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Statistical Mechanical Theory of a Random Ferromagnetic System
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The behavior of solid solutions of paramagnetic impurities
which are exchange coupled in a nonmagnetic substrate turns out
to yield a considerable body of information with regard to the
nature of the exchange coupling as well as detailed temperature
dependence of the spin system. In the present paper, a rigorous
expansion of the mean free energy averaged over random sites is
presented. It is shown that a ferromagnetic phase transition does
occur. The Curie point is given as a function of concentration for
the case of weak dilution in an implicit power series form.

Many interesting qualitative features arise in the study of
these systems. If the curve of magnetic moment vs temperature
has inRections this indicates short-range exchange forces, whereas

smooth curves indicate long-range forces. Similarly, long-range
forces give rise to smooth behavior of the Curie point as a function
of concentration for dilute samples. Alternatively, short-range
forces give rather violent changes in Curie point near atomic
fractions= (number of nearest neighbors) '. The method of series
development used in this paper gives rise to this expected quali-
tative behavior and also enables one to make quantitative
prediction if the exchange potential is known.

Consideration is also given to the antiferromagnetic analog
together with a discussion of expected behavior of such systems
in a resonance experiment.

I. INTRODUCTION

'"N view of recent experimental investigation' on
~ ~ ferromagnetic systems in which the ions are dis-
persed at random in a nonmagnetic matrix, the theo-
retical analysis of such systems is in order. Somewhat
surprisingly, these ferromagnetic systems are more
amenable to statistical mechanical analysis than the
usual regular ferromagnetic array. Owing to the ran-
dom distribution it is possible to express the free energy
as a power series in the density (or atomic fraction) of
the paramagnetic constituent. In analogy to the cluster
expansion in the theory of real gases, ' the coe%cients of
various powers of the density involve interactions
among clusters of a finite number of particles. Only
the first few terms of the series can be explicitly evalu-
ated so that the present theory has utility in the limit
of weak dilution. This region, conveniently accessible to
experimental investigation, presents interesting effects
which would not be observed in the regular ferromagnet.

Section II is devoted to a qualitative discussion of
the dilute random ferromagnet. It will become apparent
that rather anomalous temperature dependence of the
saturation magnetization may be expected under
certain conditions. This behavior may turn out to be
useful in determining the range of exchange forces.
For example the very existence of a ferromagnetic
transition of Gd dissolved in I a at atomic concentra-
tions of a few percent and at temperatures of the order
of 1'K is sufficient to conclude that the exchange
interaction is long range in character.

Section III develops the necessary mathematical
apparatus to handle the problem. The spin sums are
carried out by the method of semi-invariants developed

by Kirkwood' in the order-disorder problem. It turns
out that partial summation of the semi-invariant series

' Matthias, Suhl, and Corenzwit, Phys. Rev. Letters 1, 92
(1958}.

2 J. Mayer and M. Mayer, Statistica/ Mechanics (John Wiley 8z

Sons, Inc. , New York, 1940), Chap. 13.
s J. G. Kiri~wood, J. Chem. Phys. 6, 70 (1938l.

is possible. What this achieves is a rearrangement of a
series in powers of V/1sT to a power series in the
density. Because of the analogy with the cluster series
of Mayer, ' we shall develop for spin-independent forces
the familiar virial expansion by the semi-invariant
technique. This exercise, interesting in itself as a rather
expeditious way to get to the virial expansion, serves to
familiarize the reader with the technique used in the
present work. It is then shown that the cluster expan-
sion is sometimes valid even when the forces are the
spin-dependent exchange forces. This fact is nontrivial
and is true in the Ising model and the quantum theory
for particles of spin —', . It does not seem to be true for
spin&-„but this point is not yet established.

Up to this point what is achieved is the formal
evaluation of the partition function with spin-dependent
forces. This includes both spin sums and spatial inte-
grations. We call this partition function (Z), , where s
designates spin average and t,

. means spatial or con-
figuration average. Correspondingly log(Z), , is the free
energy of the system. (We use "log" to denote natural
logarithm throughout. ) This is not the measured free
energy in the experiments envisioned in this paper.
The argument above shows clearly that what has been
calculated is the free energy of a gas of paramagnetic
particles with exchange forces among them. We are,
however, interested not in the free energy of such a
system, but rather the free energy of a given system
of ions frozen into their positions, i.e., in a specified
nonequilibrium situation. Any correlation between spin
and spatial configuration is absent in this model
whereas in the gas this is obviously not the case. Since
we are interested in a random sample, it is clear that
it is desired first to calculate the spin sum in the
partition function (since the spin system is assumed
to be in thermal equilibrium) and then to average the
logarithm of this quantity over all spatial configura-
tions. In short, we must calculate (log(Z), )„ i.e., the
mean free energy.

The above point is su%ciently delicate and important
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to warrant further argument. Consider a very large
sample divided up into a statistically large number of
subunits each of which itself contains a statistically
large number of atoms. Because of the latter condition,
we neglect the surface interactions among the subunits,
the usual device in deriving the canonical and grand
canonical ensembles from the microcanonical ensemble.
Now, in the gas case, all configurations are possible in
each of the subunits and hence the free energy per
particle of each is the same (the conventional condition
of thermodynamic equilibrium). In the case of the
random frozen sample, neglect of surface interactions
implies that the total partition function factors into
products over the subunits and hence

Jp Zg
JS Z1

T/T~ ———

log(Z). = Z»g(Z')'
SubunitS

Dividing by the number of subunits, it is seen that the
quantity to be calculated is the free energy averaged
over random spatial distributions. It will become
evident from our calculations that the difference
between (log(Z), ), and log(Z). .. is an essential one.
Fluctuations are important and lead to qualitative
differences between the two systems.

Having established this point, we then show that the
whole analysis leading to log(Z), , can be taken over
for (log(Z), ), but with different cluster integrals. We
then show how to calculate magnetization curves and
the Curie temperature in the limit of extreme dilution.

In Sec. VI we brieRy indicate the results for the
random antiferromagnet and discuss the possible
results of a resonance experiment on such a system.

II. QUALITATIVE DISCUSSION

We take a system of ferromagnetically exchange-
coupled ions distributed at random in a nonmagnetic
host lattice. Consider first an exchange interaction
which is of extremely short range so that only nearest
neighbor interaction is important —all interactions with
other than nearest neighbors will for the moment be
set equal to zero. I.et Z& be the number of nearest
neighbors and x the atomic fraction of paramagnetic
ions. It is clear that for @&1/Zi, the state of ferro-
magnetic long-range order is impossible. This is so
because it is impossible to link all neighbors into
macroscopically long chains in the random situation.
For x slightly greater than 1/Zi there is a, finite proba-
bility of forming such sequences thereby making
ferromagnetism possible. It is evident, however, that
not all the ions can be linked together. Hence, the
saturation magnetization near T=O for this ferro-
magnet is necessarily less than the full spin moment.
In fact, it can be shown that the ratio of magnetic
moment at T=o to its maximum value (this ratio we
call Ro) for x= (1/Zi)+e is such that Ro ge when

This situation is schematically given by the
dotted line graph (Fig. 1) of magnetic moment ws

FiG. i. Expected behavior of long-range order R ps T
for x= (1+e)/Zq.

temperature. The magnetic moment is always expressed
in units of the full saturated moment. This is also
called the long-range order and we designate it with
the symbol E, 0&R.&1.

We now consider the eGect of second and higher
order neighbor interactions. Strictly speaking, an
interaction potential never has an absolute cuto6 so
that at the exact absolute zero of temperature all ions
will be effectively coupled to give 80=1. Thus there
must be some temperature where the levelled off
"nearest neighbor" curve of Fig. 1 bends up to the
point Ro ——1. This will be the temperature where second
neighbor interactions are important. To estimate this
temperature, let J~ and J2 be the erst and second
neighbor interaction strengths and let Z2 be the effective
number of second neighbors (we schematize here and
group a number of coordination shells in what we
classify as "second neighbors" calling J2 a mean
interaction energy for the group). Then the temperature
at which bending up starts to take place may be
estimated as 7 (J@2/J,Z,)T,. This is sketched
schematically in Fig. 1.

The above paragraph was predicated on the assump-
tion of short-range exchange forces which is the type
currently supposed to be present in transition metals.
On the other hand, if the interaction is of long range,
the expected behavior would be the customary M es T
curve without inRection points. This is the dashed line

graph in Fig. 1.
From the above discussion, it is seen that experi-

mental knowledge of M ~s T in dilute random ferro-
magnets yields interesting information about the range
of exchange interactions. A curve without inQection
indicates long-range forces; a curve with inRection
indicates short-range forces where the inRection temper-
ature gives the relative strengths of near and distant
neighbors.

Further, a smooth curve of T, ~s x down to very
small x indicates long-range forces, whereas for short-
range forces one expects irregular behavior since for
@&1/Zi it is the weak distant-neighbor interaction
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FIG. 3. Diagrams of terms contributing to the semi-invariant
expansion of logZ.
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semi-invariant M„ is dehned by the relation

M„P"
log(e~*&= P

mJ
(2)

FrG. 2. Expected plot of Curie point T. vs atomic fraction x.

that causes ferromagnetism. This is sketched schemati-
cally in Fig. 2. Of course at su@ciently small concen-
tration, ferromagnetism will cease even for long-range
forces. If Z, ff is the number of sites falling within the
range of the potential, then for x(1/Z, iq ferromagnetism
will cease.

For this reason the experimental findings of Matthias
ef al. ' on smooth behavior of T, ~s xGg for Gd in I.a
down to xone 1%%u~ indicates a long-range exchange
interaction among the Gd ions. Such an interaction
favors the idea of superexchange via the conduction
electrons since this potential drops oG comparatively
slowly' (like 1/R3). This is consistent with Herring's
idea on ion-conduction electron exchange being the
fundamental spin mechanism in these systems. At this
point, we shall not go further into the interesting
question of ferromagnetism in the rare earths, but
reserve it for later investigation. It was brought up
here as an interesting system that has been studied
experimentally to show how the dilute ferromagnet
does yield information on exchange mechanisms.

where x is a random variable and the bracket ( )
indicates the average over x according to a known
distribution function.

The following important fact is immediately evident.
I.et x, y be independent random variables corresponding
to which exist the semi-invariants 3f *, 3f„&, respec-
tively. Then by the definition (2) and the assumed
independence

M„*+"=M„'+M„&, x, y independent (3)

since (e&&*+"'&= (e&*&(e»& Equa. tion (3) is obviously
generalizable to rs independent variables. This equation
will be extremely useful in what is to follow. It says
that when dealing with independent random variables
no cross terms may exist in the semi-invariant 3f„+&.

It is apparent that the tool of the semi-invariant
may serve a useful purpose in the evaluation of Eq. (1)
with V =+ v, , being a random variable. The distribu-
tion law is that the random variables r1, rN are
each dispersed with equal probability (1/0) through
configuration space. For orientation, we 6rst evaluate
the most simple semi-invariants M1 and M2.

(4)

III. DERIVATION OF THE CLUSTER EXPANSION

As announced in the introduction, we first introduce
for pedagogical reasons a new proof of the familiar
Ursell-Mayer cluster expansion for spin-independent
forces. The problem at hand is the evaluation of

logZ= log
N

dr, .dr g exp[ —P P w;,j
1&i&j&N

4M, A, Ruderman and Q, Kittel, Phys. Rev. 96, 99 (1954).

where ~;, is assumed to be a short-ranged potential and
for the moment J'w, ,dr;, is assumed to exist (this will

be subsequently relaxed).
In the methods of probability theory, the use of the

semi-invariant expansion is often convenient. The eth

Mp ——(V') —(V)'

&i@I i
—

&'~ &r i . (6)

~12~12 &12 ~ (6c)

(6a) is obviously true. (6b) is true because in integrating
over r1, r2, ra one may pass to independent variables
r12, r23, r3. Integration over r3 gives a factor of 0 whereas
integration of r12, r23 is a product of integrals since r12

and r» are independent. It is thus seen that only
terms with two indices in common survive in Eq. (6),

In Eq. (6) three types of terms occur: vis. , no indices
in common, one index in common and two indices in
common. We treat the three separately

&1%34 = &12 (6a)

&12&23 &12 ~28 (6b)
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leading to

II:&")—&.)'j =-;x'&")+0(1).
(1Vq

(7)

The last step in Eq. (7) is true because &e)2 involves
one extra factor of L(1/0))& (range of force)8$.

The important result in our evaluation of 3f2 is that
the unlinked parts drop out (no indices in common) as
well as the reducible parts (one index in common). We
should like to rephrase the analysis in slightly different
language in order to make evident the generalization
in higher order. Whenever unlinked or reducible parts
arise in a semi-invariant, a factorization takes place
analogous to Eqs. (6a) and (6b). Thus the variables
that appear in the separate parts are statistically
independent. Then, that contribution to the complete
semi-invariant M„ that arises from unlinked or reducible
parts must satisfy Eq. (3), i.e., all cross products of
unlinked or reducible parts necessarily vanish in M„.
One is left only with the sum of the irreducible parts in
M„. For example in 3f3 there are two irreducible
combinations which we diagram in Fig. 3(b) and 3(c).
In Fig. 3(a) we diagram the single irreducible part that
arises in M2. LThe diagram convention is rather
evident —vertices label the particles and a single bond
is drawn for every v interaction among the particle in
the diagram. ) Figure 3(b) corresponds to the terms

(iV y E'
I IL(»2') —3&»2')(»2)+2&»2)'3= —&»2')+o(1), (8)(2) 2~

The rule for writing down all the diagrams contri-

and Fig. 3(c) corresponds to the terms

(Xq
I I &»2e28nal) —3(e12n28)(nal)+2&n12)&e28)(eal)]

E3)
S3

=—(n12n282 81)+0(1). (9)
3l

buting to M„ is now evident. They consist of all the
irreducibly linked diagrams containing e bonds among
v vertices where 2& v&e. The combinatorial factor for

(x~
a diagram containing v vertices is I I=X"/v! for

&~)
fixed 8 in the limit as X~ ~ such that X/0 is fixed.
(This is, of course, multiplied by the number of topo-
logically distinct ways of ordering the vertices 1, , v

for a given diagram; e.g., ~~2v23~34~4~ has three topologi-
cally distinct diagrams, the other two being ~»e24w43~3]

and nian84e42ti»). In this limit it is only the first or fully
correlated part of the semi-invariant that contributes
Lsee Eqs. (7), (8), (9)j.

Up to this point we have proven the analog of the
linked cluster expansion in quantum mechanics. 5 We
have shown in a perturbation expansion in PV how
clusters containing higher powers of E drop out. To
arrive at the Ursell-Mayer density expansion we must
now partially sum the series. We erst sum the simplest
set of diagrams, those with two vertices containing the
series in Fig. 3(a)+Fig. 3(b)+etc. The contribution

to logZ from this set is

rt QA

2&' E lg2&e —Pv 1)
n=i

1 X
(e

—~"—1)d'y, (10)
2tQ~

which is the familiar second virial coeKcient.
Proceeding now to the set of all diagrams containing

three vertices each connected to the other by at least
one bond, let us label the three vertices by 1, 2, and 3
and the bonds by (12), (23), and (31). We must first
inquire into how many diagrams contribute to M„such
that there are l» bonds of type (12), 128 of type (23)
and l» of type (31). This is simply the number of
arrangements of 88 things into three classes (12), (23),
and (31) such that l12+l28+lai ——88, i.e., the multinomial
coeKcient yt!/l12!isa. lai. We then have for the sum of
all graphs with three vertices

~ M„(part from three irreducibly linked vertices)
(—~)"

n=l

3I n=3 i&2, ling, 1st=1
l12+lag+131 =n

mt

~12 12p28 23p3~ 31

e~ lg tlg3tl3g~

( " (—P»2)'" - (—P»8)"8 - (—p~ai)'")
I Z

~~ ~~ ~~(

idea=i

lra! 128-i gaa! iai=i gai! )
1 (1V~' I=A —

I

—
I

~ (e 8""—1)(e 8"8 1)(e
—~"» ——1)dayidaya. (11)3!!ni ~

J Goldstone Proc Roy Soc (London) A239 267 (1957) It is worth while to mention here that Goldstone's derivation is easily
obtained by the semi-invariant method as well. We define p(t)=PJ' ' exptiH'(t')dt )pa, where H'(t) is the interaction Hamiltonian
in interaction representation, including the usual damping factor, C 0 the unperturbed wave function, and P the time-ordering operator.
Then defining F(t) =Q (t)!48), the well-known adiabatic-switching-on theorem gives iiE= 8 logF/8 (it)!~=8. logF may then be developed
in a semi-invariant expansion in powers of (it). By the theorem of factorization of unlinked parts, only linked parts survive and the
linked cluster theorem follows.
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where

E" m~

II(w, ;)"~
p! g), I

(12)

Equation (11) is the familiar expression for the third
virial coeScient.

Continuing in this manner, we see that the coefficient
of (iV"/v!) (or alternatively of (1/p!)(iV/0)" '] in the
expression for (1/1V) logZ is the sum of all irreducible
diagrams involving v vertices. Each such set of diagrams
is further broken up into a set of subdiagrams in which
only a given set of types of bonds is admitted. By bond
type we mean its double index labelling the two vertices
it connects. Thus the coefficient of (E/0)' contains four
vertex diagrams and a possible subset of diagrams is
that which has bonds of type (12)(23) (34) (41)(24) and
none other. If (ij) labels a bond type, then the factor
that contributes to M„ from a diagram with v vertices
and l;; bonds of type (ij) is

R= (1/cV)p iM;. (19)

This will give us the free energy as a function of R.
E. is determined by minimization. The statistical
mechanical justification of this procedure is only found
by consideration of a small magnetic field H which is
independent of E, the number of particles. This
multiplies the field free terms in the partition function
by (e»s ")~ where po is the magnetic moment per
spin. Thus the partition function is

that for spin-dependent forces that factorization of the
reducible parts [e.g. , Eq. (6b)] takes place since pi@2
is not independent of p2p3. The next part of the paper
is devoted to this point.

Since we are interested in the problem of spontaneous
magnetization, we shall use a technique due to Kirk-
wood3 of summing only over spin configurations with a
given long-range order R, where R is defined by

l;; =n and i (e.
1&i&j&s

(13) 1
Z= P Zaeid iree(R) -(e»s~~) ~, (20)

Summation over-all diagrams of this subset leads to

1 (iVq "-' !
II L& i'""—1]d'r . d'r.—, (14)

p! ( 0 I J bonds in the
given subset

1 (iV)" '

p! E 0 ) aii irreducible
linked diagrams
among v vertices

X t g(e—s"' —1)d'ri d'r„, (15)

—=x (iv/0) " p (16)

where the same steps are used as those that led to Eq.
(11).Summation over all terms with fixed i leads to

The sum on R is well approximated by an integral
which may be done by steepest descents (alternatively
the maximum term in Eq. (20) dominates everything
else, i.e., one minimizes the free energy with respect to
R). The evaluation of logZ is done, of course, in the
asymptotic limit of large Ã holding B fixed. Finally
one lets H —+ 0 to give the spontaneous magnetization
moment es T. A logical error arises if the limits are not
done in this order, since the leading terms contributing
to Eq. (20) for H =0 are those for which R= O(1/glv).
We make this point clear at the outset in order to
justify the consideration of Zfieid-free(R) for finite R,
indePendent of X. From now on Zseidi«e(R) wi!1 be
simply noted as Z(R). We evaluate t (1/iV) logZ(R)]
for fixed R in the limit iV~ ~. Let W(R) be the
number of configurations of spin for fixed R. Clearly

where the notation in Eq. (16) is the same as Mayer's. '
Finally we have W(R) =

L
—iv (1+R)]t L

—Q (1—R)]i

(21)

lim
~

—logZ ~= PP„v—",
ElvN jQ =1/v

(17)

which is the well-known cluster expansion.
It is not immediately apparent that the above

reasoning is valid for spin-dependent forces. In the
model of the Ising lattice V= P v,,(r;;)Ij„p, where
p;= &1 according to the spin direction. Z is defined by

Following Kirkwood, we write

logZ(R)=logW(R)+log(exp( —p p v;;p,y, ))it, c, (22)

where

X ~ exp( —P P ti,;p;IJ,;)d'rt d'r~. (23)

Now one of the essential steps that led to Eq. (17) was
the factorization property obeyed by unlinked and
reducible linked parts of a diagram. It is not obvious

We now develop Eq. (22) in a semi-invariant expan-
sion remembering that both r; and p; are random
variables. (Averages over r; will be designated ( )o
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and over p; will be designated ( )i3.) We have

(24)

(2).]The second term in (27a) obviously vanishes since

pP = 1.Further, sirice (c &/&e)'= 0(1/S), one may neglect
terms involving (c)3 compared to those containing (e').
Thus Eq. (27a) becomes

~'"=(P ~;;~;I ~&~, c=(~)&l Z ~'I -)~
2y j

(25a) Jf3———',&3((iI@~3)'&i3c+O(1), (27b)

=3&~&L(Z ~' Z ~;&
—&Z ~'')3

=-', &~)PV3Z' —Xj
(25b)

(25c)

M i———,'(3)F323+0 (1), (25d)

where the retained term is taken to be of O(E). This
procedure will be followed consistently in the calculation
of the higher semi-invariants.

M2 is given by

half 2 =E 2 L (3 *j'.iI3*Pj13kii i)R, c
ij kl

&&'v p)z, c(i~i 3yi)z, cj (26)

In Eq. (6) there are the three various combinations of
unlinked, reducible and irreducible diagrams corre-

sponding to the spin-independent case (6a), (6b), and

(6c). Further, we again have (wi3v33) —&e,3)(@33) so that

M3=(3)c' p &&13;Ii,yI, i)i3 &p,y,)i3&—W31 i&i3j
(2i) W(k&)

+ Z L&")c&~"~"&~—&~)c'& '~ &~'j (27)
2J

In the first summation of Eq. (27) we add and subtract
the term (ij )= (kl) as well as i =j and k=l, to give

~3=(3»c' 2 (~;~;I 3~3&i3 (I;y;&R&p~u—i)i3
ijkl

unrestricted

—2&s)c' Z [(~,'I .I i)z &I,'&z(~—.I i&zj

—&~&c' Z E(a"~ '&~—(~'~ )~'j
2I 2

+g L(~'&c6 p;3)a —(~)c'&y,u;& '&. (27a)
23 2

The first term is zero in (27a) since P p,;=EX is

fixed and all semi-invariants involving constants neces-

sarily vanish for I)1. LThis follows from the definition

' I am indebted to Professor Mark Kac for clarifying this point.

since p,~=1, and the distribution over p; is such that
P p; is fixed= cVR. In Eq. (25c), note that in a perfectly
random distribution (R')—= (1/2N)g E3p'i3= 1/Q
3f('&=0 which is as it should be. This situation is
avoided when, as discussed above, a magnetic field is
present. Only in this circumstance may Eq. (25c) be
calculated for fixed R with retention of the highest
power of E.3 Thus Eq. (25c) for fixed E is

which is the same as the spin-free case except that spin
averages are now included.

The argument in general order follows the same
pattern as the above. One decomposes all the terms in
a semi-invariant into summations over products of
unlinked and reducible parts plus the summation over
all irreducibly linked diagrams. The summation over
unlinked and reducible parts contains restrictions on
indices (the restriction to unlinked and reducible parts)
which are handled by adding and subtracting oG the
restrictions, The main term now has a free summation
over all indices. Thus a term involving a sum of products
of spin variables p; becomes a product of sums. But
every sum of the type P p," is fixed in the Ising
problem since p,"=p; or 1 according to n odd or even

and we are taking terms only where P p;=NR. Thus

every term in the semi-invariant coming from unlinked

clusters is evaluated by replacing each power of a spin
variable p; by 1 or R according to whether the power is

even or odd. However this implies that this contribution

to the semi-invariant is zero since the eth semi-invariant

of a "random variable" which is a constant or sum of
constants is zero by the definition (2).

I.et us now look at the subtracted corrections. Either
the correction is a sum of unlinked or reducible terms

or irreducibly linked terms. ln the first cases, repeat the
same process as above. Continuing until one is left

only with irreducibly linked terms, we now notice that
all the subtracted correction terms resulting from

adding and subtracting annoying restrictive terms on

indices are at least of O(1/lV) smaller than the original

irreducibly linked diagrams in the semi-invariant. This
is because a product of two unlinked or reducible parts
carries an extra factor of (1/0) when compared to a
corresponding linked irreducible part in the same order.
The correction terms discussed above resulted from

contraction of two indices in the sum over unlinked

clusters so that a term which contributed O(X3/0)
compared to the linked irreducible part will contribute

only something of O(1/0) in the correction term in

question. The argument is made more clear by example,
but rather than carry this out here we reserve a detailed

example for the more interesting calculation of

(log&Z)i3)c. Without further comment, we state that
in the above case the nth semi-invariant is the same as

obtained in the spin-independent case and hence Kq.
(17) is correct in the present spin-dependent case. The
P„are defined now according to Eq. (16) but with spin
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averages as well as space integrations included, i.e., triangle configuration. Thus

1 (X~"-'
P. i=-&

l!LQj all reducible
linked diagrams
among ~ vertices

~(Il(e j'""&""»'n '1—)d'ri . d'r. i)R. (28)

(M.)c
(!o (Z) ) = 2 (—P)". (29)

Clearly (Mi)c is still given by Eq. (25d). However,
(M2)c differs from (26). Explicitly

M~ =2 Z(i"pkl)C&&jk'jk jkk») —
&jk jkj)&jlkjkl)] (30)

For emphasis, we repeat that the crucial point in the
analysis has been that p, ,"=p; or 1 according to e odd
or even. Hence P ji," is fixed in the spin-averaging
process.

As discussed in the introduction, the physical system
of interest dictates that one must calculate &log&Z)R)c
rather than log(Z)R o. Thus a semi-invariant expansion
is made on the spin variables and then each semi-
invariant is averaged in configuration space, i.e.,

ij &kl Qmn
no triangle
configurations

M&»(ij; 8; jnn)

+3 g M&»(ij;ij; kl)+Q M'»(ij;ij;ij)
zjwkl

Ml»(ij; jk; ki). (32a)
~, j, k

distinct triples

The first summation in Eq. (32a) is written

&&)' 2 [(j"j jkjl j ) 3&—j'j,)&Wkjl j )
ij gkl gmm
no triangle
configurations

+2(jl,jk,)&jlkjkl)&jl„jl„)j. (32b)

If there were no restrictions on indices in the above,
the result would be zero since g ji;=IVY is fixed. This
result is general since the semi-invariant M„vanishes
when it is generated by a "random" variable which is
in fact a fixed number (except of course for n=1). To
avail ourselves of this simplification, we add and
subtract all contractions of indices and consider the
remainder. Taking these new subtracted terms into
account, the second summation in Eq. (32) is

M3= p (~~jilklllmn)C/(P'jkjjkkjkljkmjkn)R
(ij) (kl) (fnn)

&jkljij)R&jkkjkljkmjin)R &jkkjkl)R&jkljkjjkmjkn)R

(jkmjkn)R&jkijkjjkkjkl)R+2(jkljk j)R(jkkjkl)R&jkmjkn)R j
—=Q Ml»(i j; kl; jriN). (32)

In Eq. (32), it is of course specified that i'; kWl;
ns~n. However, it is easily shown that these terms
contribute zero or O(1) to the spin averages after first
carrying out the space averages. This is true in general
so that from this point on we will ignore this type of
restriction on indices. Now, the expression (29) is
decomposable according to no pairs, one pair, two
pairs and three pairs in common together with the

The reduction of Eq. (30) to a sum over linked irre-
ducible parts alone is the same as followed through in
Eq. (27) with the exception that the linked irreducible
terms now include the subtracted term &jk;pj)&ji,jkj)
whereas in Eq. (27) such terms were multiplied by
(il) =O(1/X)(il'). This is the major difference in the
two calculations, but aside from this point everything
goes through as before. Thus

M2=-2&'&&')I &(»j 2)')—&j i 2)'1=—-'&'&~')M2'"'"" (31)

Rather than immediately presenting the general
argument, clarity is gained by first considering another
simple example, vis. , the calculation of 3f3

3L(i')& )—&i)'3 2 L&j ''j 'j I ) 2&j 'j ~)( 'j—;j j )
i j&l l

&jkl jkj )(jkkjkl)+2&jkljkj)(jk~jkj)&jkkj"l) j (32c)

We first remark that &v)'/&v')&v)=O(1/1V) so that the
correction term due to contraction of indices in the
first summation of Eq. (32) need not be considered.
This result is again general. Whenever indices are
contracted in a summation over unlinked parts in order
to add and subtract inconvenient restrictions, the
subtracted correction may be neglected since, as already
discussed after Eq. (27), it is O(1/E) less than an
identical spin term already present in the semi-invariant.

We now consider the spin average in (32c). The
most obvious step is to put p,~=p = 1, but we proceed
in a more systematic fashion in order to state the
generalization. Again the restriction in the summation
is annoying so we add and subtract it, neglecting the
subtracted part by the above argument. Then we may
freely sum on all four indices. Summation on the
indices, k, i then leads immediately to zero since p pk
is fixed. This is again because (kl) is unlinked from (ij )
and we have a situation which wouM arise from a
semi-invariant expansion on the random variable c+x
where c is a constant (in the present context c
=Pk jlk Pl jkl) and z is a random variable (in the
present context x-jl;jlj). Since there may not exist
cross products of c with semi-invariants generated by x,
these terms are zero. Generally, when there exists two
unlinked terms, after the restrictions on summations
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1 ]Nq
l P log[coshPv (r,)—R' sinhPv(r;) $; (36)

2! ENoj '
Q2

~3 (v )[(gl P2 ) 3(P1 P2 )(P)122)+2(P1P2) ]
2! i is taken with respect to some arbitrary origin.

The coefficient of (N/Q) or (N/N()) is given by the
summation over all triangle diagrams, i.e.,+ (v12v23v81)[(P1P2))8293P8P1)

3!

are removed, summation on one member of the product lattice sites labeled by 3, then (34) becomes
always leads to zero since p )tl;" is fixed for any rl

Finally Eq. (32) is reduced to

3(P1P2)(882P393P1)+2(~~2)'1

g2 g3—=—(V3)~3&~1»)+—(V12V23V31)~3(»»») .
31

(33)

( p)n N ~ (—pv)"
(v~) ~ (»») ——P ~ (»»)

2! n=& ~1 2! n=1

In the above example all the nontrivial features that
arise in the calculation of any M„are clearly exhibited.
In particular it is seen, in general, how the condition
that P p;" is fixed in the averaging procedure, neces-
sarily implies that the unlinked and reducible parts
cancel. One may state the general line of reasoning as
follows: When unlinked parts exist in a semi-invariant,
it is possible to rid oneself of all index restriction in
calculating spin averages. Further, for every term
involving a mean of a product of spin variables of two
or more unlinked parts, there will be another term
involving the product of the means with opposite sign.
[That the structure of all the semi-invariants is neces-
sarily of this form follows in order to insure that
Relation (3) is true for independent random variables. j
Finally, free summation then guarantees that the above
difference is zero since P;=1 p„. is fixed. This is be-
cause summing on all the indices of one of the unlinked
parts merely replaces all spin variables of this unlinked
part by constants.

Having shown that one need only consider irre-
ducibly linked graphs, we now proceed with partial
summation to get the "virial expansion. " Thus the
coeKcient of N/Q in (1/N) logZ/N is given by

(37)

where 3f„l"'»» means that contribution to M„ that
arises from all diagrams connecting all three vertices
1, 2, 3 by one or more bonds. Now the semi-invariants
generated by the random variable [vl2)(81)(82+v28@2p8

+v8~3p, ) contains all the graphs containing linkages
between (12) alone and (12)(23) together. These latter
of course are not contained in 3f„»I'2». Such terms
must be subtracted. However, when the semi-invariant
corresponding to v12plp2+v23p2p3 is subtracted one has
also subtracted the single links corresponding to s~2p~p2

and e»p2p3 separately. Thus we have

(PlP203) —~ (Pl@2&12+@193&13++2@3&23)
n n

—3Jf (»»&12+»»'028)+311II (»»512) (3g)

Substituting into Eq. (37), we may now extend the
sum down to 28=1 since (38) vanishes for 23=1, 2.
Thus (37) becomes, using the definition (2),

g3
[(log(exp pal!!82v12+P2P8v28+P8Plv31))B)C

3!
—3(log(exp —p[!(81)((2v»+)t32)(88v28j)&)C

+3(log(exp —P[~~»»j)~)ch (»)

The general procedure is now obvious. Corresponding
to a given term in P„defined by Eq. (16), there is a
product of the type g(e ~'& —1). Terms will arise
which carry subsums P v;; in an exponential. For
every such term in p„, there will be a term in p.' where
the expression f . f exp[—P P,„b,«v;;)dr, .dr„js
to be replaced by (log(expP+. ~b3«v'&))8)c. And we
then have

where the definition (2) has been used. The spin average
in (34) is trivially obtained by expansion of the expo-
nential, averaging, and resumming, whereupon we have
[replacing ( ), by (1/Q)fj

"1 )Np
N —

l

—
l

d'r log[coshPv(r) —R' sinhPv(r) $ . (35).2!(Qja

((1/N) logZ)8), = logW(R)+P N"P.'(R)+Pp()HR, (40)

with p„' calculated according to the above rules. We
have included the magnetic field H for completeness;
R is given by B(logZ&)/BR=0, which gives

)1—Ri BP.'(R)
0=-', logl I+K N" +Pp,H.

(1+Rj BR

Up to this point we have discussed a perfectly
Alternatively, if the particles go on lattice points, random distribution of paramagnetic impurity ions.
( ),~ (1/N())P, where N() is the total number of For the systems we have in mind this is an adequate



R. 8 ROUT

description (the alloys are fabricated at high temper-
atures and rapidly quenched), but we must include the
proviso that there is no multiple occupancy of a lattice
point. This introduces a kind of correlation that is
formally not included in the theory up to this point.
The additional complication is handled by adopting
all preceding formulas but interpreting the symbol

( ), as the average over configuration space taken
with a certain given probability distribution function,
Thus the integral in Eq. (35) has a pair probability
function g@'(r) in the integrand and Eq. (36) is under-
stood to be taken as a sum such that the index i does
not coincide with the origin which has been chosen. at
some one impurity ion.

Now, however, it is no longer true that the reducible
linked clusters drop out, since (v»v»)W(v»)(vp3). (Of
course unlinked clusters drop out as their factorization
property is unaffected. *) In particular, we have for a
lattice

(vipvss) =—P g;isv, p, a.
iV' ~, ~

(42)

Since the only correlation under consideration is one in
which no two particles can overlap, we have g~23

=g»g»g» where g;;=1 for i/ j and g;;=0 for i=j.
We therefore write Eq. (42) in the form

The first term of Eq. (43) is now treated just as the
reducible clusters in the case where correlations were
not considered. The second term may be considered an
irreducible cluster if a new kind of bond is introduced,
vis. , (g,;—1). The magnetic interaction has a bond
(g''v' ).

This procedure is easily generalized with the result
that p„' must now include all irreducible graphs con-
taining v vertices with the proviso that all bonds
associated with the magnetic interaction be at least
reducibly linked. We shall not pursue this point further.
However, in an Appendix we shall use our prescription
to calculate M2 and 3f3 for the case x=1 and show
that our prescription yields the exact well-known results
for this case. Since for the case x= 1 our prescription of
keeping ions out of each others way means that each
ion goes on to a regular site, this agreement must hold.
Our method simplifies the standard method of calcu-
lation considerably.

~Note added Az proof.—The reason for dropping unlinked
clusters given above is incorrect. The factorization property is
eHected. The correct reason is that spins arranged in unlinked
combinations give rise to semi-invariants of Oil/N),

1
(»svss) =(vis)(vpp)+ —Z g;g& p(gki 1)v'p, k, (—43)

Ã' ~~

where

It is easily verified that for short-range forces Eq. (45)
duplicates the qualitative behavior sketched in Sec. 2.
For long-range forces, pv is small in the range of
interest; pv= (1/xZ, tt) near the Curie point so that the
hyperbolic tangent may be expanded and dropped in
the denominator. This gives the molecular field theory
as expected. This is only true for x))l/Z, ff.

In Eq. (45) one may now go the limit H —+ 0 without
further hesitation, as previously discussed. The Curie
point, is where two roots of Eq. (45) for H= 0, coalesce,
i.e., where 8'(logZ)/BR'~ n=p ——0, to give

v(r;)
1+x Q tanh +O(x') =0

kT,
i&0

(46)

For a ferromagnetic exchange coupling, one has @&0,
say v(r;;) = —J(r,;), so that Eq. (46) for ferromagnetic
interactions reads

t J(r,)y 1
g tanh)

~

=-, x&&1.
;go E P7' i x' (47)

Equation (47) approximates the Curie point as a
function of x for small x. It should also be stated that
above the Curie point one may use Eq. (41) to calculate
the susceptibility, i.e., lim~ p(iipR/H). As an applica-
tion let there be only nearest neighbor interactions,
each of strength J, Eq. (47) reads

Ztanh (J/kT, )= 1/x. (48)

From Eq. (48) we see that for x&1/Z there is no
solution as expected from our considerations in Sec. II.

IV. FORMULAS FOR THE DILUTE CASE

In the remaining part of the paper we shall be
interested in developing semiquantitative expressions
for small x by taking the leading term in our expansion
for logZ. It is not to be construed that this procedure
yields an exact limiting expression. However, physical
considerations lead one to believe that for small x.
the retention of chains alone should be sufBcient to
give a semiquantitative theory. Indeed, the conclusions
drawn from the expressions derived in this approxi-
mation are identical with the qualitative sketch given
in Sec. II. As far as an estimate of convergence and the
errors involved, this will not be undertaken in this
paper, but relegated to another publication where a
specific choice of exchange interaction will be made.
The error estimates depend quite sensitively on the
range of the potential. The leading term in Eq. (41)
is obtained from Eq. (35) or (36) )we take (36) for
definiteness) to give

tanhpv (r~)
0=-,'log]

~

—Rx Q(1+8) ' 1—R' tanhPv(r;)
i&0

+PppH+O(x'). (45)
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Of course this result has been obtained only through
the retention of the second virial coeKcient. Other
terms will give a value of xZ diGerent from 1 for the
suppression of ferromagnetism, but preliminary calcu-
lations indicate a small eGect. It should be noted at
this point that had we calculated log(Z)~ c using the
cluster integrals (28), we would have found in the
same approximation

(Ey r ]v(r))
)

—
I

'

sinh( ldr=1,(a) " iI T', &

(49)

so that no matter how small the density, a Curie
point would always be present. This example points
up the necessity of keeping averaging procedures
straight.

=A„X'+B„(5')'.

This assures that g;;(5; S;) =constant in the spin
averaging process. This is sufhcient to prove that all
unlinked and reducible clusters drop out just as they
did for the Ising lattice example. t We conclude that Eq.

7 J. H. Van Vleck, Theory of Electric and Magnetic Sgscepti-
bilities (Clarendon Press, Oxford, 1932), pp. 316—342.

l Note added iw proof In the quantu. —m case the problem of
commutativity arises. Thus each diagram in the Ising model is
many diagrams in the quantum model corresponding to the various
permutations of the spins. This does not egcct the value of Pq'.

V. QUANTUM MECHANICAL CONSIDERATIONS

Equation (40) formally solves the problem of the
random Ising model with the practical outcome being
relations (45) and (47) for the extreme dilute case. We
now briefly turn attention to the quantum mechanical
case for spin ~2. We follow, in principle, the procedure
of Heisenberg as outlined in Van Vleck's book. ' In
brief, Heisenberg has shown that when a magnetic
field is present (again it may be very small) that, of
the states with fixed spin S', the states where the Z
component Mz' is nearly equal to S' overwhelmingly
dominate the partition function. The reasoning is
analogous to the discussion around Eq. (20). Thus
with very good approximation it suffices to look at the
partition function for given S'. The degeneracy factor
for spin st to a good approximation is given by Kq. (21)
where Mz'=tVR/2. Thus the problem is quite analogous
to the Ising lattice, but one now must sum over-all
states consistent with S', where the interaction is

P e;;5; 5;. Again the semi-invariant method is used.
The crucial point is this. The spin operators may be

represented by Pauli matrices. Further, since any power
of a Pauli matrix is a linear combination of Pauli
matrices, we have again the same situation as in the
Ising model. Use of this fact is specifically made in
calculating terms like

Q(5; S;)"=A +1+8 QS;S,.

The spin average is taken such that the total quantum
number is S'. Since all powers of (St Ss) are linear
combinations of the type a+bSt Ss, we must have

eesl'e2&("12) =A(pe)+$3(pe)(St. Ss) (51)
I

3 and 8 are determined by considering the eigenvalues
of St.Ss. In the triplet (singlet) wehave St Ss=4 (—s)
to give the simultaneous equations

ee"t4=A+ '8, -A= —,see"t4+-,'e-'e"t4

e-» ~4=x—'a, a=.~ ~4—.-» I4.
(52)

Finally since (St Ss)=5" in the present context, we
have

(Pt')spte-,*- ——(log(L-:e " '+se—' " '$
+5"Lee""-e-""j))' (53)

This relation is evidently very similar to (35) and the
subsequent reasoning is the same.

For spin&2 the situation is more complicated since
some powers of the spin operators will not be constant
in the averaging process. It is easy to show that this
will result in certain nonvanishing contributions from
reducible linked diagrams. The unlinked diagrams still
vanish. For example, in the semi-invariant 3f4 appears
the combination

Z [((5' St)'(Ss St)')—((5'.St)')((5" St)'H.
', j,k, )

Here all index restrictions are taken to be removed in
previous steps. For spin ~, this combination is obviously
zero since P(5; 5,)'=P;,;[—,', ——,'(5; 5;)j which is
fixed in the averaging process. For spin& ~, the dropping
of the unlinked clusters is more subtle. We shall not go
into detail on this point but merely point out that
there is a strong analogy with the classical statistical
mechanical problem of the derivation of the canonical
distribution from the microcanonical. Here one finds
that if P e;=Z is fixed, then the probability of finding
energy e+e' in two small components n and n' is given
by P~ (e+e')=P (e)P (e') for n, n' fixed in the
limit E~ ", such that E/X is fixed. For the spin
problem the total spin is 6xed rather than the total
energy, but the reasoning is the same. For small
components, joint spin probability functions factorize.
Thus when one has unlinked clusters, the semi-invariant
will be zero since the spin distribution functions of the
unlinked parts are independent. However, reducible
linked combinations will contribute. It is also apparent
that these new terms cannot eGect the simple sequence

It su%ces to consider the g coInponent 3IIg' alone since in
the present context 3fg'=S',

(40) is still correct for the quantum mechanical spin ts

case, where spin averages are now quantum spin
averages. We work out in detail Pt'

(50)
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UI. ANTIFERROMAGNETISM

For completeness and interest we discuss random
antiferromagnets, Here we suppose there exists a set of
3 sites and 8 sites which are antiferromagnetically
coupled against one another through an intermediate
superexchanger. All A sites (and 8 sites) are ferro-
magnetically exchange-coupled if at all. The above
language about how sites are coupled of course refers
to the situation where there is occupation by a para-
magnetic impurity ion. For simplicity we develop the
theory for the Ising model. Given this model, we
proceed as follows. Define

Nx

RA= — Q JlliA)

gg zg =i

Ng

Rii —— P p'ii,
Qg ia=t

corresponding to which there is the combinatorial factor
W(Rz) W(R&) where W(R) is given by Eq. (21). The
semi-invariant expansion goes through as before. The
second virial coefficient, analogous to (36) (we take
Xg=Xii ——~1V), is

Bi'———2E(2 log[coshPv~~ —Rg' sinhPv~~]

+-,' log[coshPviiii RIi' sinhPv—iiii]
+log[coshPv~ii —R~Rii sinhPv~ii]). (55)

Minimizing logZ with respect to R~, E~ gives

tanhpvgg(1 Rg)—
—;log] ~=-', X R,

&1+R~i 1+Ra'tanhPm„„)

of diagrams contributing to pi'. Thus the second virial
coe%cient is the same for all spins.

remain uncoupled giving rise to the main line. The spins
which occur in pairs are either singlets or triplets which
are populated in the ratio 3:i at high temperatures.
As the temperature is lowered, singlet formation is
favored and one should see the intensity in the main
line diminish (the factor of three is a nice enhancement
factor for the effect). If there is an anisotropy field,
there is a possibility of seeing the singlet resonance in
analogy to antiferromagnetic resonance. If this is so,
one would see the singlet resonance grow as a function
of temperature till it reaches four times its high-
temperature value. One might also study the effects at
higher concentrations to see when spin antialignment
appears in clusters of spins. In general, such an experi-
ment has the possibility of oGering considerable
insight into the onset of short-range order, perhaps
including some kinetic information as well.
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APPENDIX

We first calculate M2 for x=1 taking into account
the irreducibly linked combinations given in the text.
These correspond to the two diagrams given in Figs.
4(a) and (b). Dashed line bonds are the factors (Fig. 1).

~2=2&a"' )[(~''~,')—( *I;)']

+&(g' v' g»'(g'~ —1))[(u,~ ~,v.)—(u,~;)']. (A1)

tanhpv~ii We evaluate this expression for nearest neighbor inter-
+R& ~ (56) actions of strength J on a square or cubic net to

1.~E ' tanh~v
compare with other calculations. "Z is the number of

and similarly for R&. From these equations one can get
the Neel point by taking first order in R and setting
the determinant of the coefficients to 0, i.e.,

1+41V(tanh(v~~/kT~)) +4k(tanh( ~ v/kiiT~))

+-,'E(tanh(v»/kT~)) 1+-,'X(tanh(viiii/kT~))
=0)

(57)

where Tii is the Neel temperature. If v~ii/kT~ and
v~~/kT~ are small (i.e., long-range potential), the
hyperbolic tangent may be replaced by its linear term
and Eq. (57) is the usual Neel equation.

It would not be amiss to discuss here the possible
outcome of a resonance experiment on random dilute
antiferromagnetic samples. ' We assume short-range
forces and for simplicity spin —.', . Here most spins would

9 The idea of a resonance experiment on dilute random systems
was proposed to the authors by Dr. A. M. Clogston. Dr. R. H.
Silsbee clarified my thinking to a considerable extent on this
question.

XJ

f4

g2 93 g4

9

I'xG. 4. Diagram of terms contributing to 352 and 3I3~

"D. ter Haar, Elements of Statistical 3fechamcs (Rinehart and
Company, Inc., New York, 1954), pp. 273-280.
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6rst neighbors. The Grst summation gives

-,'NZJ2(1 —R4).

above. In deriving the results below, we use (g;;—1)

(A2)

To do the second summation, note there N3/3! triples,
three orientations of the diagram and 2'. ways to
distribute the two solid bonds over the diagram. Thus
there are N3 terms. Finally since (g;&

—1)= —8;& we have

1+Z~ [(dtllu2P2y3) (P1P2) $ NZJ [R Rq (A3)

Fig. 4(c)=0,

Fig. 4(d) = 2N2(g12v128) [2R'—2R'j = NZ—j'R'(1 R')—,

E' 3!
»g. 4(e) =—X6X (g12vl g23U23(g 1 1))[2R'—2R'j

3! 2 tg!

Adding (A2)+(A3) gives

M2 ———,'NZ (1—R')',

= 6NZ/8R4 (1—R')

(A4) Fig. 4(fl)=Fig. 4(f ) =Fig. 4(f4) =0,

which is the value given by ter Haar. "
We now proceed to the more complicated exercise of

finding 3f3. There are five sets of diagrams involving
bonds containing magnetic interaction in reducible or
irreducible linkages. These are given by Figs. 4(c) to
(g). From each of these diagrams, one generates a set
of irreducible diagrams by filling in with all possible
combinations of dotted line diagrams. These "daughter"
diagrams are indicated in the figure. We now evaluate
these diagrams. This involves four factors: (1) the
number of ways to choose the vertices out of Eparticles,

(Ni
i.e.

& ~ ~, (2) the number of ways to arrange the
$8

magnetic bonds on each figure among the 8 vertices,
(3) the number of distinct ways to place the 28 bonds
on the given pattern, (4) the semi-invariant of the
combination of p's corresponding to the given diagram.
These are all easy problems involving much less labor
than the conventional method given in ter Haar. We
proceed with a square or cubic net with nearest neighbor
interactions only. Factors are given in the order set

Fro. 5. Diagrams leading to combinatorial factor in M3.

»g 4(f3) =—X12X3!(g12&12g28&23g84&84(g13 1)(g23 1))
41

X[R'—2R4+R8$ = 3NZ J3R2(1—R')'

Fig 4(gl) Fig 4(g2) Fig 4(g8) Fig 4(g4)

g4
X4X3 ~ X(g12212gl8~13g142'14(g84 1) (g28 1))

4!
X [2R'—2R4$ = —2NZ J3R4(1—R')

The total of all diagrams is obtained by adding all the
above results. It is 2NZR'(1 —R')' which agrees with
ter Haar's result.

The only dificult combinatory number in the above
results is the factor of 12 appearing in Fig. 4(f3). In
Fig. 5 we give the three basic reducible diagrams of
the type desired. Each has four orientations obtained
by rotation or reflection, giving a factor of 12.

We close this Appendix by pointing out the obvious
advantages of the present technique over the usual one.
For one thing unlinked graphs do not appear at the
outset. Thus for given E, one need compute semi-
invariants on the p, variables only to O(1). The usual
method requires computation to O(1/N; 1/N', etc.).
Further, the bookkeeping is made considerably easier.
It is a matter of counting graphs and not of lattice
counting.


