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The one-dimensional Schrodinger equation with a periodic and symmetric potential is considered, under
the assumption that the energy bands do not intersect. The Bloch waves, &, &, and energy bands, 8,&,

are studied as functions of the comp/ex variable, k. In the complex plane, they are branches of multivalued
analytic and periodic functions, y&, and E&, with branch points, k, off the real axis. A simple procedure
is described for locating the branch points. Application is made to the power series and Fourier series
developments of these functions. The analyticity and periodicity of p, & has some consequences for the
form of the Wannier functions. In particular, it is shown that for each band there exists one and only one
Wannier function which is real, symmetric or antisymrnetric under an appropriate reflection, and falling
off exponentially with distance. The rate of falloff is determined by the distance of the branch points k'
from the real axis.

INTRODUCTION

'HE motion of an electron in a crystal lattice is
governed by a Schrodinger equation with a

periodic potential. In one dimension we may write it as

where
[ d'/dx'+ —V (x)]P(x)=Eg(x),

V(x+b) = V(x). (1.2)

In the present paper, we assume further that V(x) is
symmetric,

(1.3)

The nature of the solutions of (1.1) for real values of
E has been described in a definitive paper by Kramers. '
For certain so-called allowed ranges of E, (1.1) has
solutions of the form

y„I,(x) =te., g(x)e'", , rt=O, 1, 2, (1.4)

The allowed ranges of E are separated by forbidden
ranges in which the solutions of (1.1) have the form
(1.4), but with k purely imaginary. These solutions
are seen therefore to have an exponential behavior.
The present paper is restricted to cases in which all
allowed bands are separated by forbidden bands of
fi rtite width. ''

In some connections, the question of the behavior
of y„,q and E„~, regarded as functions of the conzplex
variable

k=g+ik,

where tt„,&(x) has the same periodicity as V(x) and k
is real. These are the well-known Bloch waves. The
corresponding eigenvalues of (1.1) are the so-called
energy bands,

E=E„,~, m=0, 1, 2, ~ ~

arises. Examples of such cases are the expansion of E„I,

and q „,& in powers of k, ' and the theory of the motion
of Bloch electrons in a magnetic field. 4

The properties of E,I, and p„,A, , regarded as analytic
functions of k, are discussed in Secs. 3 and 4 of the
present paper. One Ands that the usual energy bands,
E„,„are the traces on the g

—Re(E) plane of a multi-
valued analytic function, Ek. The latter can be repre-
sented on a Riemann surface with an infinite sequence
of sheets, 5„.Each sheet, 5„, is connected to 8„» and
S~~ at a series of branch points of order 1' which lie
off the real axis. Thus by going into the complex k-plane,
one can pass continuously from one energy band to
another. (See Fig. 4.) A similar, but slightly more
complex, situation is found in the case of q„,l,. One
useful result is that the phase of y, , can be so chosen
that it is a periodic function of g, with period 2 /sbrand,
if continued into the complex k-plane, is analytic in a
strip of finite width 2h, enclosing the real axis.

The analytic properties of p„,A, have some interesting
consequencies concerning the properties of the Wannier
function

(1.7)

These are discussed in detail in Secs. 5—9. Here we
mention only the following results. For each energy
band, e, there exists one and only one Wannier function
with all of the following properties: 1. It is real. 2. It
is symmetric or antisymmetric about either x= 0 or
x= b/2. 3. It falls o8 exponentially as

a„(x) exp( —h„x), (1 8)

where h is the half-width of the strip of analyticity of
p, &. The magnitude of h„ is determined by a simple
procedure. No other choice of phase leads to an expo-
nential decrease more rapid than (1.8). On the other

*A preliminary note was published by W. Kohn and S. Michael-
son, Proc. Phys. Soc. (London) 72, 301 (1958).' H. A. Kramers, Physica 2, 483 (1935).

'The limiting case of completely free electrons is thereby
excluded.

' J. Bardeen, J. Chem. Phys. 6, 1367 (1938).
4 W. K.ohn, Proc. Phys. Soc. (London) ?2, 1147 (1958).
5 The order of a branch point is defined as v —1, where v is the

number of different values the function can assume in its vicinity.
Thus near a branch point of order 1 the function is double-valued.
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hand, many choices of phase lead to a less rapid de-
crease.

While the results of this paper are obtained under
fairly restrictive conditions, such as the symmetry of
V(x) and no intersection of energy bands, it is clear
that some of them will continue to hold when one or
the other of these conditions is relaxed. Many of our
results may also be expected to carry over to the case
of three dimensions.

I. BLOCH WAVES AND ENERGY BANDS

2. Preliminaries

where

~(E)—= st 4 t(b,E)+4'(b,E)3 (2.9)

u(E) =St(b,E) ' (2 1o)

This expression is a little simpler to use than (2.9).
We see that p(E) is a22 e22tire fu22ction of E.

We can write X in the form

(2.11)

In our case of a symmetric potential we can also,
instead of (2.7), take Pt(x) and Pt(b x—) as fundamental
system, which gives again a result of the form (2.8) with

We consider the Schrodinger equation

d2$/dx2+—V (x)P=EP,
coskb= p(E). (2.12)

where, by (2.8), k is determined as a function of E by

(2 1)
the equation

where V(x) is periodic with period b, symmetric about
x=0, and sectionally continuous. We denote by Pt(x,E)
and $2(x,E) the two independent solutions of (2.1)
which are defined by the initial conditions

4 (O,E)=1, 1b'(oE)=o

$2(O,E)=0, $2'(O, E)= 1. (2.3)

It is then well known' that pt(x, E) and $2{x,E) are
entire functions of the complex variable E,, for all x.

We look for solutions of (2.1) which are multiplied

by a constant factor X when x is replaced by x+b,
f(x+b) =)P(x). This is equivalent to requiring that

(2 5)

lim p(E) =+~;
lim [p, (E)—cos(E*b)j=O;

+-++oo

(2.13)

(2.14)

de/dE=O at E=E„, n=0, 1, 2, . (2.15)

If k is real, it is called the wave number, and the
corresponding function P is a Bloch wave of the form
(1.4).

The properties of p(E), considered as a function of
the real variable E, have been established by Kramers. '
For the case where no two allowed energy bands
intersect, a schematic plot is shown in Fig. 1. The
following properties are relevant for our purposes

We can write
(2.6)

where, if no two allowed energy regions touch —the
case considered here—

substitute into (2.5) and (2.6), and eliminate n and P.
This gives the well-known result'

P2 =—P(E2 )(—1,

a sm+1 =IJ (E2m+1))+1
q

(2.16)

(2.17)

y(E)

)P—2p(E)) +1=0, (2 8) and
((22+1)2ry '

lim E„ j (2.18)

y=i

The zeros E„ofdp/dE are simple.
We shall now show that the real zeros E„of the

entire function (dlj/dE) are its only zeros. We begin
by writing

(2.19)

y = -I

«= o+ir, .

and look for the zeros of

(2.20)

FIG. 1. Schematic plot of the function IJ, (E). The allowed energy
ranges N=O, 1, 2, correspond to ~y~ &~1 and are separated by
forbidden ranges with

~ ps~ )1.

dP/d«= 2«(de/dE)

Now as E or ~ ~ ~, it can be shown that

Pt(b, E)=cos«b+O(ei'is/i «i),

(2.21)

(2.22)
' See, for example, E. C. Titschmarch, Eiguenfunction Expan-

sions Associated mth Second Order DQferentia/ E&quations (The
Clarendon Press, Oxford, 1946), Chap. 1.

I am indebted to Mr. L. Glasser for bringing this result to
my attention. See also, E. Kamke, Digerentialgleichungen
(Akademische Verlagsgesellschaft, Leipzig, 1943),Vol. I, Art. 2.22.
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K - plane respectively, of F(~) inside Cz. Further we know from
(2.26) and (2.27) that P~=2N+1. Hence

Z~=2N+1, N &~ N p. (2.30)

But in view of (2.18) and (2.21), the real zeros of dp/dE
and the zero contributed by the factor ~ in (2.21) total
exactly 2N+1. Hence, dp/dE can have no other zeros.

N~ (N t I)rr

b b

3. The Energy Function

The connection between E and k (real or complex)
is given by Eq. (2.12),

coskb=p(E), (3 1)

FIG. 2. Contour used to establish the reality
of the roots of dp/dE.

where the function p(E) is de6ned by Eq. (2.9) or
(2.10) and is a single valued, entire function of E.
Equation (3.1) shows at once that

(3.2)

and similarly

Bfi(b,E)/B~= bsinKb+—O(e'~P/
~

~
~
). (2.23)

+Ic+2x /b ~k

Further, since y(E) is real for real E, we have

(3.3)

dp/dK= bsin~b—+O(e~ '~P/
~

&
~
). (2.24)

These equations are simply a quantitative expression
of the fact that for large E (real or complex), Pi(x,E)

cos(E'x). Because of Eq. (2.10) Eq. (2.23) implies
that for large

@'=(Ei)* (3.5)

(3.4)

Hence, on taking the complex conjugate of (3.1), one
flI1ds

For perfectly free electrons we have, of course,

dp&P&/d~ = bsin~b. —

Ke now dehne the function

(2.25)

To obtain further insight into the analytic structure of
Ei„ let us for a moment consider the function E(p),
the inverse of the entire function p, (E). E(y) is an
analytic function of p except where dp/dE=O. In the
vicinity of such a point, we have

dp/d~ dp/d~
F(~)—=

dp"'/d~ bsin~b—
p= p„+n„(E E„)'+—

(2.26)
where n„does not vanish. Hence

(3.6)

This is a single-valued analytic function of ~ with zeros
at the zeros of dp/d~ and poles at the zeros of sin~b,
i.e., at

1
+ (p p )2 (3.7)

«=jr/b, j=0, +1, (2.27)

Now consider F(~) on the square contour C~ of side
(N+-', )m/b shown in Fig. 2. As N ~ ~, ~ on C~
approaches ~. Furthermore, the contours C~ avoid
the zeros (2.27) of the denominator of F(~). Hence, in
view of (2.24) one sees easily that as N —+ ~, F(~) ~ 1
for all points on Cz. It follows that for sufficiently
large 1V,

Thus each extremum p of the p, (E)-plot in Fig. 1
represents a branch point of order 1' of the function
E(p) (see Fig. 3). Since dp/dE has no other zeros, these
are the only singularities of E(ij,) in the finite p-plane.
If we start on the real p axis at p=+ pa, with a real
value of E, proceed to the left to pp, around pp to p, y,

around p, ~ to p, 2, etc. , as indicated on Fig. 3, we trace

—1nF(a) de=0, N&~Np.
CN JK

(2.28)
p- plane

Now by a well-known theorem of analysis

(2.29)
1 —1nF(~) d~=Z~ P~, —

2xi C& Ckc

where Z~ and I'~ are the number of zeros and poles, Fro. 3. The singularities of the function Ji (p).
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corresponding to p l

branch points
corresponding to po

FIG. 4. Schematic representation ol the k-plane (k=g+sk), the
energy bands E„„and the branch points of L&1,.

dE/dk = (dE/dp) ( bsin—kb), (3.8)

out the curve y, (E) of Fig. 1. It is clear that E(IJ) can
be represented on a Riemann surface with sheets 8„
corresponding to the different bands m. 8O is connected
to 8i by the branch point at pa, 8i to Ss by the branch
point at p, i, etc. The values of E(p) on S„ for real p,

between —1 and +1 correspond to the allowed energy
band e of Fig. 1.

Now let us return to the properties of E as a function
of k, as defined by (3.1). Since

Ke write

1( 1q
p=-I zy- I.

2E )j (3.15)

(3.16)

defining the function h(X). As

Clearly, the function EI, may be represented on a
Riemann surface with an in6nite sequence of sheets S„,
in such a way that the energy bands, E„,„are the
values of EJ, for real k on the sheet S . Each sheet S„
is connected to S„+& by the infinite sequence of the
branch points k„given by (3.10) and (3.11). Thus, if
one starts at a real value of k on the energy band e,
passes around one of the branch points k„, and returns
to the real axis, one is then on the band is+1 (see path
C in Fig. 4, which would take one from m=1 to n=2).
Similarly, by passing around one of the points k„& one
arrives on band e—1. By drawing branch lines from
each k„ to &s ~ (away from the real axis; see Fig. 4),
the Riern. ann surface is divided into elements on each
of which Ei, is periodic with period 2rr/b and single
valued.

It is useful to represent E as a function of yet another
variable, namely, X, Eq. (2.11).By. (2.8) we have

we see that E is an analytic function of k except at
those points for which (dp/dE) vanishes, i.e., where

dh(X) dE(p) 1 ( 1 )
dX dp 2 4 X')

(3.17)

cosk'„6 =p~. (3 9)

Of course, for a given y„, (3.9) has many solutions.
Since for even n, p„&—1, and for odd n, p„&+1, the
k„which solve (3.9) have the form

we see that $(X) is an analytic function of X except at
X=O and ~, and at those points 'A„+ where dE/dp is
infinite. In view of (2.8), they are given by

ks„+$(2j+1)——n/b+ik&„5, .j=0, +1, (3.10)

ks +i=~(2j~/b+ k ski), j=0) ~1, . (311)

where

k„= Icosh —'Ip„I f. (3.12)

From (3.7) and (3.1), we see that near one of the k„

E=E„+P„(k—k )', (3.13)

where P„does not vanish. Hence, the k„are also branch

points of order 1. We see from (3.9) and (3.12) that the

position of these branch points can be directly read off

the "Kramers plot" in Fig. 1. In particular, since

lim„„ I p, I
=1, we see from (3.12) that

8„(X)= P a„,i) ',
l=—oo

(3.19)

where we take the square root to be positive. Figure 5
shows the positions of the singularities in the X-plane.
(The unit circle corresponds to real values of k.) The
points X + are again branch points of order 1,' and 8 ()i)
can be represented on a Riemann surface with one sheet
corresponding to each band. This surface may be
divided into elements on which 8(X) is single-valued by
drawing on the eth sheet branch lines joining )„& and

to the origin, and ) „~+and ) „+to & ~ away from
the origin. The function 8„(),), corresponding to the
eth sheet has a Laurent expansion

lim h„=o,
~~00

1/). & I)~I &$.„, (3.20)

whose coeS.cients are clearly real. Its region of con-
(3 14) vergence is

so that for very high-lying bands the branch points lie

very close to the real k-axis. Figure 4 shows a schematic
diagram of the k-plane, the energy bands E„,, and the
branch points of EI,.

where

) „=—minL I) -+
I I) --i+15

=minLI~-I+( -'—1)' I~= I+(~.-i' —1)'*5 (3»)
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X- plane corresponding to band e. Hence

lim' " (2r/b)
(3.27)

so that for large enough b, the power series of E„,, for
arbitrary e certainly converge over the entire first
Brillouin zone.

Fourier ExParssiors of E„,,
Ke have seen that the energy can be expressed

as a Laurent expansion in X l Eq. (3.23)7. Writing
X=exp (igb) gives the Fourier series

PIG. 5. Singularities oi 8(X). The unit circle corresponds
to real values of k. E„,g a~, (+2——Q a„,( cos(lgb). (3.28)

In terms of the quantity

h„=—min(h„, h„ i)
Now from the region of convergence (3.22) of the

(3 22) Laurent expansion (3.23) we conclude that

Lsee Eqs. (3.10) and (3.11)7, we can also write

exp( —bh„) ( l) l (exp( —bh ). (3.20')
hma~. ~X'—
l-+oo

0

if
l
x

l
)5,„,

(3.29)

Finally, we see from Eq. (3.16) that h~(X) = 8„(X ') so where ),„,Fq. (3.21.), can be directly obtained from the
that (3.19) simplifies to "Kramers plot, " Fig. 1. Again, one 6nds good con-

vergence in the tight-binding limit, poor convergence
for nearly free electrons.

Let us now mention some applications of our results.

Power Series ExPawsiors of E,,
From what has been said about the function EI„ it is

clear that the expansion of E,~ will converge for

4. Bloch Functions

The term Bloch functions is usually applied to solu-
tions of the Schrodinger equation (1.1) (with real E),
which have the form (1.4) (with real k=g), and are
normalized in the sense

where
lal «-, (3.24)

(2~/b)
l q „,,(x) lsd'=1. (4 1)

re L(2r/b)'+hp27*', ——
rs ——min(l (2r/b)'+h2 '7i, hs i),

/pg f 2 0 ~ ~

7 )

r2m+1 min(hsmplq L(2r/b) +hsm7')p

+=0, 1, 2, . . .

(3.25)

k(b) =V (0) 4'(b) =V'(0) (4.2)

In the present context, we shall apply the term to
the more general class of functions P, which have the
following properties: They are solutions of (1.1) with
complex E; they are quasi-periodic, in the sense that

limh„= (—e„)&,
Q-&oo

(3.26)

The h„may be obtained from the "Kramers plot" of
Fig. 1, by means of Eq. (3.12). In particular, for N=O,
the expansion converges over the entire first Brillouin
zone,

l g l
&~2r/b.

For nearly free electrons (V ~ 0), h„—+ 0 and,
hence, the radius of convergence r ~0 for all bands
except the lowest. On the other hand, in the tight-
binding limit (b —& ~ ), it can be shown (see Appendix)
that

and they are normalized in a manner which, for
l
X

l
= 1

reduces to

(2Ã/b) [y(*)['o'*=1, (4 3)

For lkl =1 (i.e., X=e'gs), these functions are just the
ordinary Bloch functions.

Now let E be given and let us look for a solution of
(1.1) which satisfies the quasi-periodic condition (4.2).
Such a solution can be written as

where e„ is the eigenvalue of the atomic wave function 4 (&)=Mr(*)+@2(a). (4 4)
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Substitution into (4.2) gives the quadratic equation subtract and integrate from 0 to b T.his gives
(2.8) for X, and the ratio

A(b) A (b)

~ l -e (b) —:(&-1/&)

Hence, we may write

(4.5)
bE I dxx(x, E)x(x, E+bE)

0

8 8= x(x, E+bE)—x(x,E)—x(x,E)—x(x, E+bE)
8$ 8$

-b

-0

1( 1)
4 (x) = A(b)0, (x)+-I l —— IA(x)

Ã'

x(x),S' (4.6)

~(
=P (b, E+5E)

I X(E)———
2 4 X(E)) &7,(E+bE) )

1( 1-~.(b,E)-l 7,(E+bE-)
1)2 (X(E+bE)

thus defining the function x(x). The normalization cV '*

has to be chosen in accordance with the requirement
(4.3). One's first inclination would be to set 1V equal to

X(E)
X (4.14)

(y(E+ bE) )
where in the last step we have used the "periodicity"

p&(b)p&(x)+ —
I

X—— 1/2(x) dx. (4.7) properties of x and x. We now divide by bE and let
& b ) "o 2 & lI) bE —+0. This gives

However, this is not an analytic function of E. Instead,
we choose

1 ~d)(E)X=—P, (b,E)
I

&X(E)' ) dE
(4.15)

2m 1/
A(b)ui(x)+-I l —— IA(x)

b~0 2E X)

X y (b)P (*)+ I

——X Iy (—*) d*, (4.8)

Finally, noting that

dt d -1( 1i- 1f 1) A
-I ~+-1=-I 1- —1, (416)

dE dE 2( X) 2( X') dE

we obtain
which reduces to (4.7) for IXI=1 and hence satis6es
(4.3), and furthermore is an analytic function of E.

This expression for E can be considerably simplified.
For this purpose we dehne

4m dp
A = ——$2(b,E)

b dE

and hence (4.6) becomes

(4.17)

x(x,E)=A(»E)4'i(»E)

1(+-I ~(E)— 14 (x,E) (49)
2 4 X(E))

x(x,E)—=A(b, E)4i(x,E)

1t 1 —X(E) IP, (x,E). (4.10)
2 (X(E)

Here X(E) is one of the roots of Eq. (2.8). Clearly,

4 (x) =x(*)
4m- dp——P~(b)
b dE

(4.18)

Tmf(0) =0, X=e'g'. (4.19)

Block Waves Regarded as Aua/ytic Fumctions of X

where x(x) is defined by Eq. (4.9). For X=e"~, this
function reduces to a familiar normalized Sloch wave
whose phase is such that

X= (2n-/b) )"x(x,E)x(x,E)dx.
0

(4.11)
We now wish to study the analytic behavior of P(x)

as a function of ), from which the functional dependence
on k is then easily deduced. Since E is a function of X,
we may regard fi, f2, and P as functions of X.

We now take the equations
Pi(x) ~Pi(x,X); $2(x) —+ P2(»X);

f(x) —+ P(x,X).
(4.20)L

—d'/dx'+V —Ejx(x,E)=0,
d'/dx'+ V E bEjx(x)E+o—E)=0, — —(4.13)

The possible singularities of $(x,X) are the points X
multiply the first by x(x, E+BE), the second byx(x, E), where dti/dE=O and 8('A) is singular, as well as the
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points where

$2(b,X) =0, (4.21'l

which makes LV vanish.
We begin by showing that at the latter points f(x,X)

is, in fact, regular. First we note that (4.21) can occur
only for real E. For

Hence
dE

$2(b,X) =—', LVO (X—1)'+
dp

2'
1V= ——$0 (X—1)'+

b

(4.29)

(4.30)

pb ( d2 )
$2*(x,) ) ~

— ~$2(x,X)dx
dx'&4O

+ V(x)
i
$2(x,X) i'dx

4p

pb

~P, (x,) ) ~'dx
Jp

dp
~$2(x,X) ~'dx

t' Bf(x,X) '
V(x) ~P, (x,)) ~'dx

~p BX 0

Now we examine the function )t(x) of (4.18). At X=1,
P2 (b) =0 and it i(b) =p = 1, so that the numerator

x(»l )—=&~(b)&i(x)+-I ~—— IA(x) =o ~=1 (4»)
2E

To determine its behavior near ) = 1, we note that by
(4.29)

Hence, near ) =1
B&2 (b)/BX =0. (4.32)

(4.33)~(x,X) = (X—1)y, (x).
(4.23)

Combining with (4.30), we see that P(x,)) is regular
near X=1 and

$2(b —x, X) =&Pg(x,X). (4.24)

Now differentiate this equation with respect to x and
set x=0. This gives

where (4.21) was used in the last integration by parts.
Now since E is real, so is $2(x,X). Further, in view of
the symmetry of the potential Land of Eq. (4.21)),
we must have

P(x, 1)=+
~ ( i&2(x, 1),
(2~1Vo

(4.34)

provided that $&(b, 1)=0. A completely analogous
situation holds if $2(b,X) vanishes at X= —1.

The only singularities of P(x,X) occur then at the
points X„+ given by Eq. (3.18). Let us examine f(x,X)
in the vicinity of such a point,

(4.35)

Since also

—f,'(b,X)=~f2'(O, X) =&1.

—$2(b,X)= &$2(O,X) =0,

(4.25) For a given x, the function x(x,X) in (4.18) behaves like

)r (x",k) =2 & (x)+Bi(x) (X—'A') '*+ (4.36)

as Pi and P2 are entire functions of E, but the function
E= B(X) has a branch point of order 1 at 'A'. In the
denominator the factor f2 behaves as

$2(b) =22+By(X—X )*+

dp/dE=2n (E E„)=A, (X X')l. — —
(4.37)

while
(4.38)

dp2(b)X) B$2(b) dE dp,

D, BE dp dA
(4 26) Hence p(x,X) behaves as

C(x)
P(x,X) = [1+D(x)P.—X') '*+ j. (4.39)

(X—X') lNow by differentiating the Schrodinger equation satis-
fied by P&(x) with respect to E, it is easily shown that
at X=1) Thus we see that the points X + are branch points of

order 1' of the un-normalized function y(x,X), but
branch points of order 3' of the normalized function
f(x,X).

Now let us go back to Fig. 5 of the )-plane, , The
function y(x, X) has branch points of order 1 at the same
locations X + as h()). It may be represented on the
same Riemann surface as h(X), with one sheet corre-
sponding to each energy band n. If, for instance, we
start at X=1 with g(x, 1) corresponding to band st=1,

(4.27)BP,(b)/BE= $22dx= 1V , 0

which is nonvanishing. Also BE/Bp is finite and non-
vanishing. Finally

dp B 1 ( 1i 1 ( 1 )—=—-I ~+-
I

=-I 1——, I

dX W2( Xj 2E Vj
(4.28)

we see that $2(x,X) is a periodic solution with X=+1.
Hence we have the preliminary conclusion that (4.21)
can occur only at X= ~1.

Let us take X=+1, and study P&(b,X) in the vicinity
of 'A=1. We write
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go around X~+ and return to ) =1, we then have the
value of x(x,i) for e=2.

On the other hand, the function P(x,X) requires a
Riemann surface with twice as many sheets as h(X).
For each sheet on which P has the values P„(x,'A), there
is a second sheet on which it has the values —P„(x,X).
Each branch point A' connects four sheets, 0„+ and
o,+i+. Suppose we start at) = 1 with P(x, i) correspond-
ing to band e= j., on sheet 0-~+. Passing once around
Xi+ and returning to X=1 gives f(x, i) for band m=2,
on oi+; two encirclements give —f(x, i) for band m= 1,
on o i, three give —P(x, l) for band v=2, on oi, and
four give again f(x, i) for band v= 1, on o.i+.

Behavior of f(x,X) i/i the Vicinity of the
Unit CircLe X=1

As the unit circle corresponds to real values of k,
it is of special interest.

Suppose we start on the unit circle with a particular
value of h(X) and a corresponding P(x,X). If we remain
in the vicinity of the unit circle, 8() ) remains single
valued, hence so does fi(x, BPi)) and pi(x, 8(X)) and
therefore also the un-normalized function x(x,)), Eq.
(4.6).

We now turn to the normalizing factor S &. Since
for

~
X

~

= 1, E is real and X of the form exp(igb) we see
from the original definition, Eq. (4.8), that E is real
and )~0. Furthermore, by Eq. (4.17), since d///dE&0
on ~X~ =1, we see that 1V can vanish only where f&(b)
vanishes. As we have seen, this can only occur at
X= &1, and where it occurs Pi(b, X) has a double root
in X.

This leads one to distinguish two cases: (A) Pi(b)
vanishes at neither X=&1, or at both; (8) fi(b)
vanishes at either X=&1, but not at both. In case (A),
X l()) and hence P(x,X) returns to its original value
on going around the unit circle. Hence, we can write
P(x,X) as a Laurent expansion in X

(x) ( ( p ~ (o(x)cilbk
E2~) i= (4.43)

which represents an analytic function of k in the strip

jImk
f
(A,„, (4.44)

where k is defined in Eq. (3.22). Clearly, p„,(x) is
periodic in g with period 2ir/b:

v -,.+i-/i(x) = ~-,.(*).
Now let us further distinguish two subcases.

(Ai) ~-,0(0)&0 ~-, -/~(0) &0.

(4.45)

Then from (4.6) and the fact that 1V &(X) =IV &(/i '),
we find directly the following symmetry properties

p~, a (x)= p~, g( x)~

~,-u(x) = ~..(-x)
(A2) p, o(0) =0, p„, /p(0) =0.

Here, since 1V ~P,)= —X &P, '), we find

(4.46)

(4.47)

function p~, whose branch points have the same
locations as those of E/, (see Sec. 3 and Fig. 4). In the
vicinity of such a branch point, k',

yi =C'/ (k—k') '. (4.42)

Thus four Riemann sheets are connected at each
branch point. Two of these correspond to a band rI, and
two to the band ii+1. On the two sheets corresponding
to a given rI,, q» diGers only by sign.

We now have to distinguish several cases, corre-
sponding to different possible behavior of q „A, at k=0
and ir/b (or X=ai).

Case A. y„,o(0) and p, /i(0) both not zero or both
zero. From (4.40) we have the Fourier expansion

p„, ,(x) =-p. , ,(-x). (4.49)

(4.40)

I

which converges in the ring (3.20'). In case (8), X '(X)
and hence P(x,X) change sign on going around the unit
circle. Therefore, we can write P(x,X) as a Laurent
series of the following form in ) &,

(4 41)

Case B. y, o(0) or q, /q(0) is zero, but not both.
From (4.41) we have the Fourier expansion

(by& ~ (2l+1
p„, i(x) =

(
—

~ Q P„&"(x) exp] i bk ~, (4.50)
E2irJ i=w L 2 j

which represents an analytic function of k in the strip
(4.44). In this case q„,,(x) is antiperiodic in g with
period 2ir/b:

converging again in the ring (3.20').

V, u+~ /~(x) = —&,a(x)

We may again distinguish two subcases.

(4 51)

Behavior of y, /, as a FNnctiox of k

This is easily obtained from the functional depend-
ence of P(x,X) on X by the substitution X= exp(ibk).

We Gnd that p„,I, is a branch of a many-valued

q „,0(0) WO, q „,./i(0) =0.

In this case one finds that p„,,(x) has the symmetry
relations (4.46), (4.47).

(B2) ~-,o(0) =o p. ../i (0)&o
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P (x3

(03

Remark on Other Choices of Phase

We have discussed two particular assignments of
phase suggested by the symmetries of V(x) about x=0
and b/2. Other choices are of course possible. For
complex k we can write the most general Bloch function
as

4 „b(x, ) = e"fbi p„b(x), (4.56)

where, to preserve the normalization for real k, we
must have

Irn8(g) =0. (4.57)

(x3
However, it is obvious that all possible C„,~ have
singularities at the singularities of E„,q. For suppose
the contrary, i.e., that C,& is regular at such a point.
Then so would be the function

(—d'/dx'+ V)C., b

+n, k

(4.58)

Fio. 6. Schematic plots of Pq(x) for X=+1 and ib2(b) =0.

In this case one finds that q„,,(x) has the symmetry
relations (4.48) and (4.49).

Power Series Expansion of g „,
Since the singularities of q, ~ have the same locations

as those of E„,I„our remarks about the power series
expansion of E„,, can be taken over without change.

which is a self-contradiction. On the other hand, 8(k)
can of course introduce singularities of its own.

II. WANIER FUNCTIONS

S. Preliminaries

Wannier functions, a„(x), are localized linear combi-
nations of all the Bloch waves of a given band. In the
following paragraphs, we shall be speaking only about
one band at a time and, therefore, generally suppress
the band index, n. Let then 4', (x) be a normalized
Bloch wave of as yet arbitrary phase. Then the corre-
sponding Wannier function is defined

Coordinate Shift Through IIalf Period (b ) —', ~w /b

a(x) —=
I

—
I

4.(x)dg
&2~i ~ ./b

(5.1)
Let us consider a new pair of basis functions, fi(x)

and Ps(x), referring to the other center of symme
V(x), namely b/2:

k (b/2) =1, k '(b/2) =o,

Ps(b/2) =0, P,'(b/2) = 1. (b ) $ ~w/b

a(x lb)
~ (

4 (x)e '/b, dg-
E2~i & ./b

(4.53) (5.2)

Elementary considerations using the symmetry of the
potential give the following results: At 'A=+1, Ps(b)
and Ps(-', b+b) are either both zero or both not zero
Lsee Fig. 6(a)]; while at X= —1, one and only one of
Ps(b) and its(-', b+b) Lsee Fig. 6(b) and use the fact
that bands do not intersectj. Hence, if the normalized
Sloch waves p, , are de6ned by the requirement that
g „,(b/2) be real and that p„b(x) be analytic for k=g,
then depending on whether

We shall use the notation

a&'& (x)=—a(x—lb). (5.3)

If we multiply (5.2) by e'"" and sum over l, using
the fact that

(5.4)2 i e'"'" "=(2~/b)b(g' —g),
we obtain

4', (x)= (b/2s. )
'*P /

a~" (x)e"". (5.5)

try of
Its shape depends on the variation with g of the phase
of 4,. From the form (1.4) of C„we deduce that

V -,g+s-/b(x) =~ b -,,(x),

cp„, has the property

e-, g+S-/b(X) =~ V -,s(X).

(4 54)

(4.55)

Thus in all cases one of the functions, y, , and g,„is
periodic with period 2n/b, while the other is antiperiodic.

By means of (5.2) and (5.5), the Wannier functions,
a&'&(x), and Bloch waves, 4, (x), can be expressed in
terms of one another.

Of course, (5.1) assumes sufhcient regularity of C, (x)
for the integral to exist and (5.5) assumes the con-

8 G. Wannier, Phys. Rev. 52) 191 (1947).
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vergence of the sum over I. To avoid irrelevant mathe-
matical subleties, let us assume from here on that the
phases of C, (x) are so chosen that C, (x) is a sectionally
continuous function of g in the interval —vr/b ~& g~& m/b.

Then the integral (5.1) exists and the sum in (5.5)
converges to —,'(C, p+C,+p) for 7r/b—&g&m/b and to
2 (@(~/b'/ p+—@( ~/b)+p) at g= &m/b.

From their definition, the well-known ortho-normality
of the a/'&(x) may be verified at once,

a&"(x)*a"&(x)dx=6 ~ (5.6)

6. Reality and Symmetry

In discussing the reality and symmetry of a(x), we
must distinguish two cases.

Case A1 or B1:
C p(0) WO.

Consider then a possible alternative set of Bloch
waves,

C p' ——e"/g&C p, m/—b ~& g &~ m/b, (6.6)

e"""= Q A e '"—0' 7r/b—~&g~&m/b. . (6.7)

The corresponding Wannier function is

E
g p~/Ib

u'(x) =
]
—(,' C g'(x)dx

42vr) ~

(b q
'g~x/b

= P A
(
—

~

' Cp(x)e '"'P—
dg

(2m) a „/p

leading to a real and (anti-) symmetric Wannier
function. We write

Here we choose the phase of C, such that C, (0) is
real and C/, (x) is analytic for k=g. Then C, (x) is
(apart from a possible factor —1) identical to the

p, (x) of Sec. 4. Therefore, on using Eqs. (4.46) and
(4.47) in Eq. (5.1), we find

= Q A„a(x—mb).

Now using the reality of a(x), we have

ka'(x)]*= 2 A *a(x mb)—

(6.8)

(6.9)

(b )-', ~w/b

a( —x) =
(

—
[

' C p(x)dg=a(x),
E2~&

(6 1) Since the a(x—mb) form an orthonormal set, we see
that a'(x) is real only if

/p

a*(*)=I —
I

' C-.(*)dg= (*).
E2~) &— /b

Thus a(x) is both symmetric about x=O and real.
Case A2 or B2:

C'p(0) =0.

(6.2) Further
= real.

a'( —x)= P A a( x mb)——

(6.10)

Here we choose the phase of C, such that. C, (0) is

purely imaginary and C»(x) is analytic for k=g. This
C, is related to the p, of Sec. 4 by

= Q A a( x+mb)—

=a P A „a(x mb), —(6.11)
C p (x) = aipp (x).

Therefore, using Eqs. (4.48) and (4.49), we obtain

(b )g ~w/b

a(—x) = —
i

—
i

' C,(x)dg= —a(x),

(6.3)

(6.12)A =~A

depending on whether a (x) is symmetric or anti-
symmetric. Therefore, if a(—x) is to be symmetric or
antisymmetric, we must have

(6.4)

Now using (6.10) and (6.12) in (6.'7) gives
(6.5)a*(x)=+i —

i
C p(x)dg=a(x).

(bl'* )
& 2~) /b

r

Ap+2 P A cosmgb
m=1

es~(g) —~This time a(x) is antisymmetric about x=0 and real. (6.13)

Umqneeess

We shall now show that no other choice of phase,
which has the property that the corresponding Bloch
waves are continuous functions of g, leads to a Wannier
function which is both real and either symmetric or
antisymmetric about x= 0.'

—2i P A sinmgb,

depending on the sign in (6.12). The second line in
(6.13) can be ruled out at once by setting g=0. The
first line implies that e"«) is real and hence, because
of the assumed continuity of p„

'Apart, of course, from a trivial factor —1; see Eq. (6.15). e&ti(a) ——~ j (6.14)



ANAL YTI C P ROPE RTI ES OF BLOC H KA VES

Therefore,
(6.15)

origin we have Case A and can therefore construct
Wannier functions a(x) with the following properties.

7. Asymptotic Behavior of a(x)

We begin by discussing the particular Wannier
functions of the preceding section, which are real and
(anti-) symmetric about x=0.

Case A. pp(0) and p»(0) Both Nonhero or Both Zero

lima(x) ep*=
0, q(k

q&h„.

aP, b+x) = ma(-', b —x),

a*(x)= a(x),

(7 9)

(7.10)

(7.11)

In this case p, is a periodic function of g with period
27r/b The. C, with which we constructed our Wannier
functions was related to p, of Sec. 4 by a constant c,

@0 ~+g~ (7.1)

where p=&1 or &i depending on whether ppp(0) did
not or did vanish. Since

C,= (b/2pr)& Pi a'"(x)e'"p, (7 2)

we see by comparison with Eq. (4.43) that

a&" (x) =—en&'& (x) (7.3)

Now the functions, a&'&(x), were the coeKcients of the
Laurent expansion (4.40) which converged for

exp( —bli ) &A&exp(bh ), (7.4)

where h„ is defined in Eq. (3.22). Hence

0,

In view of the connection

(X
~
&exp(bh„)

~&) &exp(bh )
(7.5)

ni'& (x) =—a(x—tb), (7.6)

this is equivalent to

lima(x) e'*= 0, q(h

q) A'„.
(7.7)

More loosely speaking, a(x) falls off like exp( —h„x).

Case B. One and Only One of ppp(0) and p tp(0) is Zero

In this case, p, and hence 4, is an antiperiodic
function of g. The asymptotic behavior of the corre-
sponding Wannier function can be found from (5.2) by
performing an integration by parts. For Axed x and
large / we 6nd

(a(x lb)=-
~

—
I (——1)'iC'-»(x) +O~ —, ). (78)

t &nb) &P)

Thus
~
a(x)

~

falls off only as x '.
For many applications such slowly decreasing

Wannier functions are most inconvenient. It is therefore
fortunate that we find that in Case B, pp(b/2) and
p &p(b/2) are either both nonzero or both zero Lsee
Eqs. (4.54) and (4.55)j.Hence with respect to this new

8. Existence and Uniqueness of Real, (Anti-)
Symmetric, and Short Range Wannier Function

We are now in a position to prove the following
theorem: For every band there exists one and only one
Wannier function' which has all three of the following
properties:

1. It is real.
2. It is either symmetric or antisymmetric about either

x=0 or x=b/2.
3. It falls oG exponentially.

The quantitative rate of exponential decay of the
function which has these properties is given by Eq.
(7.7).

To fix our ideas let us take, for example, a band with
the following properties: yp(0)40, pp»(0)=0. This is
case 81 of Sec. 4 $Eq. (4.51) G.j. Now in Sec. 6 we
have seen that there exists only one choice of C,(x)
which is continuous in g, with the property of leading,
via (5.1), to a Wannier function which is real and
symmetric or antisymmetric about x=0. This Wannier
function did not fall off exponentially but like x '. If
we consider also Bloch waves, Cg(x), which are not
continuous functions of g, the corresponding Wannier
function certainly cannot fall oG exponentially with x
Lsee Eq. (5.2)j. Thus we conclude that in this case
there exists no Wannier function which is real, (anti-)
symmetric about x=0, and falling oG exponentially
with x.

However, in the present case we have yp(-', b) &0 and
q tp(2ib+b)WO. Hence relative to x=2b this band
corresponds to case A1 of Sec. 4. Now in Sec. 6 we
have shown that there exists one and only one choice
of 4, which is continuous in g, with the property of
leading via (5.1) to a Wannier function which is real
and symmetric or antisymmetric about x=b/2. In
Sec. 7, we saw that this function fell off exponentially
for large x, according to Eq. (7.7). Any other choice
of 4„leading to a Wannier function real and symmetric
or antisymmetric about x=b/2, is necessarily discon-
tinuous in g and hence the corresponding Wannier
function does not fall off exponentially.

This completes the proof of our theorem for a band
of this type. For the other three types of band exactly
similar proofs can be given.

For convenience we list below, for the four possible
types of band, the symmetry properties of the corre-
sponding unique Wannier function which has the three
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properties listed at the beginning of this section.

(A1) yo(0) NO, &p ig(0) &0: a(—g) =a(g),

(A2) «(0)=0, &.„(0)=0: a(—*)=—a(*),

(8 1)

(8.2)

also is glad to avail himself of this opportunity to thank
the staG of the Department of Mathematics at the
Imperial College for the hospitality which he enjoyed
during his stay there.

(B1) yo(0)WO, y It(0)=0:
a(-', f —x) = a(-', f+x),

(B2) ~o(0) =o, ~-i~(0)&0:
a(-', b —x) = a—(-,'5+x)

(8.3)

(8.4)

APPENDIX. TIGHTLY BOUND ELECTRONS

Let Vo(x) be a cutoff, symmetric potential,

Vo(x)
—=0, ix))c, (A.1)

The question may be asked if one can possibly obtain
a Wannier function falling oG more rapidly than Kq.
(7.7) by relaxing the requirements of reality and (anti-)
symmetry. The answer is clearly "no." For, by Eq.
(5.5), the corresponding Bloch waves would be analytic
functions of k in a strip wider than Eq. (4.44), and this
was shown to be impossible.

po(E) =cos(E~b). (9.1)

In the free-electron case, the extrema p„of p(E) occur
all at @=~1.Hence in the "nearly free" case we have

fp,
/
=1+8., (9.2)

where 6„ is a small positive quantity. Therefore, the
singularities of EI, and q~ lie very close to the real axis,

(9.3)

)see Eqs. (3.10) and (3.11)7,and hence the exponential
decay of the Wannier functions is very slow. This is in
accord with the fact that for perfectly free electrons
(which are not included in our considerations because
their bands intersect), the Wannier function falls off
only as x '.

For very tightly bound electrons of binding energy
e„, it is shown in the Appendix that h ~ (—e )'*.

Therefore, for large x their Wannier function behaves as

a.(x)-exp' —(—~.)-:*), (94)

that is, it falls oG at the same exponential rate as the
wave function of an isolated potential well.
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9. Nearly Free and Tightly Bound Electrons

If the potential V(x) is weak or if we consider
electrons of high energy, the Kramers plot p(E) is
close to that for free electrons

with a number of bound states with eigenvalues

v=0, 1, ~ ~ ~ . (A.2)

We now consider the solutions of the Schrodinger
equation (1.1) corresponding to the periodic potential

V(x)= P Vo(x —lb)
oo

(A.3)

in the so-called tight-binding limit,

(A.4)

Ng( —c, E)=1, Ng'( —c, E)=0,

N2( —c, E)=0, N2'( —c, E)=1.

p, is given by the relation (see Eq. (2.9)$

(A.5)

(A.6)

p(E) =-', [Ng(b —c, E)+u2'(b —c, E)j. (A.7)

Now let us define

fg(E) —=Ng(c, E); fg'(E) =—Ng'(c, E),

f2(E)=&2(ciE)~ f2 (E) ~2 (c)E)

(A.8)

(A.9)

Then since in the interval c(x&b c, V(x)=0, on—e
finds by matching solutions at @=c, that

1t' f&l
~~(&—c, E) =-~ fi+ ~e"'-"

q)
Al+—

~ fg —
~e

"~ "& (A.10)
2( q)

u, '(b c, E)= -', (f2q+—f2') e«' —"&

2(f2' A—') "e'—" (A.11)
where

q= (—E)'; (A.12)

q is taken positive for negative E. By means of (A.10)
and (A.11), we can express p in terms of fi, fi', f~,
and f2'.

We wish to determine the magnitude of p(E) at those
energies E„where dlJ/dE=O. This enables us to locate
the singularities of the energy function EI, in the
complex k-plane.

For the present purposes it is convenient to use as
fundamental system of solutions of the Schrodinger
equation (1.1) the functions N&(x,E) and N2(x, E) where
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Now let us define the function

fi'(E)
G(E)=—f, (E)+ +f,(E)q+f,'(E) (.A.13)

slightly from those of (A.16)

2q„(11
E„=e„+ +0

b & b')
(A.17)

=exp[( —E„)l(b —2c)]
G(E)+ —G(E) =o(e-'").

(b —2c) dq
(A.14) 2q„(1)

&& G'(E„)+0~ —
[ . (A.18)

b L b')On the other hand, the band edges, where @=&1,are
given by

~(E)=o(& ") From this we can now determine the distance h„of
the singularities of Ei, from the real h-axis [see Eq.

Since in the tight-binding limit the band edges coincide (3 12)$:
with the "atomic" energies, e, we must have hmh„= (—e„)-*. (A.19)

Substituting (A.10) and (A.11) into (A.7), we find that Substituting these values into the exPression (A.7) for
as b~ ~, the condition dtt/dE=0 or dtt/dq=0 gives tt gives, with the aid of (A.10), (A.11), and (A.13)
the following equation for the determination of the E„,
Eq. (2.15): p, „= „exp — —c

G(E) =0 at E=e„, (A.16) As h„=min(h„, h i) and eo) eo i, we also have

this may also be directly verified.
For large b, the solutions E of (A.14) differ only

limbo= (—e„)'.
Q -moo

(A.20)
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Electrodynamics of Charge Carriers of Negative Effective Mass in Crystals
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The transport properties of negative-e6ective-mass carriers in crystals are studied. The electrical con-
ductivity of a sample in which the electron distribution function is weakly-perturbed from its thermal
equilibrium value is always positive, even in the presence of a magnetic field. Therefore, cyclotron resonance
experiments in equilibrium should display energy absorption, although the negative-mass carriers will
circulate in the sense opposite to that of positive-mass carriers of the same charge.

I. INTRODUCTION

~

'HK energy bands of crystals exhibit, in general,
regions in wave-vector space where the effective

mass of the charge carriers is negative. Such carriers
are accelerated by electric and magnetic fields in a
direction opposite to that of the acceleration of positive
eGective mass carriers of the same charge. A cyclotron
resonance experiment with circularly polarized radia-
tion would enable us to distinguish between positive-
and negative-mass carriers.

Kittel' has shown, on the basis of a general thermo-
dynamic argument, that a system of carriers all having
a negative effective mass cannot exist in thermal equi-
librium with a bath at a positive temperature. However,
it is possible for carriers of positive and negative effec-
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tive mass to be in thermal equilibrium with each other.
He has also shown that a distribution of negative- and
positive-mass carriers in thermal equilibrium will
always absorb energy from an external electromagnetic
field. If this were not the case we would be able to
construct a device which could perform work and
produce no effect other than cooling a heat reservoir.
This would, of course, be in contradiction with the
second law of thermodynamics.

Kittel also shows that the standard Boltzmann
transport theory leads to the same result as the more
general thermodynamic argument. In fact, consider
that we have a conductor with one conduction band
defined by E(k). Here E(k) is the energy associated
with the state with wave-vector k. Let fo(k) be the
distribution function in thermal equilibrium. If we

apply a constant electric field 8 the steady-state dis-
tribution function f is given, to first order in 8, by the


