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The complex dielectric constant of a superconductor and the Meissner effect are derived in a manner which
is gauge invariant, from the theory of superconductivity due to Bardeen, Cooper, and Schriefter. The col-
lective excitations are important in maintaining gauge invariance; the longitudinal collective excitations
ensure that a static vector potential produces no longitudinal current and the transverse collective excitations
contribute to the Meissner current an amount which depends on the angular properties of the two-body
interaction. This contribution is estimated to be small. An earlier calculation of ultrasonic absorption in
superconductors is justi6ed. The whole investigation is based upon the generalized random-phase approxima-
tion introduced by Anderson and applies whether or not the Coulomb interaction between the electrons is
taken into account. The equations of motion are linearized in such a way that the exchange terms are
automatically screened if the Coulomb interaction is, in fact, taken into account. The region of applicability
of most of the results is limited by the approximations to temperatures at or near absolute zero.

I. INTRODUCTION

'ANY properties of a superconductor, notably the
thermodynamic properties, can be understood in

terms of independent quasi-particle excitations of the
system. However, the force between one electron and
another which brings about the superconducting transi-
tion also ensures that the system possess certain col-
lective excitations. These collective excitations are
essential for a complete understanding of certain
properties of the superconducting system, particularly
its interaction with external electric and magnetic fields.
In this paper we wish to stress the collective aspects of
the theory of superconductivity of Bardeen, Cooper,
and SchrieGer. ' The main contributions of the present
paper are a completely gauge-covariant calculation of
the Meissner eGect and of the complex dielectric con-
stant of a superconductor at absolute zero. These calcu-
lations take into account both the longitudinal and
transverse collective excitations of the system.

Using the random-phase approximation, Anderson'
and Bogoliubov, Tolmachov, and Shirkov' studied the
existence and frequencies of the longitudinal collective
excitations. They have found that the plasma frequency
and the collective coordinates are practically unchanged
in the transition to the superconducting state, in the
long-wavelength limit. They have pointed out the
existence of transverse and more complicated oscilla-
tions and BTS have attempted to calculate their fre-
quencies. Anderson has shown that when the longitu-
dinal collective modes are taken into account then, at
least to order (es/A&a)s, the longitudinal sum rules are
satisfied.

Already in a normal metal the collective aspects of the
interacting electron system are important. As is well

known, if an external charge interacts with the electrons
of the metal, all the electrons are perturbed in such a
way that each electron is acted upon by the Geld of the
external charge together with the perturbed fields of all
the other electrons. The result is that every electron is
perturbed by a screened field. (The screened field can be
calculated by a self-consistent Hartree method4 or
equivalently by a canonical transformation. ") If the
external charge density is a wave of long wavelength the
screening is practically complete.

Another way of looking at the screening is to note that
a part of the charge density of the electrons is a plasmon
variable and that a low-frequency external Geld will not
excite the plasmon states. We should like to develop this
viewpoint using some of the ideas of Lipkin. ' The system
of electrons possesses longitudinal collective modes of
wave vector k with coordinates Q&, conjugate momenta
I' s, and frequency &os. In the long-wavelength limit, Q& is
(4se')& P, exp(ik x,/2)(k y;/nk) exp(ik x,/2) and Ps
is s(%re'/)s')l P; exp(ik x,), where the x; are the co-
ordinates of the electrons and p; are their momenta.
There will be other operators, functions of x; and p;,
which, added to Ps, Qs, will form a complete set. What
these other variables are we leave aside for the moment.
Now if an external field (say that associated with an
incoming phonon) of wave vector k, frequency 0, and
amplitude r& acts on the system, there is an extra
interaction term in the Hamiltonian,

Jif s ysp sexp(sQ/)+c c., —p &
——Q; exp( —sk x;),

where MI,' is the strength of the interaction. The com-

ponent of the charge density p & can be expanded in
terms of I' s, Qs, and the other variables of the complete

' J. Bardeen, Phys. Rev. 52, 688 (1937).
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set; it then has the structure

where
p k—t.t A:I Ir+ p 1r , I)--.

—iAa.s= [p s,Qs7, = —A(47re'/A')

as k —+ 0 this approaches

expLirie'"' P; exp( ——',ik x;)
Xp; exp( ——',ik x;) k/Nk' —c.c.j

which is of the form found by Pines and Schrieffer and
can be interpreted as giving rise to a "dipolar backflow. "
The backflow is calculated in more detail at the end
of Sec. 4.

In a metal the screening and collective coordinates are
also affected by the extra phonon interaction between
electrons which leads to the superconducting state.
However, the contribution to the screening comes from
all electrons within the Fermi sphere, whereas in the
superconducting transition only those electrons within a
small energy range kT, of the Fermi surface are involved.
Thus it is to be expected that in the superconducting
state the screening will be practically the same as in the
normal state. This is confirmed by the calculations of
Anderson and BTS and by that of Sec. IV which is also
based upon the generalized random phase approxi-
mation.

One problem that requires the introduction (explicit
or implicit) of the collective modes for its solution is that
of the Meissner e6ect. BCS have calculated by pertur-
bation theory the current density produced by a static
transverse vector potential. They made no attempt to
derive the current density produced by a static longi-
tudinal vector potential although it was earlier pointed
out by Bardeen' that it would be necessary to take
account of the longitudinal collective modes to do this.
A static longitudinal vector potential contributes neither
to the electric field nor to the magnetic field; it should,
therefore, have no physical effects and should not give
rise to a current. Because the BCS method, if applied
without modification to the longitudinal vector po-
tential, would give a nonzero (not even small) current,
doubt has been cast on their calculation of the trans-

' D. Pines and J. R. SchrieBer, Nuovo cimento 10, 496 (1958).
' J. Bardeen, Nnovo cimento 5, 1766 (1957).

and p k, , is the residual screened charge density which
vanishes in the long-wavelength limit. (p i... is of order

gI,
' relative to I'I„where g~ is the electron-plasmon

coupling constant. ) The first term of p i, can lead to real
transitions only if energies AorI, are involved, In general,
however, coI,))Q, so that the only part of p & that can
cause real transitions is p ~

„

that is, the screened part.
One can eliminate the collective part of p A, from the

Hamiltonian by performing a canonical transformation
with the unitary operator

expt iri, e'n%Iisn~Q i/A —c.c.];

verse current. "Anderson's verification" of the sum rules
shows that the longitudinal current density is of order
(ee/Ao&)', but as he does not introduce the wave-
functions explicitly his proof is not a test of the method
of BCS for calculating the transverse current.

Pines and Schrieffer, ' by exploiting the smallness of
the electron-plasmon coupling constant, g, have shown
that the longitudinal current density is small. Their
proof introduces the wave functions for the collective
states and depends on the fact that the collective
coordinates are practically unchanged in the supercon-
ducting transition. As we have seen, in the normal state
the long-wavelength components of charge and longi-
tudinal paramagnetic current densities are just col-
lective coordinates (Ps and Q&, respectively) to order g'
and this is still true in the superconducting state. As
Pines and Schrieffer show, the collective part of the
longitudinal paramagnetic current density just cancels
the diamagnetic current density and the total longi-
tudinal current density is at the most of order g'. An
objection" has been raised against the argument of
Pines and Schrieffer on the grounds that they use the
controversial subsidiary condition of Bohm and Pines, "
but in the way we have put the argument the subsidiary
condition does not arise. In Sec. VI of this paper the
corrections to the collective coordinates are taken into
account and from the equations of motion obtained by
Anderson within the generalized random-phase ap-
proximation, the transverse and longitudinal currents
are calculated simultaneously. Because the longitudinal
current is found to be zero it is believed that the
calculation of the transverse current is to be trusted.

Because of the properties of the interaction which
leads to the superconducting transition there exist, in a
superconductor, transverse collective modes. (The effect
of these excitations on the Meissner current has already
been reported in a preliminary letter. ") In the presence
of a static transverse vector potential they do not con-
tribute to the current in the London limit (where the
penetration depth is much greater than the coherence
distance); only the single-particle excitations have to be
considered and the calculation is exactly that of BCS.In
the Pippard limit (where the penetration depth is much
less than coherence distance) there is a contribution from
the transverse modes and this depends on the angular
properties of the two-particle interaction. We have as-
sumed a simple angular dependence for the interaction
to estimate the order of magnitude of the correction and
we conclude that it is, in fact, small.

A simple model for a superconductor that is com-

monly used" "is a gas of Fermi particles which do not
interact with each other through the Coulomb inter-
action, but only through the phonons. For this model the

"G.Wentzel, Phys. Rev. Letters 2, 33 (1959).
P. W. Anderson. Phys. Rev. 110, 827 (1958)."D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953)."G. Rickayzen, Phys. Rev. Letters 2, 90 (j.959)."G. Wentzel, Phys. Rev. 111, 1488 (1958)."G. Rickayzen, Phys. Rev. 111,817 (1958).
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long-wavelength longitudinal excitations are not charge
or current density Ructuations and it is not so easy to
see their part in the Meissner eRect and the screening.
The method given below applies to both this case and a
model which is more realistic and the results are formally
the same. Of course if the parameters involved in the
two models were calculated from first principles they
would be diferent. If the treatment of Bogoliubov is
used and the Meissner eRect calculated according to the
method used previously by the author, "we believe that
to obtain the correct result for the eRect of the longi-
tudinal vector potential, it is necessary to sum an
infinite set of graphs. This same set of graphs should
lead to a correction to the transverse current of the kind
calculated in Sec. VI.

If one wishes to compute quantities of order g', for
example the screening of a time-dependent external
field, then the single-particle excitations of the system
must be examined more closely and one must calculate
p ~, , In the first calculations of the interaction of a
time-dependent longitudinal external field with the
superconducting electrons"' it was assumed that one
can use the normal form for the interaction with the
same screening as in the normal state. For instance, it
was implicitly assumed in BCS that the interaction be-
tween an acoustic wave and the superconducting elec-
trons is of the form

Eo(4 ~'/Q')» o~ '"'pof-(Q)+c c,
where r @ exp(iQt) is the charge fluctuation associated
with the acoustic wave and f(Q) is the same screening
factor as in the normal state. However, if the theory is
gauge invariant one should be able to describe the
interaction by either a vector potential or a scalar
potential. Thus an equally good choice for the inter-
action would appear to be

Eo(4 ~'/Q')r-o~ '"'L& j(Q)jf(Q)/fl+c c, (1 2)

which is also the interaction in the normal state. If this
interaction is actually used, then a result for the
attenuation is obtained very different from that of BCS.
This discrepancy arises because the equivalence of
Eqs. (1.1) and (1.2) depends on the equation for the
conservation of charge,

(E„—E„)(e~p~m)=h(e~Q j~m),

and this equation is not satisfied by the wave functions
of BCS Lnot even to within (eo/Aor)']. There is no general
principle to show which result is correct. Therefore in
order to ensure that the result be independent of gauge,
it is necessary that the screening be calculated from
improved wave functions, in a way that is gauge in-
variant. This calculation is performed in Sec. III, and it
is concluded that for cases of practical importance
(e~ poem) can be replaced by (e~ poem)sosf(Q) so that

Bardeen, Tewordt, and Rickayzen, Phys. Rev. 113, 982
l1959l.

one can use the scalar potential screened as in the nor-
mal state. The interaction with a vector potential has to
be modified so as to produce agreement.

The basis of this paper is the set of linear equations of
motion determined by Anderson'; he used the generalized
random-phase approximation and neglected the ex-
change terms. We solve these equations in Sec. III and
obtain wave functions for which the equation governing
the conservation of charge is satisfied. Ke then find a
simple approximation to the matrix elements. In Sec. IV
we add the eRect of an external time-dependent charge
Quctuation to the equations of motion and from the
solution determine the generalized dielectric constant
which depends on the frequency and wave vector of the
external field. A form for the interaction with the
external field is given, which can be used with the wave
functions of BCS. From this interaction it is shown in
Sec. V that corrections to the calculation of ultrasonic
attenuation by BCS are negligible. It is also shown that
the exact wave functions incorporate a backRow around
an external charge. In Sec. VI, the eRect of an external
static vector potential is added to the equations of
motion and from the solution the Meissner eGect is
calculated in an arbitrary gauge.

As the results of this paper are based upon the
generalized random-phase approximation (RPA), their
region of applicability is limited. The essence of the
RPA is that products of a pair of single-particle
operators are treated as bosons. The approximation
takes account of the transition of a pair of quasi-
particles out of the Fermi sea or into it but neglects the
scattering of a particle outside the sea. This approxima-
tion should be valid as long as the number of single-
particle excitations outside the sea is small, a condition
which restricts the discussion to the region of tempera-
ture near absolute zero. The result for the real part of the
dielectric constant is as accurate as all but the most
recent calculations of the dielectric constant of a free-
electron gas. If we were to include the exchange terms
we should even obtain Hubbard's result'~ but we shall
not enlarge on this here.

One defect of the present analysis is that the two-body
interaction is arbitrarily chosen so that the Hamiltonian
is gauge invariant and still leads to a superconducting
transition. (The two-body interaction used by BCS is
such that their Hamiltonian is not strictly gauge in-
variant. ) Most of the results are not sensitive to the
potential used and can be applied directly to the model
of BCS. The physical principles underlying the mathe-
matics are generally so clear that it is easy to see how
the results can be applied. Those corrections which are
sensitive to the form of the interaction cannot be
trusted quantitatively except perhaps so far as the order
of magnitude. In any case our model provides an
example against which calculations of the electromag-
netic properties of superconductors can be tested. To

'7 J. Hubbard, Proc. Roy. Soc. (London} A240, 539 (1957).
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improve upon our method it would be necessary to go
back to the original gauge-covariant Hamiltonian from
which the electron-phonon interaction has not been
eliminated.

An unsatisfactory feature of Anderson's approach is
the assumption that in the terms of the equations of
motion that lead to the superconductlng transition, the
two-body interactions are screened. This point has been
discussed by Anderson, who suggests that these equa-
tions are the second step in a self-consistent calculation.
It is clear from the work of BCS and BTS that the two-
body interaction in this term is in fact screened, but it
would be more satisfactory to have a justification of
Anderson's equations of motion which is basic. In
Appendix A we attempt to provide this justification. Ke
are led to a system of nonlinear equations which can be
approximated by Anderson's equations in just the way
he suggests. Although we do not take into account the
exchange terms, it is possible to do this by the method of
Appendix A and to obtain a set of linear equations with
the exchange terms properly screened.

2. NOTATION

In this section the notation to be used is summarized.
The operators which create electrons in the states of
momentum k and spin e are denoted by ca . The Bloch
energies of the electrons in the normal state are ek,

measured from the Fermi level, ep. In general ek will be
assumed to be (yt'k'/2m) —pv. The velocity at the Fermi
surface is eo. We define

pk =Ck+Qt Ckt, pk =C—kh C—k—Q4)

~k@=C k glCkt, ~k@=Ck+qt C—y 4 ~

The operators bk, pk corresponding to Q=O are always
taken as c-numbers, their expectation values in the BCS
ground state,

bk=(C kkCk~)o= bk*,

k=kCkt Ckt(0= Pk=ek.

and the interaction which leads to the superconducting
transition is denoted by

U(k, k') = Lv (k,k')+4v.c'
~

k —k'
~

')X (screening factor).

The potential V(k,k') is predominantly negative when
k and k' are near the Fermi surface. If the method of
Appendix A is followed, the screening factor is zero for

~

k —k'~ &Q,„andunity otherwise. The wave number

Q, „
is the cutoff of Sawada et al."

The energy gap parameter, analogous to 6p of BCS, is

I~ where

IK —gk——V(K,k)bk ———Qk V(K,k)bk"'.

Near the Fermi surface it is a constant which we shall
denote by eo. The energy of a single quasi-particle
excitation is

& =( '+Ia')'

The energy of a pair of particles with momenta —k and

k+Q is
vk (0)=Ek+Ek~q.

The coherence distance is gp=Avp/v E'p. The ground state
is such that

6k= bk =QkSk%0) Sk= Vk )

where
~k'=-,'(&+ ok/&k), Vk'= 2 (&—Pk/&k)

We shall use the operators,

PkO =NkCkt t kC

Vkl BkC kk+VkCkt

the four coherence factors,

l(k, Q) = ptkSk+q+Vk'Vk+q,

m (k~ Q) &kV~ Q+ Vklk+ Q~

'0 (k&0) =Nklk+ Q
—

VkVk+ q&

p(k, Q) =NkVk+q —Vklk+q,

e wave functions are normalized to unit volume. The and the three collective variables

Hamiltonian is p(0) =gk(pkq+ pkq)II=IIK+IIv+II c,
where

IIK=+ pkCk ~ Ck, ~q

k, o'

II = PP (kk')c .*c ~-, *c „c,,
k, k', q a', cr'

IIc PP 2ve'~k k'~ 'Ck——;*C k—+,.*C-k+„ck.
k, k', q o, rI

For the theory to be gauge invariant, v(k, k') is taken to
be a function of (k—k') only, v(k —k'). The direct
interaction is denoted by

Vn(0) =4ne'Q-'+ v (Q)

=pa(m(k, 0) (V a+ qo*Vki*+Va+qiV ko)

+ +(k,Q) (Vk&*Va+ qi+ Vk+ qo*Vko) ),
Il (0)=Z. V(K,k) (b"+b")

=pa V(K,k) L~(k,Q) (Vk+qo*Vkk*+Vk+qn ao)

—m(k, 0) (Va+qo*Vko+Vkk*Vk+qx) j
&K(0)=Pa V(K,k) (bkq —5kq)

= —pk V(K,k) D(k, Q) (vk+qo*van* —vk+qivko)

+p(k&0) (Vk+Qo Vkp Vk& Vk+Q&)3.

"Sawada, Brueckner, Fukuda, and Brout, Phys. Rev. 108, 507
(1957).
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3. SOLUTION OF THE EQUATIONS OF MOTION

In this section we are concerned with the solution of
the equations of motion derived from the Hamiltonian
H, and establishing the equation of conservation of
charge,

(E-—Eo)(+ p(0)+o)=&(+ 0'j(0)+o) (31)

Having obtained matrix elements for which the equation
of conservation holds, we 6nd approximate expressions
for them which are valid in the usual physical situations
for which they are required.

The equations of motion that are the basis for this
work are the linear equations derived by Anderson.
They were obtained from the full equations of motion
for pk@, pk@, bk, 6k@, by replacing those products of
pairs of operators which have nonzero expectation values
in the ground state by those expectation values, i.e.,
ck *ck, c»c» are replaced by the c-numbers nk, bk,

respectively. All remaining terms containing the product
of four operators are neglected. In those terms in which
bk appears the potential is screened. Anderson gave
reasons for this screening but since this procedure is not
in the spirit of his approximations we provide a justifica-
tion for his equations in Appendix A. The resultant
linearized equations of motion are

[H,pxq] = (ox+q —ox)pxq —Vll (0)p(Q) (nx+q —nx)

Ix+qbxq+—Ixbxq+bx pk Vbkq

—bxpq Qk Vbkq, (3.2a)

[H,Pxq] = (ox ox~q) p—xq+ V n(Q) p(Q) (nx+q »K)—
Ixbxq+Ix+—qbxq+bxpq Ek Vbkq

bx Qk Vbkq,—(3.2b)

[H,bxq] = —(ox+ ox~ q) bxq VD(Q)p(Q)—
X (bx+ bx+ q) Ixpx q Ixy q—pxq—

—(1—nx —nx~q)pk Vbkq, (3.2c)

[HtbKq] = (ox+ &K+q) bKq+ Vll (Q)p(Q)

X (bx+ bx+q)+IK+qPK q+Ixpx q

+ (1—nx —nx+q)pk Vbkq (3.2d).
As the mathematical detail may obscure the essentially

simple steps involved, it will be useful to outline the
procedure beforehand. We first 6nd those linear com-
binations pk*(Q), pk(0), of the operators p, p, b, b,
which are the normalized normal modes of the equations
of motion (3.2), and then we define the ground state leap

of the problem by
pk(Q)+o= o,

where the pk(0) are the destruction operators. Then the
unscreened charge density and current density are
written in terms of the normal modes, and the matrix
elements

(+oak*(0),p(Q)+o), (+opk*(Q),Q.j(0)+o)

are calculated. It is shown explicitly that Eq. (3.1)
governing the conservation of charge is satisfied. As
already pointed out, Eq. (3.1) implies that the calcula-
tion of transition probabilities is independent of gauge.
In the succeeding sections the effects of external
electromagnetic 6elds are added to the equations of
motion. These produce changes in the operators, pk (Q),
from which the complex dielectric constant and the
Meissner eGect can be calculated.

It is actually easier to work with the operators pk of
Bogoliubov" and Valatin. "In terms of these operators
it is found (after considerable algebraic manipulation)
that

[H)Vk+qo Ykl ] (Ek+Ek+q)Vk+qo Vkl

+V (0)m(k, Q)p(0)+ln(k, 0)
XB„(Q)—-,'t(1,0)A, (Q), (3.3a)

[H,vk+qlvko] = —(Ek+E~q)vk+qlvko
—Vl)(Q)m(k, Q)p(Q) —-', n(k, Q)

XBk(Q) —-', t(k, Q)Ak(Q), (3.3b)

[H,vk+qo*vko] = (Ek+ q Ek)v kg qo—*vko,

[H Vkl Vk+ql] (Ek+q Ek)Vkl Vk+ql

Evidently, half of the normal modes are given by the
operators yk+@O*yko, yk1*yk+q1, which have eigenvalues

(Ek+q Ek) and (Ek——Ek~q), respectively. These are
just the modes called unphysical by Anderson. Since all
the physical states 0' satisfy

Pk+ Qo Pko+ Pkl Pk+ Q1+ 0)

these operators may be taken to be zero throughout the
remainder of this section.

In the absence of the collective coordinates p(Q),
Ax(Q), Bx(Q), the other normal modes are Vk~qo*Vkl
and Vk+ qlVko which oscillate with frequencies (Ek+Ek+q)
and —(Ek+Ek+q), respectively. In the presence of the
collective coordinates there will be modes with fre-

quencies &(Ek+Ek+q) and also collective modes with

frequencies outside the range of the & (Ek+Ek+q). We
shall let p, (0) denote any collective coordinates. We
shall use pk(Q) * to denote a mode of frequency

(Ek+Ek+q) and p k( —Q) to denote the mode of fre-

quency —(Ek+Ek+q). The operator pk*(0) adds energy

to the system and is, therefore, a creation operator;

pk( —Q) subtracts energy from the system and is, there-

fore, a destruction operator which must satisfy p% 0=0.
The notation is consistent because the equations of
motion are invariant under time reversal. The products

vk+qp*vkl*, vk+qlvkl, and the collective variables p(Q),
Ak(Q), Bk(Q), can be expanded in terms of the p, 's and

1 N. N. Sogoliubov, Nuovo cimento 7, '794 (1958).
20 J. G. Valatin, Nuovo cimento 7, 843 (1958).
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written as

va+qo*ski*= Qk n~(k, k', 0)pa *(0)
+Ra no(k, k', Q)~ a (—Q)

+2'n'(k, Q)k '(0) (3 4a)

va+qavao=Za pi(k, k', Q)~a *(Q)

+gk. p, (k,k', Q)v a (—Q)

+E'p'(k, Q)u'(0) (3 4b)

p(0)=Pa ~a pk*(0)
+terms in p a (—Q) and p, ,

~a(Q) =Za Lak ~a '(0)
+terms in p a (—Q) and p, ,

&a(Q) =Za &ak~k *(0)
+terms in p k (—Q) and p, .

If these expressions are substituted into the equations of
motion, the n's and p's must be chosen so that the
coeKcients of ail the pa~(Q) are separately zero. Hence

—[Pk(0) —Pk (Q)]nl(k, k', 0) =C k, k +-', l(k, Q)Lkk,

[va(Q)+ va (Q)]P (k,k', Q) = —C, a +-', l(k,Q)I.

where
take = vDm(k&Q)Mai+ o e(k, Q)Io kki.

In the normal state Ma(Q) is the function [@+(&oq)] ' of
Brout."For the continuity equation it is necessary to
calculate

(+o~k*(0), 0 j(0)+o),
where

j(Q) = (&/2m)Zk(2k+0) 6 kq —~.q).

[Note that
j(r) =P q j (Q) exp(iQ r)].

Now

&0 j(Q) =Za(oa+q —")(~aq —Ik')
= Ea(oa+q —oa) [l(k,0) (Va+qo*Vko —Vai*ya+qi)

—p(k, Q) (Va+qo*Vki* —Vk+qn'ko)]
Hence

&(+ol a*(Q) Q j(Q)+o)
= —pk (ok+q —oa )p(k', Q) [ng(k', k,Q) —px(k', k,Q)].

We now use the identity

—P(k, Q) (oa+q —")
= va (Q)m (k,Q) —(Ia+Ia+ q) l (k,Q) (3.7)

to obtain

&(+o~k*(0), Q j(0)+o)
c k a2vk(Q)=Z va. (Q)m(k', 0) Sk", a+

Vk —Vk'

C ak +ol(k, Q)Lak
ni(k, k', 0)= ~a, a + (3.5a)

Pk' Vk+iO

A set of orthogonal solutions of the equations are given
by

Now

l(&' La apk

X [n (k',k,Q) —Pg(k', k,Q)].

,e) -E(I +I +q)l(k', 0)
Vk Vk'

4'aa —ol (k,0)Lkk
p (k,k', 0)=—

Vk+Pk'

In the Appendix it is shown that these solutions are
normalized. From the definitions of p, A, and 8 and
Eqs. (3.3) for y*y* and yy it is found tha, t

Pk (Q)'m(k', Q)l(k', Q)La a

Vk Vk'

va'm(k', Q) l (k', Q)La a —Q m(k', Q) l (k', Q) Laa,
Vk

—
V kI

M .=p m(k, Q)[n (k,k', Q)+p (k,k', Q)],

Lkk~=gk» V(k,k )l(k', Q)
X [n, (k",k', Q) —p, (k",k', Q)], (3.6b)

Xkk. =Pk- V(k,k")N(k",Q)
X [n, (k",k', Q)+Pi(k",k',0)]. (3.6c) = —2k"(Ia"+Ik "+q) l(k")Q)

X [n&(k",k,Q) —P&(k",k,Q)].When the n's and P's, as given by Eqs. (3.5), are
substituted in these equations we have a set of three
linear simultaneous integral equations for the functions
Mk, Lkk, Xkk . The situation is not as bad as it seems,
for in most cases of interest Mk is much greater than
I.». and X», and it is necessary to solve only a simple
algebraic equation.

It is at once apparent from the definition of Mk and
the fact that the operators are normalized, that

24'k~kvk~ l(k, Q)Lk~kvk=.,(Q)P m(k', Q) S,, , +
k' Vk

—
Vk Vk

—
Vk

=va(Q)p m(k', Q)[ng(k', k,Q)+pg(k', k,Q)]
=Pa(Q)liIa(Q),

"R. Brout, Phys. Rev. 108, 515 (1957).(+o~k*(0)y(0)+o) =~a(Q).

(3 6a) and from Eq. (3.6b)

Qk m(k', Q)l(k', Q)La a

=deka(ga ~a +N, k pqpa+q) V (k')k")l(k")0)

X [nx(k",k,Q) —p, (k",k,Q)]



THEORY OF SUPERCON DUCTI VITY 80i

&(+pea*(Q), Q i(Q)+p)
= .(0)(+o .(0)*, (0)+o), (3 1)

and the wave functions are such that our results will be
gauge invariant.

Now that the matrix elements satisfy the equation of
continuity, it is possible to approximate them in a
consistent manner. We shall compute MI, . In general the
states k and k+Q are close to the Fermi surface, much
closer than Acr, the average spread in energy allowed by
V(k,k'), which in turn is much less than the Fermi
energy. This means that Aa(Q), Ba(Q), Iaa, Ãaa. are
all approximately independent of k and that the states
k', k'+Q in the integrals involving L and 1' will lie
within an energy Ace of the Fermi surface. As the
interaction with a longitudinal field is being calculated,
all these variables will be independent of angle, too.' In
this case the set of three integral equations reduces to a
set of three linear algebraic equations which are

Ma(Q) =m(k, Q)+P m(k', Q)C a „

a' &a —&a

+Q m(k', 0)l(k', Q)
a' ~a —~a

La(Q) = Vl (k,Q)+P Vl(k', Q)C„.a
Vk

—Pk~

expression can be replaced by its value in the normal
state. This shows that to calculate the probability of
absorption of the system at the absolute zero of temper-
ature one can use the interaction term in the
Hamiltonian,

IIi P——VD(Q)rqe'"'ca, .*ca q, ,+complex conj. ,
a, Q

where, if we choose r Q to be the external charge Quctua-
tion screened as in the normal state, we need consider

only the single-particle wave functions of BCS. In the
next section we approach the problem from a slightly
diGerent point of view and see how to generalize this
result so that it applies at all temperatures and takes
into account the corrections to the screening from the
superconducting transition.

4. DIELECTRIC CONSTANT OF
A SUPERCONDUCTOR

The procedure developed by Nozieres and Pines" for
the normal metal is adopted; a time-dependent longi-
tudinal external field (unscreened) is allowed to act on
the system and the polarization it induces is calculated
and related to the complex dielectric constant. Let us

suppose there is an oscillating test charge of wave vector

Q and frequency 0 acting on the system. Its charge
density is

rq expL —z(nl —Q r)j+c.c.
k a

+p Vp(k' Q) The interaction of this test charge with the system adds
pa pIq the term II» to the Hamiltonian where

iVa(Q) = Vn(k, Q)+Q VN(k', Q)Ca a
a' &a —&a

+P Ve(k', 0)l(k', Q)
a' &a —&a'

Normally Ma(Q) is required to obtain the probability of
absorption of a wave of energy va(Q), for which

@cog»va (e.g. , acoustic wave). Since the formalism
above applies only for absorption when the system is

initially in the ground state, the condition va&2&0 must
hold. Therefore Avpg))2ep. In this case it is easy to show

that to order (va/Aepg)s and (ep/Are)', La and 1Va can be
neglected. Then

r m'(k', 0)v„.
Ma(Q)=m(k, Q) I 2Vi)(Q)g +1

I

=(OI p(Q) Ik, k+Q&ncs

m'(k', 0)va

I 2VD(0)Z +1 I.
&a —~a

To the same order of accuracy the denominator of this

& =V (0)LP(—0)rqe '"'+cc je"'

I
In this section the contribution of the phonons to

Vii(Q) is neglected so that V&(0) is just the Coulomb
interaction. The term neglected is only of the order of
the electron mass divided by the mass of an ion. $ The
infinitesimally small quantity q is introduced to ensure

that the test charge is switched on adiabatically; in the
mathematics, g indicates which contour to choose for
the integrals that arise.

The interaction B» leads to extra terms in the equa-
tions of motion so that these equations become

I &,vay qo*vai*j = va (0)va+ qo*va i*+

Vari'�(k,

0)
XLp(Q)+rqe '"'+ '+c.c.$+-', e(k,Q)

XBa(Q) ——'l(k, Q)Aa(0), (4.1a)

LH, va+ qivaoj = —va(Q) va+qivao —Vates(k, 0)
XQ(Q)+rqe '"'+&'+c.c.j——,'e(k, Q)

XBa(Q) —-', l(k, Q)Aa(Q), (4.1b)

L&Va+qo*Vao&= (~a+q ~a)Vapqo*Vao, —

t&&vai*va+qij= (~a &a+q)Vai*Va+qi.

"P.Nozieres and D. Pines, Nuovo cimento 9, 470 (1958).
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As shown by Nozieres and Pines, " only the part of

(p(Q)) that varies as exp( —iQt) is required. Then
[e(Q,Q) ' —1] is the ratio of this to ro exp( —iQt). Now
the effect of the extra terms in the equations of motion is
to change the normal coordinates by adding c-numbers,
and since p(Q) is linear in the old normal coordinates it
too is increased only by a c-number. The expectation
value of p(Q) in the ground state will be just this c-

number. Hence it is necessary to solve the equations of
motion treating the operators as c-numbers, remember-

ing that the comrnutators on the left-hand sides are to
be replaced by time derivatives. Thus as it is necessary
to treat only the part of the test charge that varies as
q 'a'+g' we hand

p(0) =Z[VD(p(0)+roc *"'+"')m(k 0)

+-', m(k, Q)B„(Q)]m(k,Q)

hQ —i' —v I:(Q—) —hQ —i'+ v~ (Q)

—
k 2 t(k, 0)A.(Q)m(k, Q)

X +, (4.2a)
ho i' v~— —hQ —i'+ v I,

— —

Bx(0)=K[V~(p(0)+voc '"')m(k 0)

+-,'e(k, Q)Bg, (Q)]v(K,k)n (k,Q)

X —hQ —ig —vt, It 0 ig+—vy—

constant leads to a result for the absorption which is in
agreement with that calculated from the matrix ele-

ments of the previous section.
It is apparent from the structure of the equations of

motion (4.1) that if one wishes to calculate the proba-
bility of a transition caused by an external charge
fluctuation p(Q)e '"' (Q((voQ) one can take as the
interaction term in the Hamiltonian

a = v.&p(0)+'..—" )P.„(—0)
+-,'Z. B.(0)(fk '+5. o)

--; Q, A.(Q)(4-o-4-o), (4.3)

where p(Q), BI,(Q), and Aq(Q) are the solutions of
Eqs. (4.2) and are c-numbers. p, B, and A are all

proportional to rye '"' and the constants of propor-
tionality need be determined once for all interactions.
The result (4.3) has been proved only for transitions
into and out of the ground state. %e guess that it is
correct for all transitions and that p(Q) is hardly altered
by a change of temperature. For temperatures kT(&eo,
A(Q) and B(Q) will also be unchanged. For many
problems A(Q) and B(0) can be neglected; for these
problems the interaction is H~ even up to T,. As an
example of the use of Eq. (4.3), we shaH show in Sec. V
that the corrections to ultrasonic attenuation as calcu-
lated by BCS are of order (I/vo)', where u is the phase
velocity of the sound wave. Notice that if the corrections
are important then, because the terms involving A and
8 are not single-particle operators, the interaction
cannot be described as a screened charge acting on each
excitation.

As a check on the formula for e(Q,D) we shall investi-
gate its behavior as 0 —+ ~ . According to Nozieres and
Pines" we should obtain

—-', P l(k, Q)A „(Q)V(K,k)e(k, Q) e(g,n) —1 —+ —co '/Q' as 0 —+ ~.
If we write

(4 4)

X +, (4.2b)—kQ —ig —vt, AQ iq—+vt, —

A (Q)= —P[v (p(0)+r e '"')m(k, Q) then

A~(0) = V~(0)n~(0)[P(0)+"Qc

B~(0)= V~(0)P~(0) [p(0)+&o& '"'7

+-,'~(k, Q) B„(Q)]t(I,Q) v(K, I )
—p(0)

p(0)+roc '"'

AQ i rt vp —kQ——iq+—vg-

+-,' P l(k, Q)A„(Q)V(K,k)t(k, Q)

X — (4 2c)
hQ iq vg —hQ —iq+—vt, .—, —

From these three integral equations, p(Q) and hence the
complex dielectric constant can be determined. It is not
difficult to show that the imaginary part of the dielectric

= —V p
I
[2 (k 0)+~( Q)p (Q)]

m(k, Q) vA,. l(k, Q)m(k, Q)np(Q)AQ
)

IPQ~ —vg' O'0' —vI' I'

—(v /0')+{[2m(k, Q)+N(k, Q)p (Q)7

+l(k, Q)n(k, Q)hn)m(k, Q).

As 0 —& ~ both P and n are proportional to 0 '. There-
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fore P can be neglected and

nx(Q) = (1/AQ')Pi V(K,k)2m(k, Q)t(k, Q)Q

= —(2/An) (IrryIrr+q).

Therefore

as in the normal metal. However, if V = t'~ then the liow
in the superconductor is diGerent from that in the
normal metal at distances less than the coherence
distance from the external charge.

5. ULTRASONIC ABSORPTION

=L2I'D(Q)/A'~~')Z(v~q' —»') (p~+q —")

,—1=—[V (Q)/A'n']g. ~(k,Q) The interaction (4.3) will be used to show that the

(k Q) (Q) ( ) (k Q)]
correction to the ultrasonic absorption calculated by
BCS is (at least at the lowest temperatures) of order

=[2@'ii(Q)/Apftp]pq rrt(k Q)p(k Q)(fj+q p„) (I/vp)', where I is the velocity of sound in the metal.
Near absolute zero, kT&pp(T), AQ«AvpQ«pp for the= [2I &(Q)/A'fl')E(it&'»+q' »'ptt+q') (p&+q p&) acoustic waves of interest. If the integrands of Kqs. (4.2)
are expanded in powers of (0/vpQ) and (AvpQ/pp), it is
found that

= —[4yD(Q)/A'0')g v '(APQ'/2')

=-[I' (Q)/ft')(Q'/ )~
A = —(40/17) Vii[rqe '"'+p(Q))ppQ(hvpQ) '

—nqVD[rqe ""'+'p(Q)]=nqVDrqe '"'p
= —(cu „'/0'). 8= ;VD[rqe—""'+ti(—Q)]hvpQ/p p

=&qI'n[rqe " '+t(Q)]=&qI'D«e ' " .Had we neglected n we should have found that (p —1)
behaves like Q . The proof of Eq. (4.4) is implicitly a
proof of the sum rules The correction to p(Q) is of order (0/AvpQ)' and

(AvpQ/pp)'. As only the order of magnitude of the
correction is being estimated, these corrections to p(Q)
can be ignored. (BCS have already ignored corrections
of this order of magnitude. ) Hence, the absorption is
proportional to

Q i » (Q)M '(Q) =cVA'Q'/2nt. (4.5)

Notice that as Q tends to zero the energy»(Q) remains
finite but the matrix element Mi, (Q) is proportional to
Q. In the normal metal it is the matrix element that
remains finite while the energy is proportional to Q'.
One can see from this discussion that p(Q, Q) is signifi-
cantly diferent from its value in the normal metal only
if AQ AvpQ& pp.

Before leaving the subject of the dielectric constant
we shall consider the connection of this work with the
ideas of backRow ' An external charge fluctuation r ge '"'
causes a charge fluctuation p(Q) in the superconducting
system. Therefore there is a current Qow given by the
density QQp(Q)Q '. If an external point charge moving
with velocity V interacts with the system the external
charge density is

d'kb(Ei, —Ei+q+AQq)(fi+q —f~) ([it(k,Q)+Pqrl(k, Q)

+nqp(k, Q)]'+ [rt(k, Q)+pqm(k, Q) —nqp(k, Q))')

d'k p(Ep E~q+Aftq) (—fp+q fp)—
4 p(AvpQ) 16 (AvpQ)

' 5 0' pp4

x —+- +—
I

I+-
lE' 5 E' 25 ( E ) 4 (AvpQ)'E4l

and the induced current Qow is

The first term in the curly brackets gives the result of

5(r—Vt)=gq exp[iQ (r—Vt)], BCS.The corrections are evidently no bigger than terms
already neglected. Since the term involving p(Q) is the
only important one, this result will be valid for tempera-

j(r)=gq(Q V)Qp(Q)Q 'exp[iQ (r Vt)]/rq e—xp( —iQt)
tures up to T,.

1
=&(Q V)Ql —1 IQ 'exp[iQ (r—Vt)]

Lp(Q, Q V)

= —V(V v)gq(1/p —1)Q 'exp[iQ (r—Vt)].

When Q~O, p(Q, Q V) '-+0. Therefore, at large
distances from the moving charge the Row is just that
due to a dipole of strength" (—V/4v-) as it is in the
normal metal. If V((vo or V&)eo, the Row everywhere is

"This backQow is analogous to the backQow around a foreign
atom in liquid helium. The strength is the same, see R. P. Feynman
and M. Cohen, Phys. Rev. 102, 1189 (1956).

6. MEISSNER EFFECT

We shall calculate the current within the supercon-
ductor due to an external static magnetic field. The
connection between this current and the existence of a
Meissner effect and the calculation of the penetration
depth has been discussed suKciently elsewhere'4 for it
to be omitted here. If the static magnetic field is
described by the vector potential a(Q) exp(iQ r), the
extra perturbing term in the Hamiltonian is II&, given

"J.Bardeen, Handbnch der Physik (Springer-Verlag, Berlin,
1956), Vol. 19. This review article contains further references on
this topic.
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by

IIi= —n Ei a(Q) (2k+0)(pi q —paq)*

=—neo a(Q) (2k+Q) [l(k,Q) (viyqo*vao —vii*vi+qi)
—p(k, 0) (vi+qo*voi* —vip qivso)]*, (6.&)

n =ek/2mc.

A straightforward way of calculating the paramagnetic
part of the current to first order in a(Q) would be to use
first-order perturbation theory and obtain

j.(0)=z +c.c.)

where the states ~e) are the states p, *~0) of Sec. III. To
obtain the result explicitly (i.e., without invoking sum
rules) it would be necessary to obtain all the solutions
p*. In order to avoid the excessive computation involved
we use the following quicker method which involves no
extra assumptions.

The equations of motion when B» is added to the
Hamiltonian are

[II,vi+qo*voi*]
=»(0)v +qo*v»*+ V~(0)p(0)m(k, Q)

+-,'ii(k, Q)B (Q) —-,'l(k, Q)A (Q)

+np(k, Q) a(Q) (2k+Q), (6.2a)
[&,vi,+qivi, o]

= —vi, (0)vk+qivoo —Vii(0)p(0)m(k, Q)
—-'e(k, Q) &i (0)—-'l (k,Q)A i(0)

+np(k, Q) a(Q) . (2k+Q). (6.2b)

[These and the following equations still apply if the
Coulomb term is omitted. We then have to omit the
Coulomb contributions to Vii(0) and U(k', k).7 As in
Sec. IV, we look only for the steady-state solution of
these equations. Because the external field is static the
left-hand side of the equations is zero. Subtracting the
two equations, one quickly finds

p(0) =&o(0)= o

From the sum of the two equations

—vk(Q) (Viiqo' Vai* Vo+qiVoo)

=—l(k,Q)Ai(Q)+2np(k, Q) a (2k+Q).

It follows from this equation and the definition of A rr (Q),

Ax(0) = Zi V(K,k)l(k, Q) (vi+qo*voi* —vo+qivi, o),

that

given by

(2m/ek) j,(Q)
=Ra(2k+0) (p~q —poq)

=P„(2k+0)[—l(k, Q)Ai(Q)

+2np(k, Q) a (2k+Q)7p(k, Q) vo '. (6.4)

The second term on the right is the one that is calculated
from the BCS wave functions alone. As the result is
linear in a(Q), one can calculate the effects of longi-
tudinal and transverse fields separately. This we proceed
to do.

(1) Longitudinal Field

As pointed out in the Introduction, a longitudinal
static vector potential cannot give rise to any current.
It will now be shown that the effect of including the
collective term Ao(0) is to ensure that this result is
satisfied. If a(Q) is a longitudinal potential, one can
write

a(0) =0(&'/2m)4 (0)
Then the solution of the integral equation for Ai, (0) is

Ao(0) =2(I.+I~q)n4 (0) (6 5)

This can be checked directly. If the formula (6.5) is
substituted into the right-hand side of Eq. (6.3), that
side becomes [when Eq. (3.7) is used7

—2ny Pi, V(K,k) [l(k,Q) (Ii,+I~q)
—(ok+q —")p(k, Q)]l(k,Q)» '

2ny Pi,. V—(K,k)m(k, Q)l(k, Q)

= 2nd (Ia+Ia+q)

=Air(Q).

Therefore the two sides of Eq. (6.3) are equal. If one
substitutes for Ao(Q) in the current density it is found
that

(2 me/h)j v(Q) =+2np po(2k+0)[(ei+q —ci)p(k Q)
—(Io+Io~q)l(k, Q)]p(k, Q) vi,

—'

= —2ny pi, (2k+0)m(k, Q)p(k, Q)

2n4 PL(2k+Q) (Qy v~q vPINoyq )'
=—2nd 2 (2k+0) (»+q' —»')

=2ny2 Q(2k+Q)v„'
=2n&01V

= (4m/Ii') nba (0),

j.(0)=( '/ ) (0).Ax(0) = —Qi U(K,k) [l(k,Q)Ao(0)
2np(k Q) a. (2k+Q)]v„—ll(k Q) (6 3) Hence the paramagnetic current density just cancels the

diamagnetic current density, the total longitudinal
The paramagnetic part of the current density j(0) is current being zero.
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This result suggests that we try(2) Transverse Field

If a is transverse and V(K,k) is independent of angle,
then

(a K)(Q K)
Ax(e)=, A(Q).

kE)
(a k)(Q k) 1 ( pc'+eo'i

X —
I

1+ Iip(Q) '
k' 2 ( EE'

2k.'E.kg E. ( ee'+ eo'i
= —:vA(e)z e-,'I 1+ I "(Q)-'

k EE' ik4E2

(a E)(e E)= —4N(o) VA (Q)
E2

t' dp p'(1 —p') 1 f ep'+oo'
-I 1+

2 E+E' 2( EE' )(6.6)V(K,k) = —-' V (1—cos8)'.
~Jp

Then

a pp V(K,k)(2k+Q)l(k, Q)p(k, Q)io '

is zero because the sum must be proportional to Q, and
a Q=O. In this case Ai(Q) is zero and there are no
corrections to the result of BCS. In general, however,
V(K,k) is a function of angle and there will be a t K
contribution from the transverse excitations. In the = —~VA(e)ZI 1

London limit, Q —+0, p(k, Q) ~0 and as there is no
singularity in the solution one Ands no contribution to
j „

in the limit. Thus the London equation is obtained as

Q ~ 0.We have tried to estimate the order of ma, gnitude
of the correction in the Pippard limit, Qgp))1, by
treating a specific example. The dependence of V on

I
k

I

and IEI is not important provided we cut off the
integrals appropriately. Because the phonon interaction
tends to zero as the angle, 8, between k and K tends to
zero we have chosen a V(K,k) that possesses this
property. The simplest potential that gives a nonzero
contribution is

nfl�&

—(V(K,k))„„=V
is the same parameter as used by BCS. With this form
for V(K,k), it is found that

pp V(Kk)a (2k+Q)ig, 'p(k, Q)l(k, Q)
= —

p V Qg„.(a.2k) (1—cos8)'i i,
—'eo(e —p')/2EE',

I
E = 6p+g.

If the x axis is chosen along Q and the z axis along a, the
sum is (neglecting terms of order Q/kp)

3Vu k,E, k,E,
Q k. — + (k,E,+k„E„)

2 ~ kE k2E2

2 E'Q p k'

(a K)(Q.K)
=-,'N(0) V k. I'd,

o(' —)
X —p(1 —p')

J i 2 EE'(E+E')
(a K)(Q.K)=pN(0) Vko ~(Q) (»y)

E2

cob'k Q,/m
X

Ei,E~ o (E+E')

If we substitute (—k —Q,) for k we find that the
integrand, apart from the term in square brackets, is an
odd function of k, (to order Q/kp). Hence the sum is

3VaE E, k2 k,'k, ' 6p

Q
—2

2 E' m & k' Ei,Ei+a(Ei,+E~a)
3 V(a K)(Q K) k -'(k' —k ') eo(p' —p)

EEI(E+E~)

After some calculation it is found that if @woe(hop and
pp((A'ppg, the sum is

—(3/20)N(0) VA (Q) 1 (2A /A oQ)——(3/20)Ax(Q) [1—N(0) V 1n(Aooe/pp)].

Then the equation for Ai, (Q) is

3 3
1——+—N (0) V ln. (kvoe/pp) A x(Q)

20 20

(a K)(Q K)
=-,'aN(0) Vkp ~(e)

E2

As we are only estimating the order of magnitude of the
correction, we shall keep only the first term of the
square brackets. Hence

A(e) =-:(-A)N(0) vk.j(e).
The correction to the current density is given by

(2mi 3 n
I~.(e) =—-N(0) vko~(e)

I equi 4q
po(p —p') agk, k,

XZ k.
EE'(E+E') ko

= —,'nN(0)'Vkp/(Q) a

~' dp, po(p' —p)
X « —

It (1—u')
i 2 2FE'(E+E')

= i'oauN(0)'Vkoog(e)'
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J(Q) has been evaluated and is

16&0
[ln(jtpoQ/po) —-', ].

3ItvpQ

Therefore, the total transverse current density is

—3G 16

The first two terms are those given by BCS while the
third is the new correction. As the formula is valid only
for Qgp) 1, it is reasonable to test the correction using

prQgp ——10. If we also choose 1V(0)V= 0.3, the ratio of the
third term to the second is 0.02, which suggests that the
correction is small. It is possible to choose a potential
that makes the correction large by making the potential
vary considerably with angle and change sign. For
example, if one chooses

V(K,k) = Vi —k Vp(1 —costt)', Vi—Vp(0,

the correction is enhanced by the factor Vp/(U& —Vp)

which can be made as large as one pleases by making
(V&—V&) sufficiently small. But, although V(K,k) may
oscillate widely over small angles because of the con-
tribution of the umklapp processes, we expect that on
the average it will not vary widely enough over 180' to
make the correction large. As the correction is sensitive
to the dependence of the potential on angle the argu-
ment is not conclusive.

One can see the connection with the work of Pines and
Schrie6er in the following way. The operator which

creates a plasmon is

p, i*(Q)=2k[~(k,Q)vk+qi*vko* —P(k,Q)vk+qovki],

where
n(k, Q) = [ck+-', l(k,Q)l k]/(Aa), )

—vk),

p (k,Q) = $4 k ',—l (k,Q)—I—

k]/(happ,

)+v k),

and cv» is the plasma frequency. C» and L& satisfy Eqs.
(3.6) without the inhomogeneous terms and with v„.
replaced by Ace». Hence

p.~*(Q)—p.~(
—Q) =Zk[~(k Q)+P (k,Q)]

X [Pkyox*vko* —7k+ qovki)

j,(Q) = 1— ln(prQ)p)
16Q/pl%, r,'(0) pr'Q/o

SX(0)V
[ln(~Q&) —p]' a. (Q)

3m'Qfp

Hence

t ~*(Q)—p ~(
—Q)

2MviVD(Q)
Q(ok+Q Pk) (rk+Ql Pko 7k+Qo+kl)q

(happ, i)'

which is proportional to j„(Q).Mvq has to be chosen so
that the creation operators are properly normalized.
Then the analysis follows that of Pines and SchrieGer.

1Vote added ie Proof. Sinc—e this paper was submitted
a number of papers and preprints have appeared on
the theory of the Meissner e6ect. The reader is referred
to K. Yosida [Prog. Theoret. Phys. (Kyoto) 21, 731
(1959)), Blatt, Matsubara, and May [Prog. Theoret.
Phys. (Kyoto) 21, 745 (1959)), N. N. Bogoliubov
(preprint) and V. Nambu (preprint).
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APPENDIX A

In this Appendix, Anderson's linear equations of
motion are derived and the screening of the exchange
terms justified. It is apparent from a comparison of the
treatments of Nakajima' and of Bardeen and Pines' of
the electron-phonon interaction, that in order to obtain
the interaction properly screened it is necessary to
separate out the plasma degrees of freedom. Accord-

ingly, let us try to separate out these degrees of freedom.
We will suppose at first that the operators p@* which
create plasma oscillations of wave vector Q in the
superconductor are known. For these modes the RPA
is certainly a good approximation; one can write

p g*=2k[~(k, Q)pko+ p(k, Q)pko

+v(k, Q) f ko+V(k, Q)5ko).

Ultimately the coeKcients n, p, p, p will have to be
determined.

The "intrinsic" Hamiltonian, H; &, is introduced by

If terms of second order in the electron-plasmon
coupling constant are neglected,

o.(k,Q)+p(k, Q)
= [2C kvk+kco, )l(k,Q)Lk](fiM, ))

—'

=2M ~VD(Q)[mkvk —(1k+1k+a)l(k, Q))(ka„)—'

= —2M.~V~(Q) (ok+a —pk) p(k, Q) (&~vi) '

H~~t, =H Pkppqpq p�,'—
qQ&�Qm

H;„&is a function of operators pk(Q) and pk(Q)* which

commute with pg and p@*and which destroy and create
states in which a pair of particles are excited. We can
find these operators from the equations of motion

derived from II; ~. Let us consider just one of these
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equations, the one for p~Q. One 6nds

[H;.t,pxq]
= [H—2 btt'q p q *pi q', pir ']
=[H px'] E—q &~q pq *L~q,px']

Eq' bkiq'&q' )P& ]pq'

=[»Pxq] E—q It~q pq *2k {~(k'0')
X[ck't cktbk'yq', k+q ck+qt cv+q'teak', k]

p(—k', 0')[ck+qt*c k q k*bk. k]+,y(k', 0')
X[c k kckt&kpq k+q]) —Zq &~q Zk {~(k',0')

X [ca'+q~t catseal, k+q ck+qt ckt tbk~+q~ k]

+y(k', 0')c k q teat)a. ~q
@(k',0—')ck+qt*c a t*bk+q. , k])pq

= [H,pxq] Zq &—~q Pq *{~(k+0—0', 0')
X[ck+q q t*ckt ci(k,—Q')ck+qt*ck+q t]

y(k, Q')c—k.kqt*c k q t*

+y(k+0 —Q', Q')c k q+q kckt}
—Pq h, tdq {n(k+0, Q')c q q t*c t
—~(k—Q', 0')ck+qt*ca q t

+~(k+0, Q')c „qq.,c„,
—@(k—0', 0')c qt*c „q.,*}pq..

To linearize this equation, products of pairs are replaced
by their expectation values in the ground state. The
first term when linearized looks just like the right-hand
side of Eq. (3.1a) but the potential appearing in it is
unscreened. This term will be written as [H,pxq]r, .
Then (omitting the exchange terms to save space)

[H .t,pxq]

=[H,p& ]~+Zq' ™q'{pq' ([pq' p&q])

+6 q
*pxq])pq —P(k' 0')~(k+0 —0', 0')

X [bk'8k', k+q q'c k' q'kckt

—c k t*ck+q q t*bk+q, kbk]+p(k', 0')~(k,Q')

X[bk ba k+qc k q tck+q t ba+q c k t ca+—qt *5k, k ]
—n(k+0, 0')p(k', 0')[—ba+q c„tca tba, q k.

+bkCkpq+q t*C a —q t*bk, k ]+~(k—Q', 0')P(k', 0')
X[ bk+q&a+q, k'+q ck——q tc a &

+bk q6k qkck+qt*c k , q t*]+termsinyandb,

where ([ktq, prcq]) is the expectation value of the
commutator in the ground state, i.e.,

([pq,px ])=5q, q {n(k,Q')[ttk —ttk+q]
—~(k,Q')bk+q+e(k, Q') bk),

and

([ '*,. '])=b.-'{-(k+0,0')( .—..)
+v(kyQ, Q') b„—y(k+0, 0')b„,}.

[H;.t,paq]

=[H,pkq]~ Zq V(0—')

X[bk+q q bkq+bi bk q
q bk+qbk+—.q q bk+q bk—q]

—&~q{pq*([pq, pkq])+([p-q*, pkq]) pq)

= [H,pkq]~ "tdq{Pq —([ttq Pk ])
+(5 -q*,pkq])p-q}, (A2)

where [H,pa q]z stands symbolically for the commutator
written down by Anderson. This equation and the
corresponding equations for p, b, and 6 are together
equivalent to those of Anderson. This can be seen in the
following way. The equations for the coe%cients
ta(k, Q), P, p, and p are found from the equation for pq*.
From Eqs. (A2) and the corresponding equations for
6, b, and p one obtains

[H'-t, pq*]= [H,pq*]~—&~q{pq*G q,pq*])
+(&—q pq ])&q) ~

Since p Q* commutes with B;„t,,

[H,u q*]~=&~qp q*,

which is the equation one obtains from Anderson. For
the single-particle excitations, pa' (Q), one finds in the
same way

[H,pk*(0)].= LH-. ,"*(0)]=[H,pk*(0)],
since pk*(Q) commutes with Pq and Pq". This proves
that Eqs. (A2) are equivalent to Eqs. (3.1).The reason
the terms that lead to the superconducting transition
appear screened is that as far as these terms are con-
cerned II;„&is

&~q pq*uq =H —
2 2 V(Q')p q pq.

Q &Qmsx Q &Qmax

One now has a set of equations (not all independent)
from which to determine the single-particle excitations.
Since the coeKcients n, P, y, and g are also unknown,
these equations together with

[Hintnttq ]=[Hint)pq]=0

determine these coeKcients and also the cutoff on Q'.
The equations are not linear in the coefficients.

In order to see the connection with the Eqs. (3.1) we
6rst make what appears to be a reasonable approxima-
tion and replace ta, P, y, P by the values we should
'obtain in the normal state (neglecting second-order
terms in the electron-plasmon coupling constant), that
is, we take

y= &=0, P(k, Q) =n(k, Q) = [V(Q)/2A(vq]i, (A1)

where V(Q) is the sum of the Coulomb and phonon
interactions. V(Q) is unscreened, the phonon part
corresponds to the interaction obtained by Nakajima,
not that of Bardeen and Pines. This approximation can
be made the first step of a self-consistent calculation. It
follows that
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In this Hamiltonian the two-body interaction is screened.
For the same reason, had the exchange terms been kept
we should have found that these, too, are screened.

It would seem possible to generalize the equations by
supposing all the operators p;* to be known linear
combinations of p~@, pl, @, b~&, and bj, @. Then one would
obtain a set of nonlinear integral equations for the
coeKcients by making the equations

[H +4—o;p, *p;, p;*]=ken, p, *

o~a a"+1

Pyl —
PIo~~ —«

[~s"'*+2('(k",0)~' a
*

1 1
+-,'(!(k,Q)I.„„,*!

~»»'+&o»+» ~—

1 1

!
—2 C'sa ~ Cas *!

PIs& «Pg Pg~

linear in the operators. Of course, Eqs. (A1) would only
be a first approximation to the plasmon operators.

(—P —,~(k, Q)L.,„c„„,*!
Is (vs —» +io»+vs )

APPENDIX B

In this appendix it will be shown that the operators,
((is* defined by Eqs. (3.4) and (3.5) form an orthonormal
set. The plan is to show that the operators Xs*(Q),
de6ned by

1 1
+o~(k,Q)Ls, s *!

k i's &sI+&& pk+»' p -(

+{1/~k/I}4

Xs*(Q)=Zs I
ni*(k', k, Q)vs ~oi*vs o*

pi*(k', k,Q)7a'~oops'i],

=
I o~s~s"+

Phr~
—Pg~l —ZE

[C'a-s *+P(k",0)La"s *

form an orthonormal set. It then will follow that the
coeKcients of Xa*(Q) in the expansions of ys+Qi +so*
and pl,+@op» in terms of the X's are, respectively,
ni(k, k', Q) and pi(k, k', Q). By direct substitution it can
be seen that Xs*(Q) satisfies the equations of motion
with eigenvalue i s(0). Hence Xs(Q) can be identified
with ps(Q) and the result will be proved. Now

[Xa-(Q),Xa (Q)*]

[ s(kn,ik",0) i(nk, k', 0)* pi(k, k—",Q)pi(k, k', Q)*]

C's a*+o~(k",Q)Ls s *

PI t —PI lr —«
4's s +P(k",Q)1a"s

» —is +io

(Css '+P(k, 0)Lss *)(Css"+ot(k,Q)Lss")

k Pa —PI "—«
(C'as '—o~(k,0)Isa *)(C'a -—P(k,0)l ss")

PA: PI Pa

—Qs @ss"[ni(k, k', Q) *+pi(k, k', Q) *—hss, ]
—Ps -', &(k,Q)L,„-[n,(k,l ',Q)*

—Pi(k, k', 0)*—~as ]}+{k'~k"}*.

» l~(k, Q)Lss-[n, (k,k', 0)*—p, (k,k,Q)*]

= Z -'~(k,0)V(k k"')i(k- 0)

X[n, (k"',k",Q) —p, (l ~~,k 0)]
X [ni (k,k', Q) *—pi (k,k', Q) *].

This remains unchanged when k' and k" are inter-
changed and the complex conjugate is taken [V(k,k')
= V(k', k)*].Hence this sum disappears from the final
result. Similarly, the term

Za csa"[ni(k, k', 0)*+pi(k,k', 0)*]

does not contribute. Hence

= ' o&ale~+1
1

C a-a *+o('(k",0)l.s"a
*

Pg~ —Ppl~ —«
LXs-(0),Xs (Q)*]

([Css *+-',&(k)Q)Las *][Csa"+P(k, Q)I ss ]
k ( (&s—» +&o)

o&s s +1

Pg~ —Pp« —«
[@s"s*+@(k",Q)Ls"a *

[esa '——,'(l(k, Q)I sa *][Cas"—P(k, 0)L ss"]i
Pg PI

+Cs a +P(k', Q)Ls s ] +{k'~k"} =4 s,

+ {k'~ k"}* as was to be proved.


