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Frequency Shifts in Hyper6ne Splitting of Alkalis Caused by Foreign Gases*
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The difference in the dispersion force between an alkali atom in a particular hyperfine level belonging to
the groundstate and a perturbing molecule is computed. These asymptotic forces, if active alone, generally
produce red shifts and suffice to account for the results obtained for the heavier buBer gases. Experimental
data exhibit blue shifts for the lighter gases and therefore indicate that the net frequency shifts are the
result of exchange as well as dispersion forces. The former cannot be determined theoretically. Therefore,
a simple model is devised in which the difference in the forces is given a positive trend at distances of
separation smaller than d, while beyond d it is given the calculated form. The experimental data for all
alkali-rare gas interactions can then be fitted by values of d which, for the different foreign gases, are of the
order of their gas-kinetic diameters.

1. INTRODUCTION
' "NGENIOUS experiments" have shown that hyper-
' - fine transitions in the spectra of Na, Rb, and Cs
suffer shifts in the presence of noble gases. Qualitatively,
these shifts are similar to those observed in optical
spectra under the action of Van der Waals forces; but
their magnitudes are smaller. It is tempting, therefore,
to calculate the Van der Waals forces for the different
fine structure levels of an alkali atom and to see whether
agreement with the data results when the ordinary
concepts of pressure broadening are employed in their
simplest form. '

This plan encounters a major difficulty: the data
indicate shifts to higher frequencies when the buffer
gas atoms are light, opposite shifts when they are heavy.
Such occurrences are well known in optical spectra,
though they are less prominent. They imply the
presence of repulsive (exchange) energies at small
distances of separation; in the case of hyperfine levels
the bespeak a reversal of their energy difference.
Since they are of lesser importance in the optical case,
rather crude assumptions can reproduce the optical
data. Here, exchange effects are clearly prominent,
and a model is needed to approximate the energy
reversal. Only the asymptotic interaction between an
alkali and a rare gas can be computed, and hence the
model must bear half the burden of all numerical
comparisons. We chose a model patterned after the
ordinary exchange forces, and the success we may claim
for our interpretation, if any, must depend upon the
circumstance that reasonable model parameters can
be chosen to account for the data.

Our method differs conceptually from the pattern
of thought usual in nuclear physics. The hyperfine
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splitting arises from the Fermi interaction of the
nuclear magnetic moments with the electron shells,
and to account for its change one feels tempted to
compute, first the effect of a perturbing atom on the
alkali electrons, then the secondary effect upon the
hyperfine levels. Here we pass around these details
and utilize empirical data, such as the spacing of energy
levels, the normal hyperfine splitting, f-values, and so
forth. Our method obscures the features of the nuclear
picture but does not violate them.

The present approach leaves the details of the line
shapes obscure. Since line widths receive contributions
from several causes, their understanding involves more
dificult problems. Hence our calculation is limited to
the first moment of the line frequencies, a quantity
which is largely independent of the accidents of line
shapes. The first moment can be identified with the
line maximum, which is measured, only if the line is
symmetric, and this is reported as empirically true.

2. ASYMPTOTIC ENERGY SHIFTS

The hyperfine transitions giving rise to the microwave
lines under consideration take place between different
F states composing the '5~ ground level of the alkali
atoms. Each of these states suffers a downward energy
displacement when a rare gas atom approaches the
alkali, a displacement which can be computed by well-
known methods involving second-order perturbation
theory. But the usual Van der Waals force calculation
does not distinguish between the different hyperfine
states. In this section we perform it for specific F levels
and find a dependence of the London force on Ii which
reduces the transition frequency between the states in
question. These are 'S;(F=3, mal=0) to 'S;(F=4,
m~=0) in cesium, 'S;(F=1,my=0) to 'Si(F=2, m~=0)
in both rubidium and sodium.

Since our major concern will be with the Cs line
(frequency v=9192.6 megacycles sec '), the concrete
references in the sequel are to this case. Results for Rb
and Na follow by analogy and will be stated. Likewise,
to save writing, we shall often symbolize any noble

gas by the representative A. The theory of angular
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momenta permits the reduction of all matrix elements
encountered in the calculation to those involving only
the radial parts of the state functions, and these can
be approximated by known quantities, e.g, , f-values
and atomic polarizabilities. For the alkali atoms we
employ f-values because only one electronic transition,
the resonance transition corresponding to the D lines,
is strong, and its oscillator strength is nearly 1.

The perturbing noble gas atom, on the other hand,
is capable of numerous electronic transitions from the
groundstate to higher states, all of them in the neighbor-
hood of the ionization potential. Here, then, we sum
over all f-values, assuming a common transition energy,
and obtain the polarizability via formula (21) below.

For completeness we present a calculation of the
asymptotic energy shifts which includes the splitting
of the P states and introduces all details of angular
momentum couplings. The result can be obtained with
very good approximation in a simpler way described
in the last paragraphs of this section and is summarized
in Eq. (27).

The effective electron coordinate in the Cs atom is
denoted by (1), that in the noble gas by (2); the vector
distance between their nuclei is R. The classical
interaction energy is given in a very general form by
Rose and reduces in the dipole-dipole approximation to

16m'e' +&

yi (ri) 91 (r2) 91 (~)Y1 (R) (1)
g

e2

(&1&2+$1/2 2sls2) ~

R'
(4)

Writing jfor the total angular momentum (j = Ii for Cs),
we let +~~m~ represent the state function of the alkali
atom 4'j2m2 that of the noble gas.

The second order energy difference between the two
hyperfine levels due to the noble gas perturbation is
given by

I
(P'I vIP) I'

I
(v'I vie) I'

~~4,2=2
jV —gI «p —jVI

4 M. Rose, J. Math. Phys. 37, 2j.5 (1958).

where 'gl, 'v is a regular solid spherical harmonic defined
as

cJliM(r) rLY M(rili)

and YL,~ the irregular solid harmonic

T ~(R)=R ~ 'Y ~(R&'i). -
r&" and I"' denote unit vectors in the directions of
r and R.

If the V' operation, which applies to R, is performed
and the s axis taken along R, Eq. (1) becomes the
familiar

4m e'
V= —— rir2 p 2'—t~i Yi '—r(ri) Y,~(r2)

3 R'

where V is the interaction energy as given in (1);
p r«e» to the Cs-A gas system with Cs in the j1=4
state, and q to the system with Cs in the jl=-3 state.

The matrix element (p'I Vl p) is given by

(P'I vip)

= (ji'mi', j2'm2'I Vl j,m, ,j,m2)

16m'e' +&

cJ1 lcl(q)Y m(R)
g cV m=i

X(ji'mi', j2'm2'I 'Jli '(ri)J1, *(r2)
Ijimi j2m2). (6)

Since 'JJ1 *(ri) depends only on the Cs atom and
'JJ1 '(r2) only on the A atom, (6) can be factored and
written as

16~'e- +&

gi '(v) Yi"(R)(ji™1')
I
pi""(ri)

Ijimi)
g ilI, m=—I

X(j2'm2'I pi"'(r2)
I j2m2) (7)

Let us first evaluate the matrix element
(ji'mi'I'J11 "(ri) Ijimi). To obtain the hyperfine state
function +&'&m& it is necessary to couple spin and angular
momentum of the valence electron to form the total
electronic angular momentum, which in turn must be
coupled with the nuclear spin through Clebsch-Gordan
coeScients C. Thus

rm .l=Q C.(L.SJ; ml. , m.l ml.)+—r.ml.f sm.l ml. , (8), —

111'151——Q C(.IIJ1, m l, mi .ml)%em. l%—rmi m»''—
78J

=g P C(JIj 1, mJ, mi mg)C(L—SJ; ml„mg —ml.)
mJ ml,

X11Lml%'Smg ml@Imi m—g (9)— .

A similar equation holds for +&&'m&'. As mentioned,
in the case of the Cs atom only the P;,P~ resonance
levels are used for the primed states, which is permis-
sible because the intensities of the transitions from all
the other states to the ground state are much weaker
than these.

Use of (7) leads to

(ji'mi'I 'JJ1""(ri)
Ijimi)

= Q Q C(J'Ij'1', ml', mi' mg')C (JIj 1, m g, mi mr—)—
tNJ tg J

X~ll'Sml —~J', &+1—m J Q Q C(L'S'J'; ml, ', m&' ml,')—
mr, ' mL,

XC(LSJ; m. , m, -m, )(L m;
I
~;*(r,) I

Lm,.)
X8s~sbmg' ml. ',ml ml, . (10)— —

The matrix element (L'ml, 'I'JJ1~*(r2) ILml) in (10)
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can be reduced by means of the Wigner-Eckart theorem: expression (7) takes the form

(L'~, 'I y;*(r,) I
L~,)

= (—) C(L1L', 2221„—212, 2121,')

X(L'lip, (») IIL)a..,.... (11)

In this way the sum over 2121.
' in. (10) can be eliminated

and one sees that

(ji'201'
I pi *(ri)

I
ji2221)

=P g C(J'Ij 1', 222&', mi III')C(J—Ij I, IIII, 2222 222—&)
mg' mg

XP C(L'SJ'; mi, —m. , 222I 2121,)C—(LSJ; 2221„mI 2121.)—

X (—)"C(L1L'; 222I„222)—(L'll 'gi (ri) IIL)

X6mi', mi —m8s s. (12)

4me' +&

( 1)S I 2—I+—
I+m+M+2&ad M(g)11 m(R)

9

XI 3(2ji+1)(2J'+1)(2J+1)7*C(ji1ji',2IIi, —II2)

XW(Jj iJ'ji'; I1)W(OJ1J'; S1)

X (L'lriIL) (j2'I I2I j2)

note being taken of the fact that C(011,0—M) and
C(011,00) are equal to one.

For the evaluation of 'i!1M(V)Tim(R) it is convenient
to take R along the positive s axis. In that case this
quantity is zero unless vs= —M. Application of this
condition results in

cg M (27)Y —M (R)— (18)
42I(1—M)!(1+M)!R'By applying the symmetry and orthonormality

relations of the C-coeKcients Eq. (12) can be written
in a more convenient form (the details of this calculation and substitution of (18) and (17) yields, on squaring (6),
follow developments in the cited book by Rose' )

4e' i L3 (2ji+1)(2J'+1)(2J+1)7l
I
(p'I ~I p) I'=

9E.' »=~
(ji'2121'

I
yi"*(»)

Ijimi)
—C(j 1j ~ ~

212 212) ( )S li 2I+I+m+2- —

xL(2j +1)(»'+1)(»+ 1)(2L'+ 1)7
XW(JjiJj'1', I1)W(LJL,'I'; S1)

X&L'lip, (.,)IIL), (13)

(1—M)!(1+M)!

XC(jilji', 212iM) W(JjiJj'1', ll) W(0J1J'; S1)

x
I
(L'lrilL) I'I (j2'lr2lj2) I'. (19)

3 Ii f1
I
«'

I
»

I
I-)

I

'=-
2 2IIE(L'I.)

(2o)
(L'll t! (I ) IIL)

3 (2L+1)= (L'I» IL) C(L1L', 00), (14)
. 42I(2I'+1) , 3~2E(j2'i2)

72I 28
(21)

C(L1L'00) is different from zero only if L+1+L' is
even. (L'I ri

I L) is the matrix element of the radial part
of the alkali function between the states L' and J.The
matrix element for the noble gas atom can be calculated
in a similar way:

where E(L'L) is the difference between the mean
energy of the 2I' states (L'=1) and that of the 'S
(L=O) state, while E(j2j2) is the ionization potential
of the noble gas, Each doublet of the I' state enters
separately into the subsequent calculation, and fi is
taken to be i.

As to the energy denominators in Eq. (5),

(j2'2122'
I
'JJi *(r2)

I j22122)

= (—)"C(j21j2'; 2 2,
—M222')(j2'IISi(»)ll j2) (15)

where the Racah coefficient 8" is defined as in

Now (I.'IrilL) depends on the oscillator strength fi of
Tile IcIIlalillllg illatl'lx clc11Mnt (L II JJi(ri)IIL) ls th 1 l d ( I I ) th

evaluated by using (2) and the orthogonality relations
of the spherical harmonics.

In our case j2=0 and (15) reduces to

(—)M —C(011;0—M)C(011; 00)(j2'lr2Iy2)& (16)
4x.

(j2 I r2I j2) being the radial matrix element for the noble
gas. ln terms of the formulas (13), (14), and (16)

M. Rose, Elementary Theory of Angular Momentwm (John
Riley k Sons, Inc. , New York, 1957).

E E'= —LE(j2' j2)—+E(J'ji' Jji)7,

where E(Jj'1',Jj 1) is the energy difference between the
excited hfs-states J'j &' and the ground-state hfs
levels Jji. Substitution of (22)„(21), (20), and (19)
into (5) yields finally

9(ek)2 fi i22E( j2'j2)
AEi 2+1,22 = — — (AIi+ i —AIi) ) (23)

4212 8'E(L'L)
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l.454 ev

Ji
092 x IO ev

004 x IO ev

-6-0.66 x IO ev

-I.I9 x IO ev

p l.589 ev
3/R

J,
4.30 x IO av

-2.88 x IO ev

-l0.08 x IO ev
T-l3.685 x IO ev

2 I.386 ev

2,02 x IO ev 4

-2.59 x IO ev

l.559 ev

I.268 x IO ev

"2 II4 x IO ev
I

l6.63 x IO ev 2
I/2

0 ev

2
Si/2

0 ev

21.38 x IO ev

-l7.663 x IO ev

Fro. 2. Energy level diagram of Rb '(I=)).

Fro. 1. Energy level diagram of Cs'"(I=-,').

where

2[3(2j+1)(2J'+1)(2J+1)j~
Agg

——Q
~, 'g'ms=i 3(1—~)!(1+~)!

XC(j&1j&', m&M)W(Jj&J'j&', I1)W(OJ1J'; $1)

E(-,'4; —',4) represents the bracketed energy difference
in Fig. 1 plus the ionization energy of the rare gas.

If the hyperfine splitting were neglected, A 3 and A 4

would be equal and the e6ect computed would vanish.
The energies E appearing in the denominators of Kq.
(25) are taken from Kopfermann' and from Senitzky
and Rabi, ' and are summarized in Figs. 1 and 2. A
similar calculation for Rb, written in the same abbrevi-
ated fashion, gives

1 45

The 8' coefhcients needed in this work are available
in the tables of Obi and collaborators. '

The results for Cs are

+
E($2; k2)

40

1

E(Jj'i', ~j i)+E(j~'j~) 27O E(-', 1) —,'2) E(-',2; —',2) E($1;-',2)

1) 96

E($3; k2)-

57 19
34=

324-E(k3'k4) E(24;24) E(P'24)
, +

27o.E(21;21) E(22 21) E(2o, 51)

21 104

E(54 k4) E($5'k4)-
(25)

721 9 63
~a=— +

324 E(-,'3; —,'3) E(-,'4; —,'3) E(l2; k3)

E($3;k3) E($4;k3)-

In these formulas, every E is understood to include
the ionization energy of the rare gas atom with which
Cs interacts, in accordance with Eq. (24). For example

' Obi, Ishidzu, Horie, Yanagawa, Tanabe, and Sato, Ann.
Tokyo Astron. Observ. , Univ. Tokyo, 2nd Series 4, 3—74 {1954).

E($1;k1) E(52;51)-

Numerical results for Cs and Rb are listed in Table I.
The computation for Na is similar to that for Rb since
the values of I are the same: the values of a are very
small (as are the observed shifts) and have not been
included.

These results justify a simple approximation which
avoids the use of angular momentum theory altogether.
The hyperfine splitting of the S state is considerably
larger than those for the P states; the coeKcients of
the various terms in 3; are irregular and of the same

7H. Kopfermann, nuclear Moments {Academic Press, Inc. ,
New York, 1958).

'B. Senitzky and I. I. Rabi, Phys. Rev. 103, 315 (1956).
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TABLE I. Parameters used in calculation of asymptotic interactions and values obtained.

Gas E(i3'i3) a(A3)
Cst33

A4 —A3(ev ') R6E4, 3(ev As) = —a A2-AI(ev 1)

Rbsv

R6E31(ev A3)

He
Ne
N2
A
Kr
Xe

24.5
25.7
15.8
17.5
14.7
12.2

0.205
0.39
1.74
1.63
2.46
4.0

—3.78X10 s
—3.46X10 '
—8.57X10 s
—7.10X10 s
—9.78X10 '

3 7pX10—s

3.28X10 5

5.97X10 5

40.6 X10 '
34.9 X10 5

61.0 X10 '
—115.0 X10 '

—2.776X10—2.536X10-s
—6.252X10 s
—5.188X10 '
—7.126X10

—2.18X10 s
—3.98X10 5

—26.9 X10 '
—23.2 X10 s
—40.3 X10 5

order of magnitude. This suggests that we ignore the
P-state splitting and take into account only the
structure of the 5 state, whose hyperfine energy
separation we call e.

In the present notation the ordinary dispersion force
1s

3 (~&)' f&a~E(j ~j~~)
AE= —— —. (26)

2 m R'E(L'L) [E(j,'j,)+E(j,'j,)$
Hence

hEgg+ j.,g~= DE' —DE,

however, is easy in principle. For according to a
theorem, " perhaps not well known, the mean line
frequency equals the statistical mean of all perturba-
tions under very general conditions. This statement
does not imply that the statistical theory of pressure
broadening is in the present instance expected to
account for more detailed features of the lines; on the
contrary, it is held that the statistical theory will fail
to describe the measurements fully. Nevertheless, if U
is the difference in energy between the two hyperfine
levels, the shift of the line' is

where DE' is given by (26) but with replacement of
E(ji'ji) by E(ji'ji) —o. It is then also proper to put
E(ji'ji) =E(L'L). The result is

4xn
v= —, UE'dE)

h p

(28)

AE (hyper6ne) =AE (dispersion)
E+Io

(27)

I& being the ionization energy of the rare gas, while

3 (eA)' f,no Io
DE(dispersion) = ——

2 m RoE E+I2

An approximation of this type, based on the simpler
London formula in which

~
(L'~ ri (L) )' is expressed via

the polarizability of the alkali atom, has been employed
in a technical report by Robinson. ' The level spacing
in the alkali does not favor this approach.

3. FREQUENCY SHIFTS

In the absence of detailed knowledge of line shapes,
theory can be applied to calculating only shifts of the
mean frequencies of the lines. Only if the lines are
symmetric will this first moment agree with the line
maximum. The calculation of the mean frequency,

' L. 3. Robinson, Technical Report 59-0000-00557, Space
Technology Laboratories (unpublished).

AEgg+Lgg= hE
E(L'L)+E(j6o)

This formula yields results indistinguishable within
thp accuracy of our calculation from the values listed
in the tables provided one takes for E(L'L) the
freighted mean of the P states,

E(L'L) =E=3E(~:)+3E(I':)—E(~:)--—-
In less cumbersome notation,

ao ( a)R
U=(1—o) ' Eo+ )Eo+—

i
—, ——

d' & do) d

a/R' R&d— (29)
' H. Margenau and N. Lewis, Revs. Modern Phys. (to be

published)."M. Arditi, J. phys. radium 19, 873 (1958).

provided n is the number density of the perturbing
atoms or molecules. We know that the asymptotic
form of U is —a/R' (see fifth column of Table I).
Assume this to be valid where E)d. For smaller E. we
use a simple model which is based on the belief (see
above) that the function U, which behaves like an
ordinary dispersion energy at large distances, follows
the pattern of a typical intermolecular force at small
distances also. This means that it changes sign, pre-
sumably not far to the left of d, It turns out that the
precise turning point has little ef'feet upon the calcula-
tion. Hence we approximate the "repulsive" part of U
by a straight line between d and ed, assuming that
U(od)=Eo, an adjustable energy parameter. To the
left of E.=ed, the interaction energy U between Cs
and A is taken to be infinite, so that because of the
Boltzman factor this range makes no contribution to v.

As to the physical agencies which cause the reversal
of sign in a, they certainly include exchange sects.
There may be others, such as the Fermi mechanism
suggested by Arditi, " although the latter can hardly
predominate under the conditions present in the
experiments. For simplicity, we will speak here collec-

tively, and somewhat mysteriously, of exchange effects.
The model described has the form
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TABLE II. Values of closest distance of approach (d) and exchange
force parameter (e) which produce fit with experimental shifts.

TABLE III. Values of e which produce experimental shifts
for constant d=2.5 A.

Cs-HeCs-¹
Cs-N2
Cs-A
Cs-Kr
Cs-Xe

d (A)

2.2
2.3
2.6
2.5
2.57
2.62

0.5
0.8
0.5
0.9
1
1

Gas

He
Ne
Ng
A
Kr
Xe

&for Cs

0.47
0.52
0.55
0.60
0.74
0.76

efor Rb

0.46
0.51
0,52
0,56
0.63

The parameter e is a measure of the steepness of the
exchange forces; in particular, &=1 means that they
rise vertically at E=d. In that case, f receives no
contribution form the exchange forces: the asymptotic
effect here computed is responsible for the entire shift,
which is then of course to the red. It is noteworthy,
and encouraging to the belief that our approach is at.
least in part correct, to observe t;hat for the heavy
rare gases, Xe and Kr, the choice ~= 1 gives the experi-
mental results for values of d in the neighborhood of the
gas-kinetic diameters.

As for the other perturbing gases, many choices of
e and Es produce correct fits. The use of (28) and (29)
yields

4mn Bpd'
P (1+e+ e' —3e')

h 12

then obtained for Cs and Rb is given in Table III.
Choice of the same d is of course artificial, but the
increasing stiffness of the "exchange" forces becomes
evident.

4. LINE W'IDTHS

If line widths were computed with the use of a
statistical theory, which we have employed for the
shift, they would turn out to be comparable in magni-
tude with the shifts themselves. "This, however, would
be an erroneous procedure because the phase shift
occurring in a single collision, 5p, is here very small.
The validity of the statistical theory for line shape and
width, on the other hand, is tied to the condition"
Dp&)1.

For a perturber Qying past the radiator at a distance
of closest approach p with velocity v,

8 1
(3 e e~ e)

12d 3 d

I
+ 8 CC P+

(30) Ap= dt= (—p +o't') 'dt=37ru/(Slop )
ARe A

A rather arbitrary procedure for accommoda, ting the
observations, yet a reasonable one, is the following.
If we put &=1 for Cs-Xe, we obtain d=2.62A. The
same choice for Cs-Kr gives d=2.57 A. But for Cs-A
we would find d=3.7A, and greater values for the
lighter gases. %e must therefore conclude that for A, N2,
Ne, and He the interactions for R&d are softer, e C1.

Next, one might let d vary somewhat in the manner
of the kinetic radii of the noble gases, choose for Ep a
suitable value of the same general magnitude for all
perturbers (Eo=7X10 ' ev is suitable) and see what
e is needed. The correlation for Cs-rare ga, ses (we
include Ns) is given in Table II.

It might be argued that the resulting d are smaller
than gas-kinetic radii„which is contrary to expectation.
This means that our asymptotic interactions may be
too small; they would indeed be larger if dipole-
quadrupole effects had been included. f

There is another way to represent the situation.
Numerical fitting shows that, when Ep is plotted against;
e for a given pair of a,toms, a minimum results, Thus,
Ep can be e6ectively eliminated as a. parameter if its
mininium value is chosen. For d oiie might take the
same value, e.g. , 2.5A, in all cases. The correlation

1'Rote added ea proof Higher multip. —ole contributions have
been calculated. Their inclusion in our model slightly increases
the values of d in Table II, making them more nearly correspond
to the sum of the gas kinetic radii.

For reasonable values of v a,nd p this is smaller than 10 '.
Hence we conclude that an impact theory should give
an adequate account of the line width.

We choose Iindholm's version. ""In the notation
of reference 10, the ratio of half-width to shift is

oui'E== ~' sin'-(Dp/2)pdp sin(hy)pdp.
~a

We shall ignore the contributions from p(d and take
advantage of the smallness of 5q. For d=3 A we then
find, in the case of Cs-A,

R= 9aa/(64Itsd') = 10 '.

This agrees, at least in order of magnitude, with the
residue of experimental line widths ascribable to the
buffer gas. Of course, or; is proportional to e, as our
analysis shows.
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