare the values for the spin-spin
coupling constants obtained by the three different
methods.

Our method differs from Stephen also in the form of
the variation function used. In general, one writes for
the perturbation produced by the term3

(8m/3)geiBhy al 4.51:6(r4(1)),

Jaaya®+J apyays+J spys

(52)
W= als12 4 (1)452.f4(2) T,
where
)\,4= (81r/3)ge1,3h’y,1IAz/62002.
For fa(1) Stephen used the function
srﬁ(l)—i—té(r,;(l) ), (53)
whereas we use
FaQpu)= 22 2 CphiPur?, (54)

»>1¢>0

where M=[ra(0)+rs(1) /R, wm=[rs(1)—rs(1)]/R.
Numerical results show that the latter function will
ultimately fail to be quadratically integrable ; this failure
is obvious for the former function. The self-coupling
constants J 44, Jpp are infinite when evaluated with
function (53) and have no evident upper limit with
function (54). The desired experimental internuclear
coupling, J 43, is perfectly finite and apparently con-
vergent with either function. The divergence of the self-

% An analogous function can be written for the perturbation
produced by the 745512, 74,51, terms. In the approximation that
the classical dipole-dipole term is omitted, the spin-spin coupling
constant will be isotropic so that only one of the terms of the
scalar product I4+-S; needs to be considered explicitly,
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coupling constants is discussed in more detail in
Appendix B. In short, the wave function is incorrect
only in the neighborhood of nucleus 4 which does not
effect the spin-spin coupling constant.

Function (54) exhibits the division of the perturbed
state into two states of symmetry 32, and 32, (odd and
even g, respectively). This division, also emphasized by
Ishiguro,? results from the fact that the interaction of
the electron and nucleus has neither even nor odd
symmetry with respect to the center of the molecule.

3. General Expression for the Spin-Spin
Coupling Constant

The perturbing Hamiltonian can be written as
Ha;= (8m/3)geBry 1051486 (ra(5)),  (55)

where the §-function and angular momentum vectors
are expressed in units of a¢® and 7%, respectively. If we
consider only the z component of the scalar product and
let Aa= (87/3)ge1Bhy 4/ %as®, we have, for the energy of
self-coupling of atom 4,

Eaa=2¥o|3Ca1+3Cas| W a)+a|3Co—Eo|¢a), (56)

where ¥4 is the molecular wave function perturbed to
first order in v 4.

The expectation values implied by Eq. (56) must
now be carried out:

2000 |50 a1+3C a2 | W 4)=4(Wg | 3Ca1 |9 )

AN Ko [6(r14)S 0[St (1) +S2:£(2)][Wo), (57)
where Eq. (52) has been substituted for ¥ 4.
Summing over the spins, one has
AaX¥o [0 (ra (D)L (D)= f(2) ][0 (58)

Now f can always be written as the sum of an even
and odd function with respect to inversion in the center
of the molecule:

J=frtfu

so that the term becomes

Ega= M@ a(WLLM) f(D)D
—@@a(1))f2)}.  (59)
After the energy minimization has been carried out,
the term (W4|3C41+3C42| W) will be the negative of
(¥ 4]|3Co— £o| ¥ 4) so that the self-coupling energy of
atom A will be just

Eaa=3 (@ a4 fu(1) ]
: —(@(ra(1))f(2))3.
The spin-spin coupling energy between nuclei 4 and
Bis .
Eap= Yo+ ¥ |3Cs~+3Cu| WVt W¥a4)
=4(V|3Cp1| ¥ 4)
=ANAp(Wo[S1:0 (115){S1:f (1) +S2./(2)) [¥o). (61)

(60)
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Summing over the spins, substituting and dropping the
explicit ¥, we have

Ao (D) + fu() D=6 xs(1)) @)} (62)

In order to compare the expressions for the self- and
mutual coupling constants, we introduce the obvious
symmetry relations

(0(rs(1))fo(2))=(3(ra(1)) 6 (2)),.

=0 (s(1)) fu(2))=((xa(1))fu(2),

which are valid because nuclei 4 and B are in equivalent
positions.

Substituting these relations in E44 and E4p, one
obtains3

Eas= 23 (a(WD)Lfo()— fo(2)+ fu(1)— [u(2) D),
Eap= k(3 (ra(D)fo(1)— fo(2) = D)+ Ju(2) D-

The rather odd result which emerges can be recast as
follows:

(63)

(64)

Eas= 22U+ Tu),

65
Ean=AAs(Jy—J.). (65)

In actual application the quantities J, and J,, gradu-
ally diverge with increasing number of terms in the
wave function. Their difference which is essentially the
spin-spin coupling constant is convergent.

4. Numerical Results

Calculations were performed only for the single con-
figuration molecular orbital with effective nuclear charge
Z=1.197 referred to previously as Coulson’s effective Z
function. For this function

2| 3Ca1+3Ca2| W 4)
=)‘A2I‘I’O(A) !2 Zp 2 Cpq[(_)q_O‘p#qﬂ

= (¥ ao)\a2 2 p 2 ¢ Kpolpe (66)
Also
AN
<wA|sco—E0]wA>=<\pA y qu>
A1)
T¥,
=2<\I’A Tl— ‘I’A>. (67)
0

Substituting Eq. (52) for ¥4, one has

Aa? T¥,
2—<‘I’o ]
4 ¥y

X[f(l)—f(Z)]I‘Ifo>- (68)

[f(l)—f(2)][T1—

Integrating by parts repeatedly, this expression

3 The term ‘“two-electron mechanism” might possibly be
misleading here because the final result contains both one-electron
and two-electron terms. The spin-spin coupling constant for HD™,
for example, would be obtained by deleting the two-electron terms
in Eq. (64).
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TaBLE VI. Spin-spin coupling constant.®P

. Jg . Ju Ean/h cps
0,2 —0.09460 0,1 —0.20963 18.75
0,4 —0.12908 0,3 —0.25561 29.67
0,6 —0.12778 0,5 —0.29109 37.99
0,8 —0.12412 0,7 —0.33104 48.13
0,10 —0.11346 0,9 —0.36626 58.80
1,0 —0.21131 1,1 —0.40201 44.36
1,2 —0.25525 1,3 —0.43104 40.89
1,4 —0.28490 1,5 —0.42671 32.98
2,0 —0.30410 2,1 —0.42577 28.30

a The experimental value of Eap/h is 42.740.7 cps [J. F. Wimett, Phys.
Rev. 91, 476 (1953)].

b At each stage of approximation the given p,q was used as well as all
those preceding.

simplifies to

na(e/ao)|Vif (1) [®)
=3 a(€/a0)2 0 20 20 20 Lya, pr aCpalpr -

The total energy of self-coupling of atom 4 is
Esa=3\4*(¢%/a0)
X2 22w 220 Loa o a0 o +2K pa}cpa.

This energy is then minimized and the resulting simul-
taneous linear equations are solved for the ¢,,. The
form of L, » ¢ is such that ¢ and ¢’ must be both even
or both odd; that is, the equations for ¢, , with odd ¢ are
completely separate from those for even ¢. The results
for the separate parts of the energy are given in Table VI
and using (65) the spin-spin coupling constant.

The divergence of the self-couplings J, and J,, while
in principle of no consequence, means that the observable
spin-spin coupling constant is obtained as the difference
between two divergent quantities. To obtain a con-
vergent result for the spin-spin coupling constant, one
must subtract for any p the contributions of adjacent ¢;
any other procedure would lead to arbitrary answers for
the spin-spin coupling constant.

Our result oscillates in an unhappy fashion. We do not
at present know whether the oscillation is due to
numerical error in the calculation or to incorrect treat-
ment of the divergent energies, or is inherent in the
variation function. It is encouraging, however, that the
result is never too far from the experimental value even
though the calculation used a very simple wave function.

(69)

IV. CONCLUSIONS

Radio-frequency spectroscopy has introduced new
molecular quantities, the electric field gradient at the
nucleus, the nuclear magnetic shielding constant, and
the spin-spin coupling constant. The aims of this paper
have been, using the hydrogen molecule as a model, (1)
to show the relation of the new molecular quantities to
the older ones which do not depend on the existence of
nuclear multipole moments, and (2) to present new
methods of calculating these new quantities, especially
the polarizations.

The comparison of various expectation values which
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has been made shows from what diverse viewpoints one
can approach the hydrogen molecule wave function.
When new wave functions are introduced for the hydro-
gen molecule, it will be very helpful to obtain similar
expectation values to exhibit improvements in the wave
function. The expectation values have demonstrated
that the introduction of an effective nuclear charge is of
overriding importance. In addition, the use of s—p
hybrid functions with independent effective nuclear
charges may prove to be a considerable advance in the
valence theory of simple molecules.

In this paper, details have been given of our variation
method for calculating chemical shifts. A variation
method has been presented for the spin-spin coupling
constant but in the course of preparing the manuscript,
very similar work by Ishiguro and Stephen has ap-
peared. The variation method appears in general to be
rapidly convergent. This is probably because the virtual
continuum states are better handled than in the con-
ventional sum over excited states perturbation treat-
ment. Also, the choice of a variation function ¥;= P¥,,
where P contains the variation parameters additively,
automatically results, as can be shown, in the satisfac-
tion of the equation

(¥1] (00— Eo) ¥+ (301 — Ex)¥o) =0,

In principle one wants the right-hand side of the scalar
product to vanish identically, but at least a good be-
ginning has been made with this choice of function. Any
perturbation method no matter how rapidly convergent
gives results no better than the ¥, from which one
starts. The variation procedures, because they are
rapidly convergent, may help to establish the relative
quality of various trial wave functions.

The methods given here can be extended straight-
forwardly to polyatomic molecules whose observed
chemical shifts and spin-spin couplings can then be
compared with theoretical calculations. Radio-frequency
spectroscopy will then supply us with a deeper insight
into the approximate wave functions of more complex
molecules as well as of hydrogen.
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APPENDIX A. CROSS PRODUCTS OF THE DIPOLE-
DIPOLE AND THE DELTA FUNCTION
HYPERFINE TERMS

Consider a hydrogen molecule perturbed by the

potential
2 [324%(k)—ra2(R)]
3y =— 3 gBhyal 4:Sr————— (Al)
k=1 ra®(k)
2 3 (3costp—1)
= = Ay (A2)
k=18 r4*(k)
We want to determine by means of the equation
(3Co— Eo)¥1= —3C1¥,, (A3)

the first order modification of the wave function. To
this end we can use one of the ¥, determined by the
variation method and then apply the variation method
again to obtain an approximate function ¥;. An alter-
nate procedure is to replace the approximate ¥, by a
still cruder approximation and then to integrate Eq.
(A3) exactly.

Specifically we assume a single configuration molecu-
lar orbital function,

‘1/0(1,2)=¢0(1)‘!’0(2))

and let
Yo(1)=[2(14+S) T [a(1)+5(1)] (A4)
~[3A+5)Te(®)
+2(14+9)T[6(1)—Sa(1)]. (AS)

The two terms in Eq. (AS5) are orthogonal to each other
and the coefficient of a(1) is, using Coulson’s Z=1.193,
equal to (0.85)%. In other words, 85%, of the molecular
orbital can be written as a 1s function centered an atom
A. The second term of (A5) is neglected for the present
approximate purpose.

The Hamiltonian (A2) contains the angle 6 between
the vector going to-electron % and an arbitrary z axis. By
means of the Legendre polynomial addition theorem, one
can write

(3 cosr—1)=Ps(6.4) (3 cos®ra—1), (A6)

where 6,4 is the angle between the bond axis and the z
axis, the f14 is the angle between the electron vector and
the bond axis.

This equation is not an identity ; the terms which are
lacking have been dropped because they will not con-
tribute to the final answer. We only wish to obtain, for
Y1, the d function which is of ¢ symmetry about the
bond axis.

The wave function

Sl—i'—‘__S)_Zf]ze—-ZnA (A'])

%(1):[

™

is the 1s function of a pseudohydrogen atom with an

energy
E0= - 2262/2(10.
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When this ¢?* and E, are substituted in Eq. (A3) one
obtains

(1+S)z2 Zra(1)
V= [m] g Zram (H—T Py(6.4).

2w

(A8)

In the state perturbed to first order by the dipole-
dipole interaction of an electron with nucleus 4, we
must compute the energy of interaction of the same
electron with nucleus B. If we let

3¢y = (8n/3)geBhy Bl BSkH (r5(1))=A5d (r5(1)),

then we desire the term containing A4Ap in the energy
which is

4(‘1’1!381/|\I/0>= 4‘1’1(7’A=R))\B‘I’0(TB= 0)

(A9)

(A10)

Evaluating this expression by means of (A4) and
(A8) one obtains for the spin-spin coupling energy

1 723 ZR
AN p— EC*ZR(l—!—T) (1+€_ZR)P2(0A),

4n?
which is equal to

4.0P2(04)] 4.5, cps for HD.

This particular interaction vanishes for an HD molecule
subject to rapid collisions in a liquid or a gas because of
the averaging of P2(64). However, the magnitude sug-
gests that the dipole-dipole interaction is not important
for the spin-spin coupling constant. This is further
shown by the almost isotropic J tensor obtained by
Stephen. We conjecture that the argument holds gener-
ally for spin-spin coupling involving the hydrogen atom
and perhaps even still more generally for atoms whose
valence electron is mainly s-like.

APPENDIX B. DIVERGENCE OF THE
SELF-COUPLING CONSTANT

The divergence of the self-coupling constant J 44 and
the apparent singularity of the wave function are at
first sight disturbing. We must first remark that the
d-function interaction is derived from the same potential
energy as the 2 dipole-dipole term. As a formal matter,
the 3 term does not permit a stable bound-state
solution. The mathematical inference is that the hyper-
fine interaction term cannot be applied without change
to all orders but must be modified. Physically, the
trouble comes from the assumption of a point proton
magnetic dipole.

Investigations performed on the hydrogen atom itself
help clarify the situation. For the present purpose, we
are interested in all corrections to the hyperfine struc-
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ture of magnitude
(0] 3Cnss | 72) (1| 3Cnts | O)
Ey—E,, ’

which means corrections of order a?m/M to the hyperfine
interaction. These corrections can arise from different
sources including (a) recoil effects of the nucleus in its
interaction with the electron, (b) finite size of the
nucleus which changes the interaction at distances of
the order of a meson Compton wavelength, and (c)
virtual emission and absorption of a photon by the
electron while it is interacting twice with the nuclear
moment.

These contributions are presumably beyond the limit
of present experimental accuracy in determination of
the hydrogen atom hyperfine structure interaction.
Contributions of type (a)*® and (b)3 have been evalu-
ated only up to terms of order am/M. The proton recoil
terms were shown to originate from virtual photons with
energy greater than mc? and to diverge logarithmically
with photon energy. Moreover they depend on the wave
function of the hydrogen atom only in the form |¢(0)]2
so that the considerations would be almost identical for
a hydrogen molecule. The third contribution, (c), the
electron size effect, is finite but is a correction to the
Lamb shift rather than the hyperfine structure because
it is proportional®”® to 1252

The divergence of the self-coupling constant for the
hydrogen atom is due ultimately to our inadequate
knowledge of the charge distribution of the nucleon. A
more nearly correct theory will modify the interactions
and wave functions only at high momentum, that is,
only at distances of the order of 1072 cm from the
nucleus; this local modification can hardly change the
wave function at distances of the order of 10~8 cm, i.e.,
at the other nucleus. The self-coupling energy of the
atom, whether it diverges logarithmically (relativistic
treatment) or linearly (nonrelativistic treatment), is in
any case to be differentiated from the desired spin-spin
coupling energy. The wave function, which is incorrect
at very short distances and gives an incorrect, indeed
infinite, value for the self-coupling, will nevertheless be
correct at large distances and give the correct value for
the spin coupling constants.

3 R. Arnowitt, Phys. Rev. 92, 1002 (1953); W. A. Newcomb
and E. E. Salpeter, Phys. Rev. 97, 1146 (1955).

36 A, C. Zemach, Phys. Rev. 104, 1771 (1956).

37 H. M. Fried (private communication).

3 One might expect a contribution to the spin-spin coupling
constant from terms of type (¢) in which an electron emits a
virtual photon, interacts with the magnetic moment of nucleus 4,
then with that of B, and then absorbs the virtual photon. Such a
process, however, can only make an appreciable contribution when

the nuclei are simultaneously within a distance #/mc of the
electron.



